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Abstract

The aim of this paper is to introduce a new approach to Mathematical Morphology based on
neutrosophic set theory. Basic definitions for neutrosophic morphological operations are extracted
and a study of its algebraic properties is presented. In our work we demonstrate that neutrosophic
morphological operations inherit properties and restrictions of Fuzzy Mathematical Morphology.
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1. Introduction

Established in 1964, Mathematical Morphology was firstly introduced by Georges Matheron
and Jean Serra, as a branch of image processing [12]. As morphology is the study of shapes,
Mathematical Morphology mostly deals with the mathematical theory of describing shapes using
set theory. In image processing, the basic morphological operators dilation, erosion, opening and
closing form the fundamentals of this theory [12]. A morphological operator transforms an image
into another image, using some structuring element which can be chosen by the user. Mathematical
Morphology stands somewhat apart from traditional linear image processing, since the basic
operations of morphology are non-linear in nature, and thus make use of a totally different type of
algebra than the linear algebra. At first, the theory was purely based on set theory and operators
which defined for binary cases only. Later on the theory was extended to the grayscale images as
the theory of lattices was introduced, hence, a representation theory for image processing was
given [7]. As a scientific branch, Mathematical Morphology expanded worldwide during the
1990’s. It is also during that period, different models based on fuzzy set theory were introduced
[3, 4]. Today, Mathematical Morphology remains a challenging research field [6, 7].

In 1995, Samarandache initiated the theory of neutrosophic set as new mathematical tool for
handling problems involving imprecise indeterminacy, and inconsistent data [ 14]. Later on, several
researchers such as Bhowmik and Pal [2], and Salama [11], studied the concept of neutrosophic
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set. Neutrosophy introduces a new concept which represents indeterminacy with respect to some
event, which can solve certain problems that cannot be solved by fuzzy logic.

This work is devoted for introducing the neutrosophic concepts to Mathematical Morphology.
The rest of the paper is structured as follows: In §2, we introduce the fundamental definitions from
the Mathematical Morphology whereas, the concepts of Fuzzy Morphology are introduced in §3.
The basic definitions for Neutrosophic Morphological operations are extracted and a study of its
algebraic properties is presented in §4.

2. Mathematical Morphology [)]

Basically, Mathematical Morphology describes an image's regions in the form of sets. Where
the image is considered to be the universe with values are pixels in the image, hence, standard set
notations can be used to describe image operations [7]. The essential idea, is to explore an image
with a simple, pre-defined shape, drawing conclusions on how this shape fits or misses the shapes
in the image [12]. This simple pre-defined shape is called the "structuring element", and it is
usually small relative to the image.

In the case of digital images, a simple binary structuring elements like a cross or a square is
used. The structuring elements can be placed at any pixel in the image, nevertheless, the rotation
is not allowed. In this process, some reference pixel whose position defines where the structuring
element is to be placed. The choice of this reference pixel is often arbitrary.

2.1. Binary Morphology

In binary morphology, an image is viewed as a subset of an Euclidean space R" or the integer
grid Z", for some dimension n. The structuring element is a binary image (i.¢., a subset of the space
or the grid). In this section we briefly review the basic morphological operations, the dilation, the
erosion, the opening and the closing.

2.1.1. Binary Dilation: (Minkowski addition)

Dilation is one of the basic operations in Mathematical Morphology, which originally
developed for binary images [15]. The dilation operation uses a structuring element for exploring
and expanding the shapes contained in the input image. In binary morphology, dilation is a shift-
invariant (translation invariant) operator, strongly related to the Minkowski addition.

For any Euclidean space E and a binary image A in E, the dilation of A by some structuring
element B is defined by: A@B = bleJB Ap, where A, is the translate of the set A along the vector

b, ie., A,2={a+b€Ela€A,b € B}
The dilation is commutative, and may also be given by: A@B = BOA = LEJA B, .
a
An interpretation of the dilation of A by B can be understood as, if we put a copy of B at each
pixel in A and union all of the copies, then we get A@B.

The dilation can also be obtained by: A®B = {b € E |(—B) N A # @}, where (-B) denotes
the reflection of B, that is, —B = {x € E|—x € B}.

Where the reflection satisfies the following property: —(A®B) = (—A)D(—B)
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2.1.2. Binary Erosion: (Minkowski subtraction)

Strongly related to the Minkowski subtraction, the erosion of the binary image 4 by the
structuring element B is defined by: A © B = bﬂBA_b.
€

Unlike dilation, erosion is not commutative, much like how addition is commutative while
subtraction is not [8, 15]. An interpretation for the erosion of 4 by B can be understood as, if we
again put a copy of B at each pixel in A, this time we count only those copies whose translated
structuring elements lie entirely in A; hence A © B is all pixels in A that these copies were
translated to. The erosion of 4 by B is also may be given by the expression: A © B =
{p €E |Bp - A}, where B, is the translation of B by the vector p, i.e.,

B,={b+p€E|beB}, Vp €E.
2.1.3. Binary Opening [15]

The opening of 4 by B is obtained by the erosion of 4 by B, followed by dilation of the resulting
imagebyB:A°B = (A©B) ®B.

The opening is also given by Ao B = 5 L‘J:A B,, which means that, an opening can be consider
2 C

to be the union of all translated copies of the structuring element that can fit inside the object.
Generally, openings can be used to remove small objects and connections between objects.

2.1.4. Binary Closing [6]

The closing of 4 by B is obtained by the dilation of 4 by B, followed by erosion of the resulting
structure by B:Ae B = (A@ B) © B.

The closing can also be obtained by A e B = (A€ o (—B))€, where A® denotes the complement
of A relative to E (that is, A° = {a € E |a ¢ A}). Whereas opening removes all pixels where the
structuring element won’t fit inside the image foreground, closing fills in all places where the
structuring element will not fit in the image background, that is opening removes small objects,
while closing removes small holes.

2.2. Properties of the Basic Binary Operations

Here are some properties of the basic binary morphological operations (dilation, erosion,
opening and closing[8]). We define the power set of X, denoted by P(X), to be the set of all crisp
subset of X.

For all A, B, C € P(X), the following properties hold:

o ADB = BPA,
e ACB=>UAUBC)S(BDHCO),
e AC (A B),

e ABB)BC=A0BDC),and (AOB)OSC=46(BOC0),
o Erosion and dilation satisfy the duality that is:

A® B=(A"O (-B)), and AO B = (A°D (-B))",
e ACB=(A-C)c (Bo0),
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e Ao BCA4,
e Opening and closing satisfy the duality that is:
As B= (A0 (—B))S, and A o B= (A« (-B))".
3. Fuzzy Mathematical Morphology

When operations are expressed in algebraic or logical terms, one powerful approach leading to
good properties consists of formally replacing the classical symbols in the equations by their fuzzy
equivalent. This framework led to an infinity of fuzzy Mathematical Morphologies, which are
constructed in families with specific properties described in [3, 13].

3.1. Fuzzy Set

Since introduced by Zadeh [16], fuzzy sets have received a great deal of interest [17]. For an
ordinary set, a given element either belongs or does not belong to the set, whereas for a fuzzy set
the membership of an element is determined by the value of a given membership function, which
assigns to each element a degree of membership ranging between zero and one.

3.1.1. Definition [16]

Let X be a fixed set. A fuzzy set A of X is an object having the form A = ( u, ), where the
function x, : X —[0,1] defines the degree of membership of the element x € X to the set A. The
set of all fuzzy subset of X is denoted by F(X).

The fuzzy empty setin X isdenoted by 0 =(0), where 0:X — [0,1] and 0(x) =
0, Vx € X. Moreover, the fuzzy universe set in X is denoted by 15 = (1), where 1: X —
[0,1] and 1(x) =1, Vx €X.

3.2. Fuzzy Mathematical Operations [4]

The fuzziness concept was introduced to the morphology by defining the degree to which the
structuring element fits into the image. The operations of dilation and erosion of a fuzzy image by
a fuzzy structuring element having a bounded support, are defined in terms of their membership
functions.

3.2.1. Fuzzy Dilation [4]

Let us consider the notion of dilation within the original formulation of Mathematical
Morphology in Euclidean space E. For any two n-dimensional gray-scale images, A and B, the
fuzzy dilation, A @ B = (usgp), of A by the structuring element B is an n-dimensional gray-
scale image, that is: piyqp : Z? — [0,1], and

Hagp (V) = sup min[ u,(v +w), pp(u)]

uez?

Where u, v € Z? are the spatial co-ordinates of pixels in the image and the structuring element;
while p,, pup are the membership functions of the image and the structuring element, respectively.

3.2.2. Fuzzy Erosion [4]
For any two n-dimensional gray-scale image, A and B, the fuzzy erosion A © B = ( izgp)

of A by the structuring element B is an n-dimensional gray-scale image, that is:
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:uAeB : Zz — [011]7 and

tacp() = inf max[u (v +w), 1 — up(w)]

UuU€ez?

where u, v eZ?are the spatial co-ordinates of pixels in the image and the structuring element;
while pu,, up are the membership functions of the image and the structuring element respectively.

3.2.3. Fuzzy Closing and Fuzzy Opening [3]

In a similar way the two fuzzy operations for closing and opening for any two n-dimensional
gray-scale images, A and B, are defined as follows:

ta.p(v) = inf max (Sup min (pa(v —u+w), up(W)), 1 — pp (u))

u€ez? weZz?2

aos () = sup min ( inf max (ua(v = +w, 1), 1~ i ()

Uu€z? weZz?2

where u, v, w €Z? are the spatial co-ordinates of pixels in the image and the structuring element;
while p4, up are the membership functions of the image and the structuring element respectively.

3.3. Properties of the Basic Operations
Here are some properties of the basic fuzzy morphological operations (dilation, erosion,
opening and closing [4]). We define the power set of X, denoted by F(Z?), to be the set of all
fuzzy subset of X,
Forall A,B,C € F(Z?) the following properties hold:
1.Monotonicity (increasing in both argument)
ACB= AGCCSBC
ACB= CHPACCPHB
ii.Monotonicity (increasing in the first and decreasing in the argument)
ACB=A6B6C<SBBC
ACB=CB6A2CHOB
iii.Monotonicity (increasing in the first argument)
ACB=A¢(CCBeC
iv.Monotonicity (increasing in the first argument)
ACB=AcCC<SBoC(C

For any family (4;|i € I) inF(Z?) and B € F(Z?),
i-.QI A; DB € (A;©B) and B EB.QI A en (BDA)
l l l L

lln Ai e B Q,ﬂ (AL e B) and B e'n Ai an (B GAL)
...lEI el i€l i€l
iii. 0 A; B €n (A; »B)
iV._n Ai oB cn (Al ° B)
el el
For any family (4;|i € I) inF(Z?) and B € F(Z?),
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i UA®B2Y (A;®®B) and B Oy A=2Y (B®A)
L L L l
1i. U AieBQ_ﬂ (AleB) and Beﬂ Ai Q.ﬂ (BeAl)
i€l i€l i€l i€l
1ii. 19 Ai B Qn (Al ° B)
el el
i .0 2 . 0
v. U A;oB 2N (A; o B).
4. Neutrosophic Approach to Mathematical Morphology

Smarandache [14] introduced the neutrosophic components (7, I, F) which represent the
membership, indeterminacy, and non-membership values respectively, T ,I,F :X -] -
0,17 where ]0,17 isnon-standard unit interval. Let € >0 be some infinitesimal number, hence,
I"=1+gand 0=0—=¢.

4.1. Neutrosophic Sets [1]

We denote the set of all neutrosophic subset of X by NV (X). In[1, 14], the authors gave different
definition for the concept of the neutrosophic sets. For more convenience we are choosing the
following definitions to follow up our work for neutrosophic morphology.  In the following
definitions, we consider a space E and two neutrosophic subsets of X; A, B € N (X).

4.1.1. Definition [11, 14]

A neutrosophic set A on the universe of discourse X is defined as:

A= (Ty, I,,F,), where T ,1,,F,: X - [0,1].

4.1.2. Definition [11]

The complement of a neutrosophic set A is denoted by A€ and is defined as:

A = (Tye, I4c,Fyc), where Tye ,Iyc ,Fye : X - [0,1] and forall x in X.

Tpe(x) = 1— Tu(x), Ipe(x) = 1— Ii(x) and Fyue(x)=1— F4(x)

The neutrosophic empty Set of X is the triple, 05 = (0, 0, 1), where
1(x) =1and 0(x) =0, Vx€EX.

The neutrosophic universe set of X is the triple,15 = (1, 1, 0), where

1(x) =1and 0(x) =0 Vx € X.
4.2. Neutrosophic Mathematical Morphology

In this section we introduce the concept of neutrosophic morphology based on the fact that the
basic morphological operators make use of fuzzy set operators, or equivalently, crisp logical
operators. Hence, such expressions can easily be extended using the context of neutrosophic sets.

4.2.1. Definition
The reflection of the structuring element B mirrored in its origin is defined as:
e —B=(-Tg,—Ig,—Fg), where
—Tg(u) = Tp(—uw), —Ig(uw) = Ig(—u) and — Fg(u) = Fg(—uw)
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e For every p in E, Translation of A by p € Z?is 4, = (TAp, Lo, FAp), Where Ty (w) =
Ta, (U + D), Lo, (W) = I, (u+p) and Fy,(u) = F,(u+p)

Most morphological operations on neutrosophic can be obtained by combining neutrosophic
set theoretical operations with two basic operations, dilation and erosion.

4.3 Neutrosophic Morphological Operations

The neutrosophy concept is introduced to morphology by a triple degree to which the
structuring element fits into the image in the three levels of trueness, indeterminacy, and falseness.
The operations of neutrosophic erosion, dilation, opening and closing of the neutrosophic image
by neutrosophic structuring element, are defined in terms of their membership, indeterminacy
and non-membership functions; which is defined for the first time as far as we know.

4.3.1. The Operation of Dilation

The process of the structuring element B on the image A and moving it across the image in a
way like convolution is defined as dilation operation. The two main inputs for the dilation operator
[7] are the image which is to be dilated and a set of coordinate points known as a structuring
element which may be considered as a kernel. The exact effect of the dilation on the input image
is determined by this structuring element [6].

4.3.1.1. Definition:  (Neutrosophic Dilation)
let A and B are two neutrosophic sets; then the neutrosophic dilation is given as
(A @ B) = (TA@B , IA@B , FA@B>, where for each u and v € Z2.

Ty () = sup min(T,(v + w), Tg(w))

uezn

Ligg(w) = sup min(l,(v + w), [ (w))

uezn

F,zp() = inf max(1—F,(v+u),1— Fz(u))

uezn

4.3.2. The Operation of Erosion

The erosion process is as same as dilation, but the pixels are converted to 'white', not 'black’.
The two main inputs for the erosion operator [12], are the image which is to be eroded and

a structuring element. The exact effect of the erosion on the input image is determined by this
structuring element. The following steps are the mathematical definition of erosion for gray-scale
images.

4.3.2.1. Definition: (Neutrosophic Erosion)

let A and B are two neutrosophic sets , then the neutrosophic erosion is given
(A é B) = (TAéB , IA@B , FAéB) ; where for each uandv € Z2
TA’éB(U) = inf max(Ty(v + u),1 — Tg(w))

uezmn"

Lizs() = inf max(l4(v +u), 1 — Ig(w))

uezn

F,55(v) = sup min(l —F,(v+ u),FB(u))
uezmn

369



Florentin Smarandache, Surapati Pramanik (Editors)

4.3.3. The Operation of Opening and Closing

The combination of the two main operations, dilation and erosion, can produce more complex
sequences. Opening and closing are the most useful of these for morphological filtering [8]. An
opening operation is defined as erosion followed by a dilation using the same structuring element
for both operations. The basic two inputs for opening operator are an image to be opened, and a
structuring element. Gray-level opening consists simply of gray-level erosion followed by gray-
level dilation. The morphological opening o and closing e are defined by:

A3B = (AGB)®B
ASB = (A®B)OSB

From a granularity perspective, opening and closing provide coarser descriptions of the set A.
The opening describes A as closely as possible using not the individual pixels but by fitting
(possibly overlapping) copies of E within A. The closing describes the complement of A by fitting
copies of E” outside A. The actual set is always contained within these two extremes: ASB € A €
A ¥ B and the informal notion of fitting copies of E, or of E*, within a set is made precise in these
equations:

The operator N'(E)— N'(E) : A — AS B is called the opening by B; it is the composition of the
erosion &, followed by the dilation @. On the other hand, the operator N(E) —
N(E): A — A% Bis called the closing.

To understand what e.g., a closing operation does: imagine the closing applied to a set; the
dilation will expand object boundaries, which will be partly undone by the following erosion.
Small, (i.e., smaller than the structuring element) holes and thin tubelike structures in the interior
or at the boundaries of objects will be filled up by the dilation, and not reconstructed by the erosion,
inasmuch as these structures no longer have a boundary for the erosion to act upon. In this sense
the term ’closing’ is a well-chosen one, as the operation removes holes and thin cavities. In the
same sense the opening opens up holes that are near (with respect to the size of the structuring
element) a boundary, and removes small object protuberances.

4.3.3.1. Neutrosophic Opening
let A and B are two neutrosophic sets it's defined as the flowing:

(A3 B) = (Tasg,lase , Fasp), where u, v, W€ Z?2

Tys(v) = sup min [inf max(Ty(v —u +w),1— TB(W)),TB(u)]

uezn ZER™

Lisg(v) = sup min [inf max(IA(v —u+w)l- IB(W)),IB(U)]

uezn ZER™

Fisp(v) = inf max [sup min(1— F,(v —u+w), Fz(w)), 1 — FB(u)]

uezmn ZER™

4.3.3.2. Neutrosophic Closing
let A and B be two neutrosophic sets it's defined as the flowing:

(A . B) = (TA:B 'IA:B ) FA:B>9 where u, v, wE Zz
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Tpup(v) = inf max [sup min(Ty(v —u + w), Tg(w)), 1 — TB(u)]

Uu€ez? weZ?2

Li;g(v) = inf max [sup min(IA(v —u+ W),IB(W)), 1-— IB(u)]

u€ez? WEZ?2

Fisp(v) = sup min [ inf max(1—F,(v —u+w),1- FB(W)),FB(u)]

uez? WEZ?2

4.4. Algebraic Properties in Neutrosophic

The algebraic properties for Neutrosophic Mathematical Morphology erosion and dilation, as
well as for neutrosophic opening and closing operations are now considered.

4.4.1. Proposition Duality Theorem of Dilation
let A and B be two neutrosophic sets. neutrosophic erosion and dilation are dual operations
ie. (A° @ B)¢ = (T(Ac o) lacan)er Fac @B)c); where for each u, v € Z2
T(AcéB)c(v) =1- T(Ac@B)(v)
=1—sup min(Tye(v + u), Tg(w)) = inf [1 — min(Tye(v + w), Tg(w))]

uez? U€ez2

= inf [max(1 — Tac(v + u), 1 — Tg(w))]

= ZZ}Z[max(TA(U +uw), 1= Tpw)] =T,5z(v)
Iacwse®) = 1= Ijaegm®) =1~ supmin(A°(v +w), Is(w))
= infz[l —min(Iac(v + u), I5(x))]
uEi ig‘z[max(l —Iac(w+u),1 - Izg(w)]
= Z«gz [max(y(v + u), 1= Iz(w)] =1I,55)
Facgnye (@) = 1= F(agm®)
= 1—inf max(1 - Fac(v +u),1 = Fz(w))
- 222[1 —max(1 — Fac(v +u), 1 — Fz(w))]
:ujggi [min(1 —F,(v +uw), Fg(w))] = F,5;(v)

(T(AC &B)C I(AC @B)C F(AC @B)C> = (TA’e“B» Lizg FA’@“B)-
4.4.2. Proposition the Duality Theorem Closing

let A and B be two neutrosophic sets, neutrosophic opening and neutrosophic closing are also
dual operation i.e.

(AC ° B)C = (T(AC;B)C ,I(AC;B)C ) F(AC;B)C)D Where fOI‘ all x€EX
T(AC ;B)C(v) =1- TAC;B(U)
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Tiacsgye(v) = 1 — inf max [sup min(TAc(v —u+ W),TB(W)), 1- TB(u)]

U€EZ? ZERM

= sup min [1 — sup min(TAc(v —u+w), TB(W)), TB(u)]

Uu€ez? ZERM

uez? ZER™M

= sup min [inf max(1—Tye(v —u+w),1- TB(W)),TB(u)]

= sup min [inf max(Tye(v —u+w),1 - TB(W)), TB(u)] =Tys5(V)
ZERM

uez?

I(AC;B)C(U) =1- IAC ;B(U)

U€EZ? ZERM

Iacsgye(v) =1 — inf max [sup min(IAc(v —u+ w),IB(W)), 1-— IB(u)]

u€ez? ZERM

= sup min [1 — sup min(le(v —u +w), IB(W)), IB(u)]

= sup min [inf max(1—Iue(v —u+w),1— IB(W)), IB(u)]

Uu€ez? ZERM

= sup min [inf max(L,(v —u+w),1— IB(W)), IB(u)] =I5 5(V)

UEZ? ZERM

Feacspye(v) =1 — Fpcsp

Facsipye(v) =1 — sup min [ inf max(l —-Fv—u+w)1- FB(W)),FB(u)]

U€ez? ZERM

Facspye(v) = inf max [1 — inf max(1 - F,(v —u+w),1— FB(W)),FB(u)]

Uu€ez? ZERM

Uu€ez? ZERM
=F45p5(V)

(Tacsmye  Iacsmye, Facspye) = (Tas g lasp Fasp)-

F4cspyc(v) = inf max [Sup min(1 — F4(v —u + W),FB(W)), 1- FB(u)]

Lemma 1: forany A € N (X), and the neutrosophic universal set 15, we have that

AD1yCA AD 1y = (TA®1NJAQ§1N 'FA®1N>

Proof:

Tag1,, (V) = sup min(Ty(v +w), 1) = sup (T4(y +x)) = Ty(v)
U€ez? Uuez2

Lig, (V) = sup min([y(v + ), 1) = sup(I,(y + %)) = L,(v)
u€ez? uez?

Fyg1, () = inf max(1-F,(w+w),1-0) =1(v)
Uuez?

(Ta,Ip,1) S (T, I, Fa) =A
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Lemma 2: forany A € V' (X), and the neutrosophic empty set 0, we have that
AD Oy S A, AB Oy =(Tago, Iag 0, Fudsoy)

Proof:
T ag0,,(v) = sup min(T,(v + u), 0) =0(v)
uez?
Lygso,, (V) = sup min(l4(v +u),0) =0(v)
FA@ON(U) = inf max(1 - F,(v+u),1-1) = inf(l —-F,(w+ u)) = Fe(v)
uez? uez?

(Q’g , FAC) - (TAC, IAC , FAC) = A€
4.5. Properties of the Neutrosophic Morphological Operations

In this section, we investigate the basic properties of the neutrosophic morphological operation
(dilation, erosion, opening and closing), which we defined in §4.

4.5.1. Properties of the Neutrosophic Dilation

Proposition 1
The neutrosophic dilation satisfies the following properties: V A, B € N (Z?)
i.  Commutativity: ABB=B@A
ii. Associativity: (A@B)®C=A® (B& C).
iii.  Monotonicity: (increasing in both arguments):
a) ASB=(Tygc lagc Faze) < (Tsac leae Feac!
Tasc € Teacr lagc S lsac and Fagc 2 Feae
b) ASB= (Tega lcga Feaa) € (Teap - Ican  Fean!
Teaa € Teaer lcga S leas and Feoa 2 Feas
Proof:
i), ii), iii) Obvious.
Proposition2: for any family (4;|i € I) in NV'(Z?) and B € N (Z?)
a) <TiQIA@B' IiQIAi’e?B: FiQIAi’@B) c <Tl_QI(Aié§B)' IiQI(A@B)' FiQI(A@B))
Tna@s ST o@@sy Ioass S oass) and F o.a@8 2 Fy(ads)

b) (Temsnaslgdnas Feadaa) E(Thpaa) ] _ F _
) | BO QA BOQA; BEBiQIA‘> < 0,(BDA) T 0 (@4 TigI(B®Ai))

Tz~ a. €T =2\, InmsAa. €1 =xyand Fomz 4. 2 F A
BEBiQIAl igz(B@A‘) BEBL'QIA‘ igl(B@Al) B@iQIA‘ iLEJI(BEBAl)
Proof: a)

TAawmwelnsadeFAsamg) €T ) 1 ) F e
<iQIA‘®B 2,408 iQIAleaB) (iQI(ALGBB) ire]I(Al@B) iQI(A‘GBB)>
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Tn ABB (v) = sup min (Tﬁ a4, +u), TB(u)) = sup min (mf Ty,(v +u), TB(u))
uezn uezn

= sup inf (mlnTA (v +w), Tp(w)) <inf sup (anTA (v+

uezm iel iel uezn
u)r TB (u))

<8 Tasn® <T@ ™)

I a@s @) = sup min (1o 4, +w), l5@))
i€l uezn

= sup min (mf Iy, (v + ), IB(u)) = sup inf(min Iy,(v +

uezn uezmn iel
w), Iz(w))
<n sup (min I;,(v +w),1z(W)) =n Ia@8) )

<1 iQI(A@B)(v)

FnA@B(v) = inf max(l—FnA (w+u),l1- FB(u))

uezn

= inf max (1 —inf Fy,(v+u),1— FB(u))

uezn i€l
= inf max (sup (1 — Fp,(v + u)) 1- FB(u))
uezn i€l
= inf sup(max Fp(v +u),1— FB(u))
uezm iel
> sup inf (max Fp(v +u),1 - Fz(w))
i€l uez™

U inf (maxFA (v +w),1 - Fg(uw)) > F'Ler(A@B)(v)

lEI uezn
b) The proof is similar to a).
Proposition 3: forany family (4;li € I) in N'(Z?) and B € N (Z?)

a) (TigIA[e?B:I iLEJIAi@B'F U A@B) =2 (T_UI(AiéB)’I U (Ai@B)’F y (A{éB))
TUA@B = TU(A @B)’ Iu ABB = IU(A &e)and FUAEBB = irewl(Ai@B)
b) (TegsuarlpsuarFeasual) 24T BB) ap) F e
) ( BeaigIAl BEBiLeJIA‘ BeaigIAl) ( iLeJI(AL@B) iLeJI(AL@B) ilé'I(AleaB))
Toz 4. 2T w=r) Ipm a2 1 w=py and Fox,, .. €F =
BO YA igz(A‘EBB) EO® YA iléJI(Al@B) BO YA iQI(ALeaB)
Proof: b)
Tom o andlamia  Fomia) 24T (rmav i (rma, F o (raa.
( BeaigIAl BeaiLe)IAl BeaigIAL) { igI(BGBA‘) iLeJI(BEBAL) iLeJI(B@AL))
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TB@ oA (v) = sgzp min (TB(v + u), TUA (u)) = Sétzp min (TB(v + u), supTA (u))
n u
> sup <sup minTg(v + u), Ty, (u)) > Y (sup minTg(v + u), Ty, (u))
uezm \ iel €l \yegzn
ZiLEJI T(B@A,—)(V +u) = TiLEJI(B@A,-) (v)
Iggya W)= sup min (IB(v +u), IuA (u)) = sup min (IB(v +u), sup Iy, (u))
ier uez? U€Zz?2
> sup <sup min Iy, (v + u), I, (u)) >U (sup min Iy, (v + u), I, (u))
u€ez? \ iel i€l \yez2
2, (49 ”) =Ly o))

F A@Ai(p) = inf max (1 —Fg(v+u),1—- Fy Ai(u))
Y, iel

uezmn

= inf max (1 — Fg(v +u),1 — supFy, (u))

uezmn i€l
= inf max <1 — Fg(v +u), mf (1-Fy, (u))>
uezm
< inf (mf max(1— Fg(v +u),1— Fy, (u)))
uezn \ iel

<inf inf (max(l — Fp(v+u),1—-Fy, (u)))

i€l uezn

< N inf max (1 — Fg(v+u),1—F, (u)) <F, (B@Ai)(v)

iel uezn

a) The proof is similar to b).
4.5.2. Proposition (properties of the neutrosophic erosion):
Proposition 1:
The neutrosophic erosion satisfies the monotonicity, VA, B,C € N (Z2).
a) ACSB=(Tagc,lage Fase) € (Tsac Isac, Feac)
Tagc € Teae » lasc € lpac and Fpasc 2 Fpae

b) ASB=(Tcza lcaa Fcaa) 2 (Tcas Icas Feap)

Teesa 2 Teap » leea 2 lcap and Fega € Feap

Note that: dislike the dilation operator, the erosion does not satisfy commutativity and
associativity.

Proposition 2:
for any family (4;|i € I) in N’ (Z?)and B € N (Z?)

a) (T, A.=r,1 =pr,F =r) € (T =r), 1 =n),F =
)(iQIAleB iQIA‘eB iQIAleB) (iQI(A‘eB) iQI(AleB) iQI(AleB)>
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ThaseETh (A;GB)’ I'nase S1n (A;GB) andF , aoB =Fy (A;GB)
i€l i€l i€l i€l i€l i€l
b Thxs _,I"’ Frx ) 2(T ~.;I ~-'F SA;
) ( BeiglAl BeigIAl BeiQIA‘) ( iQI(BeA‘) iQI(BeAl) iQI(BeAl))
Teomna. 2T vimay Inmsaa. 21, (raay ANdF ;5 ~ 2. € F o (rsa.
B® QA i%@®AJ EO QA i%@®AJ EO QA ig@®AJ
Proof: a)
— — ~— \C — — —
(TiQIAieB' IiQIAieB ’ FiQIAieB) a <T1Q1(A19B)' IiQI(AieB) ’ FigI(AieB)>

T A58 (v) = inf max (Tn aw+u),1- TB(u))

uezn

= inf max <lnf Tq,(v+u),1— TB(u))

uezn i€l

< inf inf(max T 4 (+uw),1- Tp(w))

u€ezm" iel
< — < ~
Sl ngfn(max Ty, (v +u), 1 —Tp(w)) =N T(a58) (V)

InAeB (v) = inf max(InA(v+u) 1—IB(u))

uezmn

= inf max (mln Iy,(v +u),1— IB(u))

uezn

< inf mm(maxl (w+u),1- Iz(w))
uezn 1€

< = < =
lreﬁligi(max Iy,(v +u),1 Iz(w)) _iQII(AieB)(v)

Fn a,858(V) = sup mln(l —FnA (v +uw), FB(u))

uezn

= sup min (1 - mf Fy,(v +u), FB(u))

uezmn
= sup min (sup (1 — Fp,(v + u)) FB(u)>
uezmn i€l
> sup sup(mml — Fy,(v +uw), Fp(w))
uezm iel
> U sup (minl — F, 55(v +u), Fz(u)) 2 F o))
i€l yezn i et

b) The proof is similar to a).
Proposition 3: for any family (4;|i € I) in N (Z?) and B € N (Z?)
) Ty age!lyaos Fyass 2T ynos)!y@nos) Fynos)
Tyaee=2Tymesy [yass21ynoe)andFyase S Foaos)
D) Tsgyar lsgya Frsyald € Ty eoa) 1y mon) Fymea)
Tsgya S To(eon) ls8n S o (son) d Fagyn 2 F g (5on)
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Proof: a)

Toazse luase Fuase) 2T aae) [uasey Fuas
( iLeJIAleB iLeJIALeB iléIAleB> < igI(AleB) igI(AleB) iLeJI(ALeB)>
T, a8 (v) = inf max (TU 4,(v +u), TB(u))

i€l uezn

= inf max (supTA (v +u), TB(u)) = inf sup(maxTA v+

uezmn uezm" iel

u)l TB (u))

=3} ig; (maxTA (v +w), Tp(w)) = T(a58) (V)

=Ty (a,88)(V)

IuAeB (v) = inf max (IU 4,(v +u), IB(u))

uezn
= inf max (sup Iy,(v +w), IB(u)) = inf sup(max Iy, (v +
uezn uezmn iel
U), IB (u))
>y ;gﬂ (max I 4,(v + ), Iz(w)) > U I(4,58) ()

21 ig,(AieB)(”)

FU a,58(V) = sup min (1 - FU 4,(v +u), FB(u))

uezn

= sup min (1 — s.up Fy,(v +u), FB(u)>

uezn

= sup min (mf (1 — Fp,(v+ u)) FB(u))

uezn i€l

= sup inf(min 1 — Fy, (v +u), Fp(w))

uezmn iel

< inf sup (minl — Fy,(v +u), Fp(w))

i€l uezn

< 0 sup(min 1 = Fyugp(v +w),FsW) < F o (455)®)

b) The proof is similar to a).
4.5.3. Proposition (properties of the neutrosophic closing):
The neutrosophic closing satisfies the following properties
Proposition 1: The neutrosophic closing satisfies:
Monotonicity, V A,B,C € N (Z?)
A € B = (Tasc, Insc, Fasc) € (Tesc, Isc, Fasc)
Tasc € Tosc » lasc S Ipsc and Fasc 2 Faac
Proposition 2: For any family (4;|i € I) in N'(Z?) and B € N(Z?)

(Th asBo L0 asB Faase) €{Th,ssy Inaies)  Foaes)
i€l i€l i€l iel i€l i€l
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ThaBETnws) Inase E1nase and Fnasg 2 Fyaen)
iel i€l iel i€l i€l i€l

Proposition 3: For any family (4;li € I) in N(Z?) and B € N (Z?)

Tyace Ly asns Fy aced 2Ty ey Lywany Fymee)

Tyase2Ty@sey luass2lumse and Fy asg S Faasp)
el iel iel iel iel iel

i

Proof: The proof is similar to the procedure used in propositions §4.5.1 and §4.5.2.

4.5.4. Proposition (properties of the neutrosophic opening):

The neutrosophic opening satisfies the following properties

Proposition 1: The neutrosophic opening satisfies:

Monotonicity: V A,B,C € N (Z?)

ASB=(Tasc,Iasc,Fasc) S (Tssc.Issc,Fesc)

TA5C c TB5C ) IANOC c IBFC and FAg C 2 FBoNC

Proposition 2: For any family (4;|i € I) in N'(Z2) and B € N (Z?)

(Tha,o81na,68:Fnaes S(Thno8yInnos) Fnnen)
i€l i€l i€l i€l iel i€l

Thas8SEThmoB)y Inaes S InnoB and FaasB2Fy@moB)
L 1A 1A L L L
iel i€l i€l iel iel €l

i

Proposition 3: For any family (4;|i € I) in N'(Z?) and B € N (Z?)

(Ty a;58 TuaesFuass) 2Ty mse)ylumos)y Fun,os)
iel iel iel iel iel iel

Tyaos82Tymoey luase2lumor and Fy a58 S Fn@;o8)
iel iel el iel iel iel

Proof The proof is similar to the procedure used in propositions §4.5.1 and §4.5.2.

5. Conclusion

In this paper, our aim was to establish a foundation for what we called, Neutrosophic
Mathematical Morphology. It is a new approach to Mathematical Morphology based on
neutrosophic set theory. Several basic definitions for Neutrosophic Morphological operations were
extracted and a study of its algebraic properties was presented. In addition, we were able to prove
that Neutrosophic Morphological operations inherit properties and restrictions of fuzzy
Mathematical Morphology. In future, we plane to apply the introduced concepts in Image
Processing. For instance, Image Smoothing, Enhancement and Retrieval, as well as in medical

imaging.
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