
PROOF OF BUNYAKOVSKY’S CONJECTURE

ROBERT DELOIN

Abstract. Bunyakovsky’s conjecture states that under special conditions,
polynomial integer functions of degree greater than one generate infinitely
many primes.

The main contribution of this paper is to introduce a new approach
that enables to prove Bunyakovsky’s conjecture. The key idea of this new
approach is that there exists a general method to solve this problem by
using only arithmetic progressions and congruences.

As consequences of Bunyakovsky’s proven conjecture, three Landau’s
problems are resolved: the nˆ2+1 problem, the twin primes conjecture and
the binary Goldbach conjecture.

The method is also used to prove that there are infinitely many primorial
and factorial primes.
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1. Introduction

In 1837, the German mathematician P. G. L. Dirichlet (1805-1859) proved
that an arithmetic progression ax + b (an integer function of degree m = 1
where x, a and b are integers with gcd(a, b) = 1), generates infinitely many
primes.

In 1854, seventeen years after Dirichlet’s theorem, the conjecture of the
Ukrainian mathematician Victor Y. Bunyakovsky (1804-1889) mentioned in [1]
is already a try to generalize this theorem to functions of degree m > 1. This
conjecture states that, under two conditions mentioned hereafter, a polynomial
function of degree m > 1 generates infinitely many primes.

A recurrent question is then: are primes of a certain form infinitely many?
And a recurrent answer is: it is conjectured that they are infinitely many, or
even: it is not known if they are infinitely many. This question necessitates a
classification of the different possible forms of primes.

As the most generally encountered form is the polynomial form, this one is
studied here, with the result that Bunyakovsky’s conjecture is proven as well
as, consequently, three of the four problems of Landau: n2 + 1, twin primes
and Goldbach conjectures.

As the question is still unresolved for primorial and factorial primes, these
conjectures are also proven here.

2. Preliminary notes

2.1. Definition of polynomial integer functions. General functions are
said to be polynomial if their expression is a polynomial of degree m:

f(x) = cmx
m + cm−1x

m−1 + cm−2x
m−2+. . . +c2x

2 + c1x+ c0

with m ∈ N and x and ci ∈ R, where N is the set of all positive integers and
R the set of all real numbers.

If we choose x and ci in N, all values of f(x) are in N so that f(x) becomes
a polynomial integer function f(n).

Finally, with c0 = b, any polynomial integer function f(n) can be written:

f(n) = g(n).n+ b = ann+ b

g(n) being a polynomial of degree m− 1 and an its values.

2.2. Definition of polynomial primes. Polynomial primes q(n, f) (here-
after abbreviated as qn) are the primes generated by polynomial integer func-
tions f(n) by a set of values of n:

qn = cmn
m + cm−1n

m−1 + cm−2n
m−2+. . . +c2n

2 + c1n+ c0
or, more simply, with c0 = b:
qn = g(n).n+ b = ann+ b

where g(n) is a polynomial of degree m−1 and an its values.
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2.3. Useful congruences for 3ˆk. Generally, the quantity f(n) = g(n).n+b
can be odd or even. Using the covering system of N: k ≡ {1, 2, 3, 4} mod 4,
we respectively get that the numbers 3k belong to the four congruences:

(1) 3k = 3{1,2,3,4} mod 4 ≡ {3, 9, 7, 1} mod 10

2.4. A useful congruence for 3ˆ10ˆu. For a correct future use of the con-
gruence for 310u , we have first to establish it as follows.

As 310 = 59049 ≡ −1 mod 10 and (310)2 = 3201 ≡ 320u ≡ 1 mod 10:

3102u = 3100u = (320u)5
u ≡ 1 mod 10

3102u+1
= 310×102u = (3102u)10 ≡ 1 mod 10

so that:

(2) 310u ≡ 1 mod 10 for any integer u > 1

3. Proof of Bunyakovsky’s conjecture

As odd primes n = p are always part of the arithmetic progressions p =
A + 6k with A = {1, 5} and k ∈ Z\0 where Z\0 is the set of all integers,
negative or positive, zero excepted , we have:

qp = p.g(p) + b = app+ b = (A+ 6k)ap + b

As Z\0 is covered by any of the systems of 10u congruences k ≡ ±{1, ..., 10u}
mod 10u with u > 0, we choose, with u > 1, one of these covering systems.

Then, for k = α+ j10u with 1 6 α 6 10u and for b such that gcd(A+ 6k, b)
= 1 and according to Fermat’s little theorem for primes, we get that for any
prime qp = (A+ 6k).ap + b > 3, we have:

(3) 3qp ≡ 3 mod qp

3(A+6k)ap+b ≡ 3 mod qp
3b3(A+6k)ap ≡ 3 mod qp
3b3Aap36kap ≡ 3 mod qp

3b(3A)ap(3k)6ap ≡ 3 mod qp
3b(3A)ap(3α+j10

u
)6ap ≡ 3 mod qp

(4) 3b(3A)ap(3α)6ap(310u)6jap ≡ 3 mod qp

and , with u > 1, A = 1 or 5, b 6 10u with b such that gcd(A+ 6k, b) = 1 and
1 6 α 6 10u, we notice that the explicit constants 3b, 3A, 3α and 310u of (4)
will not change modulo qp when we consider qp > L = 310u .

Proof. Hypothesis. If polynomial primes were infinitely many, there would
not exist any limit L beyond which there would be no more polynomial primes
qp = (A+ 6k)ap + b.

This means that, with qp > L = 310u and choosing with the integer u > 1
one covering system of N, with k = α + j10u relations (3) and (4) should be
verified for infinitely many qp’s.
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But, we have on one hand, for the left side of (3), with a direct calculus for
all odd prime qp:

From (1) and as qp is an odd prime:
3qp ≡ {3 or 7} mod 10

3qp mod qp ≡ ({3 or 7} mod 10) mod qp

and, on the other hand for the right side, as qp is an odd prime:

qp+{3 or 7} ≡ even mod 10
{3 or 7} mod qp ≡ (even mod 10) mod qp

and we find that (3) is impossible for any u > 1, as we always have:

({3 or 7} mod 10) mod qp 6= (even mod 10) mod qp.

So, with this impossibility, we get the (weird but fortunately temporary) result
that for any u > 1, there exist a limit Lu = 310u beyond which there are no
more polynomial primes qp. As the smallest limit is obtained for u = 2, we
can even conclude that there are no polynomial primes qp = p.ap + b beyond:

L2 = 3102 = 3100 = 515377520732011331036461129765621272702107522001

But this is a wrong contradiction of the reality which cannot be proven for
all polynomials but can be proven when divisible polynomials are discarded,
leaving only indivisible polynomials to our consideration.

Here, the word indivisible has to be understood with Bunyakovsky’s meaning
which is described by two conditions [1]:
(A) the coefficients of the polynomial have to verify: gcd(coefficients) = 1;
(B) the polynomial has to be irreducible, that is to say, not divisible by any
other polynomial of degree d with 0 6 d < m. It excludes, by instance:

with m = 2 and d = 1: n2 − b2 = (n− b)(n+ b)
and:

with m = 2 and d = 0: n2 + n+ 2 = 2

(
n(n+ 1)

2
+ 1

)
as n(n+ 1)/2 is always an integer and 2 is the polynomial of degree d = 0.

The contradiction is wrong as it can be proven that bigger primes qn = g(n).n+
b always exist beyond L2 as follows.

Let’s notice that even if n is not prime, for any odd prime qn = g(n).n+ b,
n cannot be a multiple rb of b as then:

qn = g(n).n+ b = rb.g(rb) + b = b(r.g(rb) + 1)

is composite, which is impossible for a prime (except if b = 1 and r.g(rb) + 1 is
prime, see note below). Therefore, if c is constrained to vary from 1 to b− 1,
n can only belong to a set of b− 1 arithmetic progressions of modulus b:

n = rb+ c with 0 < c < b and r ∈ Z\0
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that contain infinitely many primes and thus, all qn’s can only belong to the
infinite set of arithmetic progressions (as r ∈ Z\0):

qn = g(n).n+ b = (rb+ c)g(rb+ c) + b

which, as gcd(rb + c, b) = 1 and according to Dirichlet’s theorem, all contain
infinitely many primes. This proves that infinitely many odd primes qn =
n.g(rb + c) + b of form qn = g(n).n + b exist beyond L2 and, in turn, proves
that, under Bunyakovsky’s conditions, polynomial primes qn = g(n).n+ b are
infinitely many, which is Bunyakovsky’s conjecture. �

Note. When b = 1, as there is no possible integer c such that
0 < c < b = 1, the infinitely many arithmetic progressions n = rb + c become
the infinitely many constant values n = r so that the infinitely many arithmetic
progressions qn = g(rb+ c).n+ b become:

qn = g(r).n+ 1

that can provide primes: for each integer r, each of these infinitely many arith-
metic progressions g(r).n+ 1 where gcd(g(r), 1) = 1 provides, when evaluated
at n = r, only one number qr = g(r).r + 1 that, according to Dirichlet’s
theorem, is either composite or prime. So, the infinitely many arithmetic pro-
gressions g(r).n + 1 issued from indivisible polynomials (with Bunyakovsky’s
meaning) together provide infinitely many primes qr = g(r).r + 1 coming in
accordance with Dirichlet’s theorem. This proves that the above main proof
is also valid when b = 1.

It has to be noticed that, as Dirichlet’s theorem does not exactly defines
which primes appear in an arithmetic progression, the present proof of Bun-
yakovsky’s conjecture does not and cannot do it as well, as it is based on this
theorem.

4. Extension to fourth Landau’s problem

The fourth Landau’s problem is the question: are there infinitely many
primes qn such that qn = n2 + 1 ? This problem was mentioned as unsolved
in 1912 at the fifth International Congress of Mathematicians (ICM) in Cam-
bridge by Landau.

Proof. As Bunyakovsky’s proven conjecture is now a theorem stating that poly-
nomial primes qn = g(n).n + b are infinitely many, considering g(n) = n and
b = 1 which make that qn = n2 + 1 and gcd(g(n), b) = gcd(n, 1) = 1 for any n,
this conjecture is also proven. �

5. Extension to other conjectures

With g(n) = a, a being any non-null integer constant, we get:

qn = a.n+ b
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and Bunyakovsky’s conjecture proven for polynomials of degree m > 1 reduces
to Dirichlet’s theorem and so, to infinitely many arithmetic progressions that
are polynomials of degree m = 1 which, according to this theorem, generate
infinitely many primes qn for infinitely many n’s which in turn, belong to
infinitely many arithmetic progressions:

n = rb+ c with 0 < c < b and r ∈ Z\0

This is particularly true for odd primes qn obtained with odd a’s, infinitely
many odd n = rb+ c which according to Dirichlet’s theorem include infinitely
many primes, and even b’s such that gcd(a, b) = 1. So, with a = 1 and even
b’s (b = 2k) it is true for the infinitely many polynomials qn = p+ 2k of degree
m = 1 based on odd primes p’s instead of simply odd n’s. This proves that
the following conjectures generate infinitely many primes:

qp = p+ 2 (twin primes conjecture, Landau’s second problem),
qp = p+ 4 (cousin primes conjecture),
qp = p+ 6 (sexy primes conjecture),

and generally for:
qp = p+ 2k for all k > 0, (de Polignac’s conjecture)

and with even a’s, odd or even n’s and odd b’s such that gcd(a, b) = 1, it is also
particularly true for n = p, a = 2 and b = 1, that is to say for the conjecture:

qp = 2p+ 1 (Sophie Germain primes conjecture)

6. Extension to the binary Golbach conjecture

Landau’s first problem is the binary Goldbach conjecture. It states that any
even number 2n > 4 can be written as the sum of two primes, or symbolically:

2n = p1 + p2 for any n such that 2n > 4

We have seen with de Polignac’s conjecture qp = p+ 2k proven in last section,
that Bunyakovsky’s theorem implies that the odd primes qp = p + 2n are
infinitely many for all odd primes p and all n > 0. But this does not prove
that qp can be any prime. And this has to be proven first, as follows.

Proof. Considering n = 0 and all odd primes p, we get: qp = p+ 2n = p. This
means that the subset of numbers:

{qp,2n=0} = {p}

is the set P\2 of all odd primes, which are infinitely many as proven by Euclid.
Now, also considering n > 1, we then have, for 2n > 0 and p > 3 (but

limited here to 2n 6 20 and to p 6 41 for a problem of line width):



PROOF OF BUNYAKOVSKY’S CONJECTURE 7

Table 1: Subsets of primes {qp,2n=0,20 = p+ 2n}
{qp = p+ 0} = 3 5 7 11 13 17 19 23 29 31 37 41
{qp = p+ 2} = 5 7 13 19 31
{qp = p+ 4} = 7 11 17 23 41
{qp = p+ 6} = 11 13 17 19 23 29 37
{qp = p+ 8} = 11 13 19 31 37
{qp = p+ 10} = 13 17 23 29 41
{qp = p+ 12} = 17 19 23 29 31 41
{qp = p+ 14} = 17 19 31 37
{qp = p+ 16} = 19 23 29
{qp = p+ 18} = 23 29 31 37 41
{qp = p+ 20} = 23 31 37

. . .

As the first odd prime p to be considered in each of the subsets {qp,2n>2 =
p + 2n} is always p = 3 and as any odd prime qp can be written qp = 3 + 2n
because 3+2n is an arithmetic progression that covers all odd numbers greater
than 1 and consequently all odd primes (boldface in the table), it proves that
the set of all the subsets {qp,2n>0 = p + 2n} constitutes a covering system of
all odd primes greater than three or that the symbolic equation qp = p+ 2n is
valid for any odd prime p > 3, any n > 1 but also for all odd primes qp > 5. �

We can now proceed with the binary Goldbach conjecture.

Proof. As the symbolic equation q = p + 2n is now valid for any odd prime
p > 3, any n > 1 and all odd primes q > 5, it is particularly true for all prime
values np of n and the symbolic equation q = p+2n is still valid when written:

q = p+ 2np

or, renaming np by p2 and p by p1:

q = p1 + 2p2

This is still valid when written:

(5) q − p2 = p1 + p2

But, as the symbolic equation q = p+2n is now valid for all odd primes q > 5,
any n > 1 and any primes p1 > 3 and p2 > 3, it implies that:

q = p2 + 2n
or:

q − p2 = 2n

for any n > 1 and we symbolically get from (5):

2n = p1 + p2

which proves the binary Goldbach conjecture for any p1 > 3, p2 > 3 and only
n > 3. Finally, as:
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for n = 2: 2n = 4 = 2 + 2

the binary Goldbach conjecture is proven for n > 2 or 2n > 4 as required. �

7. Landau’s four problems

As three of the four Landau’s problems: n2 + 1, twin primes and Gold-
bach’s conjecture have been proven here and that the fourth one, Legendre’s
conjecture, has been proven in [3], the four Landau’s problems are resolved.

8. Extension to primorial primes conjecture

8.1. The primorial primes conjecture. Primorial primes [4] [5] are primes
of the form: qn = pn# + 1 where pn# is the primorial of pn defined by pn# =
2× 3× 5× 7× . . .× pn. As we have:

qn = pn# + 1 = pn.pn−1# + 1

we see that qn is also of the form g(n).n + b where n = pn and g(n) = pn−1#
is the fully factorized polynomial function of n:

g(n) = 2× 3× 5× 7× 11× ...× pn−1
The primorial primes conjecture is the question: are there infinitely many

primes qn = pn# + 1 or infinitely many primes pn such that qn = pn# + 1 is
also prime?

8.2. A useful congruence for primorial primes. As qn = pn−1#× pn + 1,
we also have:

3qn = 3pn−1#×pn+1 = 3× 3pn−1#(3pn−1#)pn−1

and, as from Fermat’s little theorem, with pn > 3 being prime:
(3pn−1#)pn−1 ≡ 1 mod pn

we get: 3qn ≡ 3× 3pn−1# ≡ 3pn−1#+1 mod pn
3qn ≡ 3qn−1 mod pn

As this congruence defines a recurrence on 3qn that begins with 3qn−1 = 3q1 =
3p1#+1 = 32#+1 = 33, we finally have for any odd prime pn > 3:

(6) 3qn ≡ 33 mod pn

8.3. Proof of primorial primes conjecture. As odd primes n = p always
belong to the arithmetic progressions A+ 6k with A = {1, 5}:

qn = qn,k = (A+ 6k)pn−1# + 1

As N is completely covered by the system of 10u congruences k ≡ {1, ..., 10u}
mod 10u, we can choose, with the integer u > 1, one of these covering systems.

For k = α+ j10u with 1 6 α 6 10u and for b such that gcd(A+ 6k, b) = 1,
we get that for any prime qn = (A+ 6k).g(n) + b, we have from (6):

3(A+6k)pn−1#+1 ≡ 27 mod pn
3× 3(A+6k)pn−1# ≡ 27 mod pn

3× (3A)pn−1#(3k)6pn−1# ≡ 27 mod pn
3× (3A)pn−1#(3α+j10

u
)6pn−1# ≡ 27 mod pn
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(7) 3× (3A)pn−1#(3α)6pn−1#(310u)6jpn−1# ≡ 27 mod pn

and we notice, as u > 1, A = 1 or 5 and 1 6 α 6 10u, that the explicit
constants 3, 3A, 3α and 310u of (7) will not change modulo pn when we consider
a modulus pn > L = 310u .

Proof. Hypothesis. If primorial primes qn = (A+6k)pn−1#+1 were infinitely
many, there would not exist a limit L beyond which there would be no more
of them.

This also means that for qn > L = 310u , choosing with the integer u > 1
one covering system of N, with k = α + j10u relations (6) and (7) should be
verified for infinitely many qn’s.

But, we have on one hand, for the left side of (6), with a direct calculus for
all odd prime qn:

As: 3{1,2,3,4} mod 4 ≡ {3, 9, 7, 1} mod 10
and, as qn is odd: 3qn ≡ {3 or 7} mod 10

3qn mod pn ≡ ({3 or 7} mod 10) mod pn

and, on the other hand, for the right side, for any odd prime pn:

pn + 27 ≡ even mod 10
27 mod pn ≡ (even mod 10) mod pn

and (6) is impossible for any u > 1, as we always have:

({3, or 7} mod 10) mod pn 6= (even mod 10) mod pn.

So, with this impossibility, we get the (weird but fortunately temporary) result
that for any u > 1 and any k > 0, there exist a limit Lu = 310u beyond which
there is no more primorial primes qn. As the smallest limit is obtained for
u = 2, we can even conclude that there are no primorial primes qn beyond:

L2 = 3102 = 515377520732011331036461129765621272702107522001

which has 48 digits. But this is a wrong contradiction of the reality because
we know that bigger primorial primes exist. The biggest of them, found in
2001 by the PrimeGrid project [4], has 169,966 digits:

q392113 = 392113# + 1

Then, how do we get out of this wrong contradiction?
As we have the above contradiction for any fixed u > 1, the only solution

to get out of it is to symbolically choose one covering system of N based on
u =∞ so that L∞ = 310∞ =∞.

Thus, as the contradiction now occurs for q > L∞ =∞ (which looks like a
nonsense), there is no more contradiction for q <∞.

It indeed proves that no fixed limit L < ∞ exists beyond which there are
no more primorial primes, and this, in turn, proves that primorial primes
q = p# + 1 are infinitely many. �
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8.4. List of primorial primes p up to 2657. In less than 2 minutes on a
laptop computer, the following GP/PARI program [2] gives the list of primorial
primes p 6 2, 657:

3, 5, 7, 11, 31, 379, 1019, 1021, 2657, ...

Bigger lists can be found in [4] and [5]. The GP/PARI program for primorial
primes follows:

# /* to start the timer */
pmax=2659;b=1;oldprim=2;
forprime(p=3,pmax,oldprim=oldprim*p;q=oldprim+b;\

if(isprime(q)==1,print1(n,”, ”));)
# /* to stop the timer */

9. Extension to factorial primes conjecture

We now mimic the proof of last section to apply it to factorial primes with
appropriate adjustments for constants and expressions.

9.1. The factorial primes conjecture. Factorial primes are primes of the
form: qn = n! + 1 where n! is the factorial of n defined by n! = 1× 2× 3× 4×
5× . . .× n. As we have:

qn = n! + 1 = n.(n− 1)! + 1

we see that qn is also of the form g(n).n+ b where g(n) is the fully factorized
polynomial function:

g(n) = (n− 1)! = (1)(2)(3)...(n− 2)(n− 1)

The factorial primes conjecture is the question: are there infinitely many
primes qn = n! + 1?

9.2. A useful congruence for factorial primes. As qn = n(n− 1)! + 1, we
also have:

3qn = 3n(n−1)!+1 ≡ 3× 3n(n−1)!

≡ 3× (3(n−1)!)n

≡ 3× 3(n−1)!(3(n−1)!)(n−1)

Now, with prime n > 3 replaced by p > 3:
≡ 3× 3(p−1)!(3(p−1)!)(p−1)

and from Fermat’s little theorem for primes p > 3:
(3(p−1)!)(p−1) ≡ 1 mod p

we get: 3qp ≡ 3× 3(p−1)! ≡ 3(p−1)!+1 mod p
3qp ≡ 3qp−1 mod p

As this congruence defines a recurrence on 3qp that begins with 3qp−1 = 3q1 =
3p1!+1 = 32!+1 = 33, we finally have for any odd prime n = p > 3:

(8) 3qp ≡ 33 mod p
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9.3. Proof of factorial primes conjecture. Even if generally n can be odd
or even, during the proof it will be supposed that n > 3 is a prime p > 3 in
order to be able to use congruence (8). As primes p > 3 always belong to the
arithmetic progressions A+ 6k with A = {1, 5}, we have:

qp = qp,k = (A+ 6k)(p− 1)! + 1

As set N is completely covered by the system of congruences {1, ..., 10u} mod 10u,
we can choose, with the integer u > 1, one of these covering systems.

For k = α+ j10u with 1 6 α 6 10u and for b such that gcd(A+ 6k, b) = 1,
we get that for any prime qp = (A+ 6k).g(n) + b, we have from (8):

3(A+6k)(p−1)!+1 ≡ 27 mod p
3× 3(A+6k)(p−1)! ≡ 27 mod p

3× 3A(p−1)!36k(p−1)! ≡ 27 mod p
3× (3A)(p−1)!(3k)6(p−1)! ≡ 27 mod p

3× (3A)(p−1)!(3α+j10
u
)6(p−1)! ≡ 27 mod p

(9) 3× (3A)(p−1)!(3α)6(p−1)!(310u)6j(p−1)! ≡ 27 mod p

and we notice, with u > 1, A = 1 or 5 and 1 6 α 6 10u, that the explicit
constants 3, 3A, 3α and 310u of (9) will not change modulo p when we consider
a modulus p > L = 310u .

Proof. Hypothesis. If factorial primes qp = (A+6k)(p−1)!+1 were infinitely
many, there would not exist a limit L beyond which there would be no more
of them.

This also means that for a factorial prime qp > L = 310u , choosing with the
integer u > 1 one of the covering systems of N, with k = α + j10u relations
(8) and (9) should be verified for infinitely many qp’s.

But, we have on one hand, for the left side of (8), with a direct calculus:

As: 3{1,2,3,4} mod 4 ≡ {3, 9, 7, 1} mod 10
And as qp is odd: 3qp ≡ {3 or 7} mod 10

3qp mod p ≡ ({3 or 7} mod 10) mod p

and, on the other hand, for the right side, as p > 2 is odd:

p+ 27 ≡ even mod 10
27 mod p ≡ (even mod 10) mod p

and (8) is impossible for any u > 1, as we always have:

({3 or 7} mod 10) mod p 6= (even mod 10) mod p.

So, with this impossibility, we get the (weird but fortunately temporary) result
that for any u > 1 and any k > 0, there exist a limit Lu = 310u beyond which
there is no more factorial primes qp. As the smallest limit is obtained for u = 2,
we can even conclude that there are no factorial primes qp beyond:

L2 = 3102 = 515377520732011331036461129765621272702107522001
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which has 48 digits. But this is a wrong contradiction of the reality because
we know that bigger factorial primes qp exist. The biggest of them, found by
the PrimeGrid project [2], has 712,355 digits:

q150209 = 150209! + 1

where 150209 is prime. Then, how do we get out of this wrong contradiction?
As the above contradiction holds for any fixed u > 1, the only solution to get
out of it is to symbolically choose one covering system of N based on u = ∞
so that L∞ = 310∞ =∞.

Thus, as the contradiction now occurs for qp > L∞ =∞ (which looks like a
nonsense), there is no more contradiction for qp <∞.

It indeed proves that no fixed limit L <∞ exists beyond which there are no
more factorial primes qp, and this in turn, as all natural numbers n include all
odd primes p, proves that factorial primes qn = n! + 1 are infinitely many. �

9.4. List of n’s that generate factorial primes. In less than 3 minutes on
a laptop computer, the following GP/PARI program gives the list of n 6 427
(prime or not) that generate factorial primes qn = n! + 1:

n = 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, ...

Bigger lists can be found in [4] and [5]. The GP/PARI program for factorial
primes follows:

# /* to start the timer */
pmax=427;b=1;oldfact=2;
for(n=3,pmax,oldfact=oldfact*n;q=oldfact+b;\

if(isprime(q)==1,print1(n,”, ”));)
# /* to stop the timer */
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