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Abstract
New exact analytical solutions of Einstein and Qmoger (quantum modifica-

tion of general relativity) equations are obtained in the context an alternative
to the Big Bang theory.

In recent papers [1, 2] it is suggested that "ordinary matter" was synthesized
from the background gravitons (with estimated tiny electric dipole moment [1,
2]) in local bangs (LB) during formation of galaxies. This concept is based on
the quantum modification of general relativity (Qmoger), with was introduced
in Ref. 3 and developed in Ref. 4-6, 1, 2. These works were presided by
invention of new type of fluid, namely, dynamics of distributed sources-sinks
[7, 8], which in turn was presided by the exact general analytical solution of
the (1+1) dimensional Newtonian gravitation [9]. This solution, particularly,
describes local gravitational collapses, leading to LB.
Critique of the conventional Big Bang theory, based on solution of Einstein

equations with the cosmological constant (CC), was presented in Ref. 2. The
Qmoger equations differ from the Einstein equations by two additional terms,
which takes into account production/absorption of gravitons. Exact analytical
solution of the Qmoger equations for the scale factor in the homogeneous and
isotropic universe [4-6, 1, 2] shows that there was no Big Bang at the beginning.
This solution has no fitting parameters and is in good quantitative agreement
with cosmic data ( see below). However, formation of galaxies and LB could
lead to some local deviations from the scale factor obtained for homogeneous
and isotropic universe. Particularly, formation of galaxies can locally slow down
expansion and LB can have opposite effect. In his letter we provide some new so-
lutions of the Einstein and Qmoger equations, which can shed light on evolution
of galaxies and LB.
Qmoger equations have the form [3]:
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Here Rki is the curvature tensor, p, ε and w are pressure, energy density and
heat function, respectively, G∗ = Gc−4(G- gravitational constant, c- speed of
light), uk - components of velocity (summation over repeated indexes is assumed
from 0 to 3, x0 = τ = ct), λ0 CC, which we will put zero, σ is the covariant
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divergency, β and γ are nondimensional constants and g is the determinant of
the metric tensor. With β = γ = 0 we recover the classical equation of general
relativity (GR). Let us note that curvature terms in lhs of (1) and additional
terms dσ/ds and σ2 all contain second order (or square of first order) derivatives
of metric tensor, which make these terms compatible. The importance of σ
also follows from the fact that it is the only dynamic characteristic of media,
which enters into the balance of the proper number density of particles n :
dn/ds + σn = q, where q is the rate of particle production (or absorption) by
the vacuum. So, if n is constant (see the exact analytical solution (5) below)
or changing slowly, than the σ-effect is, certainly, very important in quantum
cosmology.
Some exact analytical solutions of equations (1,2) where obtained in Ref. 3.

On the basis of these solutions, it was concluded that the effect of spacetime
stretching (σ) explains the accelerated expansion of the universe and for negative
σ (collapse) the same effect can prevent formation of singularity. Equations
(1,2) reproduce Newtonian gravitation in the nonrelativistic asymptotic, but
gravitational waves can propagate with speed, which is not necessary equal to
speed of light [4]. This give us a hint that gravitons may have finite mass [1, 2].
In the case β = 2γ equations (1,2) can be derived from the variational

principle by simply replacing the cosmological constant λ0 (in the Lagrangian)
by λ = λ0 − γσ2[4].
Let us consider equations for the scale factor a(τ) in homogeneous isotropic

universe (Eq. (8,9) in Ref. 2):
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Here points indicate differentiation over τ , the discrete curvature parameter
k = 0,+1,−1 corresponds to flat, closed and open universe, respectively.
With indicated in [3] unique choice β = 2γ = 2/3, these equations take

simple form:
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From (3*) with λ0 = 0, we see that sign of curvature is opposite to sign
of pressure. From observations we know that global curvature is close to zero.
So, the dust approximation (p = 0 ) is natural for this theory with λ0 = 0 and
β = 2γ = 2/3.
In the dust approximation with λ0 = 0, k = 0, two special cases for system

(3-4) have been indicated [3]: 1) for β = 2/3 and γ 6= 1/3 stationary solution
exist; 2) for β = 2γ the global energy is conserved, except for β = 2γ = 2/3.
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The choice β = 2γ = 2/3 is exceptional and in the dust approximation with
λ0 = 0, k = 0, equation (3*) is identity and from (4*) we have exact analytical
Gaussian solution:

a(τ) = a0 exp[H0τ − 2π(τ/L∗)2], L∗ = (G∗ε0)−1/2 (5)

Here subscript 0 indicate present epoch (τ = 0) and H0 is the Hubble con-
stant. In analogous solution, obtained in [4], instead of ε0 was w0 = ε0 +
λ0/8πG∗, for generality. Other solutions of system (3)-(4) are obtained [6, 2]
for various ranges of parameters, below we will present new additional solutions.
Formula (5) corresponds to continuous and metric-affecting production of

dark matter (DM) particles (gravitons) out of vacuum, with its density ρ0 =
ε0c

−2 being retain constant during the expansion of spatially flat universe. In
this solution there is no critical density of the universe, which is a kind of relief.
Formula (5) does not have any fitting parameters ( no CC /dark matter, no in-
flation) and shows good quantitative agreement with cosmological observations
(SnIa, SDSS-BAO and reduction of acceleration of the expanding Universe [10])
[4, 5], see also Figure [comparison of (5) with two observational projects and
with some parametric models, details in Ref. 4, 5].
During the epoch of local bangs (ELB), the dust approximation may not be

adequate and choice of parameters (β, γ) can depend on the equation of state.
In order to model this situation, we rewrite (3, 4) with λ0 = 0, k = 0 in the
form:

·
H = −4πG∗w (6)

4πG∗(2− 3β)w + 3(3γ − 1)H2 = 8πG∗p, ε = w − p. (7)

In order to let averaged pressure change during ELB , we can assume w =
ε+ p = const. From (6) we have:

H(τ) = H0 − 4πG∗wτ. (8)

So, with constant heat function w, the scale factor a(τ) remains of the form
(5) with Lw = (G∗w)−1/2 instead of L∗:

a(τ) = a0 exp[H0τ − 2π(τ/Lw)2] (9)

According to (7, 8), with γ 6= 1/3, p and ε are now quadratic functions of τ .
This is a new class of solutions (for various β and γ) of Qmoger equations, in
addition to solutions presented in Ref.2. Particularly, with β = γ = 0, from (7,
8) we have:

ε =
3

8πG∗
(H0 − 4πG∗wτ)2 , p = w − ε. (10)

As far as we know, (9, 10) give a new solution of the Einstein equations.
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A matching of obtained in this letter new exact solutions (7 - 9) with (5)
and comparison with observational data requires an additional work and will be
presented elsewhere.
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