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Abstract

The energy momentum tensor of generalized fields of dyons and energy momentum conservation laws

of dyons has been developed in simple, compact and consistent manner. We have obtained the Maxwell’s

field theory of energy momentum tensor of dyons (electric and magnetic) of electromagnetic field, Poynting

vector and Poynting theorem for generalized fields of dyons in a simple, unique and consistent way.
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1 Introduction

The concept of the energy-momentum tensor in classical field theory has a long history, especially in Ein-
stein’s theory of gravity [1]. The energy-momentum tensor combines the densities and flux densities of energy
and momentum of the fields into one single object. The problem of giving a concise definition of this object
able to provide the physically correct answer under all circumstances, for an arbitrary Lagrangian field theory
on an arbitrary space-time background, has puzzled physicists for decades. The classical field theory with
space-time translation invariance has a conserved energy-momentum tensor [1, 2]. The classical Lagrangian
in constructing the energy-momentum tensor, like the canonical energy-momentum tensor was noticed long
ago. The question is based on the Noethern theorem, according to which a field theory with space-time
translation invariance has a conserved energy-momentum tensor. Belinfante [1, 2] and Rosenfield [3] who, in
particular developed this strategy for Lorentz invariant field theories in flat Minkowski space-time to provide a
symmetric energy-momentum tensor which, in the case of electrodynamics, is also gauge invariant and gives
the physically correct expressions for the energy density and energy flux density i.e. Poynting vector as well
as the momentum density and momentum flux density of the electromagnetic field. Callan et. al. [4] and
Deser [5] proposed additional terms to define a energy-momentum tensor that, for dilatation invariant scalar
field theories, is also traceless. The classical Lagrangian in constructing the energy-momentum tensor, like the
canonical energy-momentum tensor was noticed long ago. The question is based on the Noethern theorem,
according to which a field theory with space-time translation invariance has a conserved energy-momentum
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tensor. Gotay and Marsden [6], which also provides an extensive list of references witnessing the long and
puzzling history of the subject, is an exception. Their approach is perhaps the first systematic attempt to
tackle the problem from a truly geometric point of view. In a classical field theories on arbitrary space-time
manifolds. Generically, space-time manifolds do not admit any isometrics or conformal isometrics at all, so
there is no direct analogue of space-time translations, Lorentz transformations, nor are there any conserved
quantities in the usual sense. The ordinary conservation law ∂µ T µν = 0 for the energy-momentum tensor on
flat space-time must be replaced by the covariant conservation law ∇µ T µν = 0 for its counterpart on curved
space-time. The basic idea introduced by Gotay and Marsden [6], worked out in detail in using the modern
geometric approach to general first order Lagrangian field theories and leading to an an improved energy-
momentum tensor which is both symmetric and gauge invariant. The energy-momentum tensor is a tensor
quantity in physics that describes the density and flux of energy and momentum in space-time, generalizing
the stress tensor of Newtonian physics [7]. It is an attribute of matter, radiation, and non-gravitational force
fields. The energy-momentum tensor is the source of the gravitational field in the Einstein field equations of
general relativity, just as mass density is the source of such a field in Newtonian gravity [1, 2]. The energy-
momentum tensor is the conserved Noethern current associated with space-time translations. When gravity
is negligible and using a Cartesian coordinate system for space-time, the divergence of the non-gravitational
energy-momentum tensor will be zero. In other words, non-gravitational energy and momentum are con-
served [8]-[10]. The subject of monopole has gathered [11] enormous potential importance in connection
current grand unified theories, supersymmetric gauge theories and super strings. But unfortunately the ex-
perimental searches [12] for these elusive particles have proved fruitless as the monopoles are expected to
be super heavy and their typically masses are about two orders of magnitude heavier than the super heavy X
bosons mediating proton decay. However, a group of physicists [13] are now claiming that they have found
indirect evidences for monopoles and now it is being speculated that magnetic monopoles may play an impor-
tant role in condensed matter physics. In spite of the enormous potential importance of monopoles (dyons)
and the fact that these particles have been extensively studied, there has been presented no reliable theory
which is as conceptually transparent and predictably tact-able as the usual electrodynamics and the formalism
necessary to describe them has been clumsy and not manifestly covariant. On the other hand, the concept
of electromagnetic (EM) duality has been receiving much attention [11] in gauge theories, field theories, su-
persymmetry and super strings.In this paper, the energy momentum tensor of generalized fields of dyons and
energy momentum conservation laws are discussed consistently for dyons. Here we have also discussed the
momentum operator, Hamiltonian and Poynting vector for generalized electromagnetic fields in a manifest
and consistent way.

2 Energy momentum Tensor

The energy momentum tensor is a tensor quantity in physics that describes the density and flux of energy
and momentum in space-time, generalizing the stress tensor of Newtonian physics. It is an attribute of matter,
radiation, and non-gravitational force fields. The energy momentum tensor is the source of the gravitational
field in the Einstein field equations of general relativity, just as mass density is the source of such a field in
Newtonian gravity. The energy momentum tensor involves the use of super-scripted variables which are not
exponents. If the components of the position four vector are given by x0 = t, x1 = x,x2 = y, x3 = z. The energy
momentum tensor is defined as the tensor T αβ of rank two that gives the flux of the α th component of the
momentum vector across a surface with constant xβ coordinate. In the theory of relativity, this momentum
vector is taken as the four-momentum. In general relativity, the energy momentum tensor is symmetric [7]

T αβ = T βα ; (1)
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The energy momentum tensor is of rank two, its components can be displayed in matrix form

T µν


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 ; (2)

The time component is the density of relativistic mass, i.e. the energy density divided by the speed of light
squared [7, 8]. It is of special interest because it has a simple physical interpretation. In the case of a perfect
fluid this component is

T 00 = ρ; (3)

for an electromagnetic field in otherwise empty space this component is given by

T 00 =
(
E2 +H2) ; (4)

where E and H are the electric and magnetic fields, respectively. The energy momentum tensor is the con-
served Noethern current associated with space-time translations. When gravity is negligible and using a
Cartesian coordinate system for space-time, the divergence of the non-gravitational energy momentum will
be zero. In other words, non-gravitational energy and momentum are conserved

T,µν

ν = ∂ν T µν = 0; (5)

In free space and flat space-time, the electromagnetic energy momentum tensor is given by[9, 10]

T µν =

[
Fµα Fν

α −
1
4

η
µν Fαβ Fαβ

]
; (6)

where Fµν is the electromagnetic tensor. This expression is when using a metric of signature(−,+,+,+). If
using the metric with signature(+,−,−,−), the expression for T µν will have opposite sign. T µν explicitly in
matrix form [9, 10]

T µν =


(
E2 +H2

)
Sx Sy Sz

Sx −σxx −σxy −σxz

Sy −σyx −σyy −σyz

Sz −σzx −σzx −σzz

 ; (7)

where ηµν is the Minkowski metric tensor of metric signature(−,+,+,+) , Poynting vector becomes
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S =
−→
E ×−→H ;

σi j = EiE j +BiB j−
1
2
(
E2 +B2)

δi j. (8)

is the Maxwell stress tensor. The flux of electromagnetic energy density is represents as [7, 8]

uem =
1
2
(
E2 +H2) ; (9)

3 Dualality invariance

Duality invarience is an old idea introduced a century ago in classical eletromagnetism[11] for the following

Maxwell’s equation in vacuum i.e.

−→
∇ ·−→E = 0;
−→
∇ ·−→B = 0;

−→
∇ ×−→E =−∂

−→
B

∂ t
;

−→
∇ ×−→B =

∂
−→
E

∂ t
. (10)

where
−→
E and

−→
B are respectively the electric and magnetic field strength and for brevity we use natural units

c= h̄= 1,space-time four-vector{xµ}=(t, x, y, z)
{

xµ = ηµν xµ
}

and
{

ηµν =+1,−1,−1,−1 = ηµν
}

through

out the text. Maxwell’s equations (10) are invariant not only under Lorentz and conformal transformations

but are also invariant under the following duality transformations,

−→
E =⇒−→E cosϑ +

−→
B sinϑ ;

−→
B =⇒−−→E sinϑ +

−→
B cosϑ ; (11)

where
−→
E and

−→
B are respectively the the electric and magnetic field strengths. For a particular value of ϑ = π

2 ,

equations(11) reduces to

−→
E 7−→ −→B ;

−→
B 7−→ −−→E . (12)

which can be written as
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 −→E−→
B

=⇒

 0 1

−1 0

 −→E−→
B

 . (13)

Consequently, Maxwell’s equations may be solved by introducing the concept of vector potential in either

two ways[12]-[14].

Case-I : The conventional choice is being used as

−→
E =−∂

−→
A

∂ t
−
−→
∇ φ ;

−→
B =

−→
∇ ×−→A ; (14)

where
{

Aµ

}
=
(

φ ,
−→
A
)

is described as the four potential. So, the dual symmetric and Lorentz covariant

Maxwell’s equations(10) are written in as

∂ν Fµν = 0;

∂ν F̃µν = 0; (15)

where Fµν = ∂ ν Aµ−∂ µ Aν =Aµ,ν−Aν ,µ is anti-symmetric electromagnetic field tensor,F̃µν = 1
2 εµνλω Fλω (∀µ,ν ,λ ,ω = 0, 1, 2, 3)

is the dual of electromagnetic field tensor and εµνλω is the four index Levi-Civita symbol.εµνλω =+1∀(µνλω = 0123)

for cyclic permutation;εµνλω = −1 for any two permutations and εµνλω = 0 if any two indices are equal.

Using equation(14) , we may obtain the electric and magnetic fields as the components of anti-symmetric

electromagnetic field tensors Fµν and F̃µν given by

F0 j = E j; F jk = ε jklBl (∀ j, k, l = 1, 2, 3) ;

F̃0 j = B j; F̃ jk = ε jklEl (∀ j, k, l = 1, 2, 3) ; (16)

whereε jkl is three index Levi-Civita symbol andε jkl = +1 for cyclic,ε jkl = −1 for anti-cyclic permutations

andε jkl = 0 for repeated indices. The duality symmetry is lost if electric charge and current source densities

enter to the conventional inhomogeneous Maxwell’s equations given by
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−→
∇ ·−→E = ρ;
−→
∇ ·−→B = 0;

−→
∇ ×−→E =−∂

−→
B

∂ t
;

−→
∇ ×−→B =

−→
j +

∂
−→
E

∂ t
; (17)

whereρand
−→
j are described as charge and current source densities which are the components of electric

four-current
{

jµ

}
=
(

ρ,
−→
j
)

source density. So, the covariant form of Maxwell’s equation (17) is described

as

∂ν Fµν = jµ ;

∂ν F̃µν = 0. (18)

Here, we may see that the pair
(−→

∇ ·−→B = 0;
−→
∇ ×−→E =− ∂

−→
B

∂ t

)
of Maxwell’s equations(17) is described by

∂ν F̃µν = 0 in equation(18). It has become kinematical while the dynamics is contained in another pair
(−→

∇ ·−→E = ρ;
−→
∇ ×−→B =

−→
j + ∂

−→
E

∂ t

)
of

Maxwell’s equations(17) which described as∂ν Fµν = jµ in equation(18) and also reduces to following wave

equation in the presence of Lorentz gauge condition ∂µ Aµ = 0 i.e.

�Aµ = jµ ; (19)

where� = ∂ 2

∂ t2 − ∂ 2

∂x2 − ∂ 2

∂y2 − ∂ 2

∂ z2 is the D’ Alembertian operator. So, a particle of mass m electric charge e

moving with a velocity{uν}in an electromagnetic field is subjected by a Lorentz force given by

m
d2xµ

dτ2 =
d pµ

dτ
= fµ =eFµν uν . (20)

where
{

ẍµ

}
is the four-acceleration, fµ is four force and pµ is four momentum of a particle. Equation(20) is

reduced to

~f =
d−→p
dt

= m
d2−→x
dt2 = e

[−→
E +−→u ×−→B

]
. (21)

where −→p ,
−→
f ,−→x , −→u are respectively the three vector forms of momentum, force, displacement and velocity

of a particle. Here we may observe that the Lorentz force equation of motion(20−21) are also not invariant

under duality transformations(12−13) .
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Case-II : On the other hand, let us introduce[12]-[14] the another alternative way instead of equation(14)

to write

−→
B =−∂

−→
B

∂ t
−
−→
∇ ϕ;

−→
E =−

−→
∇ ×
−→
B; (22)

where a new potential{Bµ} =
(

ϕ,
−→
B
)

is introduced[14],[15] as an alternative to{Aµ} . Thus, we see that

source free (homogeneous) Maxwell’s equation are same as those equations(10) but the inhomogeneous

Maxwell’s equation(17) are changed to

−→
∇ ·−→E = 0;
−→
∇ ·−→B = 0;

−→
∇ ×−→B =

∂
−→
E

∂ t
;

−→
∇ ×−→E =−

−→
k − ∂

−→
B

∂ t
. (23)

subjected by the introduction of a new four current source density{kµ} =
(

ρ,
−→
k
)

. In equation(23) we see

that the pair
(−→

∇ ·−→E = 0;
−→
∇ ×−→B = ∂

−→
E

∂ t

)
becomes kinematical while the dynamics is contained in the second

pair
(−→

∇ ·−→B = ρ;
−→
∇ ×−→E =−

−→
k − ∂

−→
B

∂ t

)
. Equation(23) may also be written in following covariant forms

∂ν Fµν = 0;

∂ν F̃µν = kµ ; (24)

whereF̃µν = ∂ νBµ −∂ µBν ; ˜̃Fµν = Fµν ;{kµ}=
(

ρ,
−→
k
)

and
{

kµ

}
=
(

ρ,−
−→
k
)

.Equation(23) may also be

obtained on applying the transformations(12) and(13) to equation(17) followed by following duality trans-

formations for potential, current and antisymmetric electromagnetic field tensors as

Aµ −→Bµ ;Bµ −→−Aµ .

jµ −→ kµ ;kµ −→− jµ .

Fµν −→ F̃µν ;F̃µν −→−Fµν . (25)

As such, we may identify the potential
{
Bµ

}
=
(

ϕ,
−→
B
)

as the dual of potential{Aµ}and the current{kµ} =(
ρ,
−→
k
)

as the dual of current{ jµ}.Correspondingly, the differential equations(22) are identified as the dual

Maxwell’s equations. So, accordingly, we may develop the electrodynamics of a charged particle with the
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charge dual to the electric charge (i.e magnetic monopole). Applying the the electromagnetic duality to the

Maxwell’s equations, we may establish the connection between electric and magnetic charge (monopole)[16,

17], in the same manner as an electric charge e interacts with electric field and the dual charge (magnetic

monopole) g interacts with magnetic field, as,

e−→ g; g−→−e (26)

where g is described as the dual electric charge (charge of magnetic monopole). Hence, we may recall the dual

electrodynamics as the dynamics of pure magnetic monopole. consequently, the corresponding dynamical

variables associated there in are described as the dynamical variables in the theory of magnetic monopole.

So, we may write the new electromagnetic field tensor Fµν in place of F̃µν as

F̃µν 7−→Fµν = ∂νBµ −∂µBν (µ, ν = 1, 2, 3) ; (27)

which reproduces the following definition of magneto-electric fields of monopole as

F0i = Bi;

Fi j =−εi jkEk. (28)

Hence the covariant form of Maxwell’s equations(21) for magnetic monopole may now be written as

Fµν ,ν = ∂
νFµν = kµ ;

F̃µν ,ν = ∂
νF̃µν = 0. (29)

where
{

kµ

}
=
(

ρ,−
−→
k
)

is the four - current density due to the presence of the magnetic charge g. Accord-

ingly, the wave equation(24) for pure monopole is described as

�Bµ = kµ ; (30)

in presence of Lorentz gauge condition ∂µBµ =0. Accordingly, we may develop the classical Lagrangian

formulation in order to obtain the field equation (dual Maxwell’s equations) and equation of motion for the

dynamics of a dual charge (magnetic monopole) interacting with electromagnetic field. So, the Lorentz

force equation of motion for a dual charge (i.e magnetic monopole) may now be written from the duality

equations(12) and(13) as
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d−→p
dt

=
−→
f = m

−→̈
x =g

(−→
B −−→u ×−→E

)
; (31)

where −→p = m
−→̈
x = m−→u is the momentum, and

−→
f is a force acting on a particle of charge g, mass m and

moving with the velocity −→v in electromagnetic fields. Equation(29) can be generalized to write it in the

following four vector formulation as

m
d2xµ

dτ2 =
d pµ

dτ
= fµ = mẍµ = gFµν uν . (32)

where{uν} is the four velocity,
{

pµ

}
is four momentum, fµ is four force and

{
ẍµ

}
is the four-acceleration of a

particle carrying the dual charge (namely magnetic monopole).

4 Maxwell field Theory for Energy momentum tensor of dyons
Maxwell’s field theory of dyons (electric and magnetic) can be expressed in terms of a four-vector field Aµ and
Cµ , coupled to a current j(e)µ and j(g)µ due to dyonic fields. The Lagrangian density [30] of dyons given by

L = LMax +LMatter +Lint ; (33)

whereLMax =− 1
4 Fµν Fµν − 1

4 F̃µν F̃µν and Lint =−Aµ jµ(e)−Cµ jµ(g). The field strength tensor of dyons is
defined by [30]

Fµν = ∂µ Aν −∂ν Aµ ;

F̃µν = ∂µ Bν −∂ν Bµ . (34)

Consider the energy momentum tensor of dyons for the Maxwell theory without a source jµ and kµ . The
action is invariant under a translation

Aµ (x)→ A
′
µ (x) = Aµ (x)+ cν

∂ν Aµ (x) ;

Cµ (x)→C
′
µ (x) =Cµ (x)+dν

∂νCµ (x) . (35)

which means that there are conserved currents of dyons. The generalized current of dyons is given by [30]

Jµ(e) =
∂L

∂
(
∂µ Aρ

)∂ν Aρ cν −L cµ + cν Φ
νµ ;

jµ(g) =
∂L

∂
(
∂µCρ

)∂νCρ dν −L dµ +dν Ψ
νµ ; (36)

where δAσ = δBσ = 0 and replaced dδxν

dε
with cν and dν , but have not specified Φνµ and Ψνµ , which is only

constrained to have ∂µ Φνµ = ∂µ Ψνµ = δL = 0. Then, Φνµ = Ψνµ = 0

∂L

∂
(
∂µ Aρ

) = Fρµ ;

∂L

∂
(
∂µCρ

) = F̃ρµ ; (37)
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then

Jµ(e) = Fρµ
∂ν Aρ cν +

1
4

cµ Fρσ Fρσ + cν Ξ
νµ = cν T̃ νµ ;

jµ(g) = F̃ρµ
∂νCρ dν +

1
4

dµ F̃ρσ F̃ρσ +dν Π
νµ = dν S̃νµ . (38)

then the energy momentum tensor of electric and magnetic field can be written as [30]

T̃ νµ =Fρµ
∂ν Aρ +

1
4

gµν Fρσ Fρσ +Ξ
νµ ;

S̃ νµ =F̃ρµ
∂νCρ +

1
4

gµν F̃ρσ F̃ρσ +Π
νµ . (39)

While this T̃ νµ and S̃ νµ is a conserved current of dyons. Then the term, there are two unpleasant features.
First, it is not symmetric under µ→ ν , which we expect of the energy momentum tensor of dyons, is required
for the angular momentum current of dyons J µνρ = T̃ µν xρ − T̃ µρ xν and K µνρ = S̃ µν xρ − S̃ µρ xν to
be conserved, and to couple to the curvature in general relativity. Secondly, this T̃ and S̃ would not be
invariant under a gauge transformation of dyons Aρ → Aρ + ∂ρ ϕ and Cρ → Cρ + ∂ρ χ , so it depends on
unphysical degrees of freedom [30]. Then

Ξ
νµ =−Fρµ

∂ρ Aν ;

Π
νµ =−F̃ρµ

∂ρCν . (40)

then we have

∂µT νµ = ∂µ (Ξ
νµ +Π

νµ);

∂µT νµ =−
(
∂µ Fρµ

)
−Fρµ

∂ρ ∂µ Aν −
(

∂µ F̃ρµ

)
− F̃ρµ

∂ρ ∂µCν = 0. (41)

The first term from the equation of motion and the second from the antisymmetry of Fρµ and F̃ρµ dotted into
the symmetric ∂ρ ∂µ . This term completes the F and F̃ in T̃ and S̃ , so

T νµ = T̃ νµ + S̃ νµ ;

T νµ =−Fρµ Fν
ρ − F̃ρµ F̃ν

ρ +
1
4

gµν

(
Fρσ Fρσ + F̃ρσ F̃ρσ

)
. (42)

The terms, with F j0 = E j, F i j =−εi jkHk and F̃ j0 = H j, F̃ i j = εi jkHk,

T 00 =
1
2
(
E2 +H2) ; (43)

and

T i0 = T 0i =−F j0F i j− F̃ joF̃ i j;

T i0 = T 0i =
(−→

E ×−→H
)

i
. (44)
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