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Abstract

We demonstrate that if one adheres to a method akin to Dirac’s method of arriving at the Dirac
equation – then, the Dirac equation is not the only equation that one can generate but that there is
a whole new twenty four equations that Dirac left out. Off these new equations – interesting is that;
some of them violate C, P, T, CT, CP, PT and CPT-symmetry. If these equations are acceptable on the
basis of them flowing from the widely – if not universally accepted Dirac prescription, then, the great
riddle of why the preponderance of matter over antimatter might find a solution.
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“The suppression of uncomfortable ideas may be common in religion and politics,
but it is not the path to knowledge;

it has no place in the endeavor of science.”

– Carl Edward Sagan (1934− 1996)

1 Introduction

The Dirac (1928a,b) equation – discovered by the great British theoretical physicist, Paul Adrien Maurice
Dirac (1904− 1984); ranks amongst the greatest achievements of the human mind. Amongst its towering
and touchstone achievements, Dirac (1930) used this equation to predict the existence of antimatter i.e.,
the Position in this instance. In an unparalleled triumphant moment, the Positron was experimentally
discovered in 1932 (by C. D. Anderson 1933). It has the same spin as the Electron but opposite electrical
charge. For this monumental achievement – Carl David Anderson (1905− 1991), was awarded the 1936
Nobel Prize in Physics “. . . for his discovery of the Positron.”. After the direct detection of the Positron,
the equally great German theoretical physicist – Werner Karl Heisenberg (1901 − 1976), who made
major contributions to quantum theory; spoke glowingly of Dirac’s theoretical discovery of antimatter
as “perhaps the biggest change of all the big changes in physics of our century . . . because it changed our

whole picture of matter . . . ”.
As a whole, the Dirac (1928a,b, 1930) theory predicts a perfect symmetry between matter and an-

timatter, that is to say – there must exist an equal amount of matter and antimatter in the Universe.
Despite its esoteric grandeur and beauty, this prediction of the Dirac theory is in contempt of Nature
as this prediction is completely at variance with physical and natural reality. The Universe has a clear
preponderance of matter with minuscule quantities of antimatter which is produced in high energy par-
ticle interactions in the deep interiors of stars. This death of Dirac’s theory has long been known and
is considered a serious desideratum against observational evidence that the beautiful, esoteric and noble
Dirac equation via its clear observance of C-symmetry, predicts a perfectly symmetric world with respect

1Correspondence: E-mail: physicist.ggn@gmail.com
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to matter and antimatter. Actually – if this where the case – that the Universe contained equal amounts
of matter and antimatter – then, the Universe as we know it would be nothing other than a bath of
radiation because matter and antimatter would annihilate to form radiation. Yes, the Universe does
contain radiation but more than it contains radiation, it contains matter with little – if any – traces of
antimatter. This evidence points to an asymmetrical world between matter and antimatter.

Since this problem was noticed, it has been considered a “Holy Grail” of particle physics. Current
effort to solve it – are that CP-symmetry violation maybe the master-key to the resolution of these rid-
dle and this thinking follows from the 1967 seminal work of the great Soviet nuclear physicist – Andrei
Dimitriev Sakharov (1921−1989). Sakhorov (1967) described three minimum properties of Nature which
are required for any baryogenesis2 to occur, regardless of the exact mechanism leading to the excess of
baryonic matter. In his seminal paper, Sakhorov (1967) did not list the conditions explicitly. Instead, he
described the evolution of a Universe which goes from a Baryon-excess (B-excess) while contracting in a
Big Crunch to an anti-B-excess after the resultant Big Bang. In summary, his three key assumptions are
now known as they Sakharov Conditions, and these are:

1. At least one B-number violating process.

2. C and CP-violating processes.

3. Interactions outside of thermal equilibrium.

These conditions must be met by any explanation in which (B = 0) during the Big Bang but is very
high in the present day. They are necessary but not sufficient – thus scientists seeking an explanation of
the currently obtaining matter asymmetry on this basis (Sakhorov conditions) must describe the specific
mechanism through which baryogenesis happens. Much theoretical work in cosmology and high-energy
physics revolves around finding physical processes and mechanism which fit the three Sakhorov pre-
conditions and correctly predicting the observed baryon density.

Therefore, as already said, the current thrust in research especially at CERN 3 is to search for physical
processes in Nature that violate CP-symmetry. In 2011 during high-energy Proton collisions in the LHCb
experiment (Aaij et al. 2013), scientists working at CERN created B0

s mesons – i.e. hadronic subatomic
particles comprised of one quark and one antiquark – inside the LHCb experiment (Aaij et al. 2013) and
this experiment seems to have yielded some very interesting results insofar as the Sakhorov conditions
are concerned. By observing the rapid decay of the B0

s , physicists of the LHCb-Collaboration (Aaij et al.
2013) were able to identify the neutral particle’s decay products - i.e. the particles that it decayed into.
After a significantly large number of Proton collisions and B0

s decay events, the LHCb-Collaboration

(Aaij et al. 2013) concluded that more matter particles where generated than antimatter during neutral
B0

s decays.
The first violations of CP-symmetry was first documented in Brookhaven Laboratory in the US in the

1960s in the decay of neutral Kaon particles. Since then, Japanese and US labs forty years later found
similar behaviour in B0-mesons systems where they detected similar CP-symmetry violations. LHCb-

Collaboration (Aaij et al. 2013) results indicating that antimatter decays at a faster rate than antimatter
only come in as further supporting evidence and from a Sakhorov (1967) standpoint, these observations
certainly provide key insights into the problem of the preponderance of matter over antimatter.

Herein, we derive an irreducible Dirac equation that can be written in 24 representations and – with
these new 24 Dirac equations – we have not C and CP violating processes, but C and CP violating Physical

Laws, that is, equally legitimate Laws of Physics that predict an asymmetry in the Universe. Actually, a
C-symmetry violating Physical Law is enough to explain the present imbalance of matter and antimatter.
Ideally, what the 24 equations really mean is that, there must exist 24 types of Electrons.

2Baryogenesis is the generic term for the hypothetical physical processes that produced an asymmetry (imbalance)
between baryons and antibaryons produced in the very early universe.

3European Organization for Nuclear Research (CERN) is located at the France-Swiss border near Geneva Swirtherland.
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Our line of thinking in the resolution of the great riddle of why the imbalance between matter and
antimatter, is that, we may need to search for C-violating Physical Laws as has been conducted herein and
also in the reading Nyambuya (2015) – where the asymmetries (C, P, T and their combinations) exhibited
by the proposed Curved Spacetime Dirac equations (Nyambuya 2008, 2013), have, as has been conducted
here, been used to suggest a solution to this long standing riddle of why the preponderance of matter over

antimatter.
More importantly we have the CPT-symmetry, where it is seen that twelve of the new twenty three Dirac

equations violate this seemingly sacrosanct, inviolable and one of most basic precepts of particle physics –
CPT-symmetry, which is considered (see e.g. Kostelecky 1998, Greenberg 2002, Villata 2011, Stadnik et al.
2014) to be an exact symmetry of Nature. To sanctify this symmetry, there is even the embellished
CPT Theorem (Schwinger 1951, Lüders 1954, Pauli et al. 1955), which holds that CPT-symmetry holds
for all physical phenomena, or more precisely, that: that any Lorentz invariant local Quantum Field
Theory (QFT) with a Hermitian Hamiltonian must have CPT-symmetry. Spelt-out more clearly, the three
prerequisite conditions for any physical theory to obey CPT-symmetry, are:

1. Lorentz Invariance.

2. Locality.

3. Hermiticity of the Hamiltonian.

All these three conditions the present twenty three new Dirac equations do meet them – yet – twelve of
them go on to violate this important symmetry. We shall present and leave it to the reader to ponder on
the meaning of these non-fundamental representations of the Dirac equation.

2 Original Dirac Equation

In this section – for instructive purposes, and for completeness, we formally present the original Dirac
equation. That is, the Dirac equation is given by:

(i~γµ∂µ − I4m0c)ψ = 0, (2.1)

where I4 is the 4× 4 identity matrix, ψ is the Dirac four component wavefunction and:

γ0 =

(

I2 0
0 −I2

)

, γi =

(

0 σi

−σi 0

)

, (2.2)

are the 4× 4 Dirac gamma matrices with I2 and 0 being the 2× 2 identity and null matrices respectively;
σj : j = (1, 2, 3), are the usual 2 × 2 Pauli matrices. Throughout this reading, the Greek indices will be
understood to mean (µ, ν, ... = 0, 1, 2, 3) and lower case English alphabet indices (i, j, k... = 1, 2, 3).

Dirac’s γ-matrices satisfy the following equation:

γµγν + γνγµ = 2I4η
µν , (2.3)

where ηµν is the Minkowski metric of flat spacetime i.e.:

ηµν :=









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









. (2.4)
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3 Dirac’s Classic Derivation

As is now common knowledge – in deriving (arriving at) his equation, Dirac sought an equation that is first
order in the spacetime derivatives (∂µ), which, upon ‘squaring’ would give the Klein-Gordon equation.
To that end, he first wrote down the future Dirac equation in the Schröndinger formalism as:

(H− E)ψ = 0, (3.1)

where the Dirac Hamiltonian operator H and the energy operator E are defined such that:

H = i~γ0γk∂k − γ0m0c and E = −i~I4
∂

∂t
. (3.2)

He demanded of H and E to be such that if one multiplied (3.1) from the left by (H− E), the must
obtained the usual Klein-Gordon equation, i.e.:

(H+ E)(H − E)ψ =
(

H2 + [H, E ]− E2
)

ψ = 0, (3.3)

where:

H2 = m2

0
c2 − ~

2∂k∂k, (3.4)

E2 = −~
2I4

∂2

∂t2
, (3.5)

[H, E ] = HE − EH = 0. (3.6)

In this way, the resulting equation
[(

H2 − E2
)

ψ = 0
]

, would give the desired Klein-Gordon equation, i.e.:

(

H2 − E2
)

ψ = 0 ⇒ ~
2c2∇2ψ − ~

2
∂2ψ

∂t2
−m2

0
c4ψ = 0 (3.7)

What we are now going to demonstrate below – is that, using the same prescription as Dirac, albeit, with
a slight modification; the Dirac equation is just one in a set of 24 possible Dirac equations. Written in
the usual form as given in equation (2.1), the Dirac equation is such that:

(i~γµ∂µ + I4m0c) (i~γ
µ∂µ − I4m0c)ψ = 0 =⇒

[

~
2
�−m2

0
c4
]

ψ = 0, (3.8)

where � = ηµν∂µ∂ν , is the usual D’Ambelet operator.

4 Representations of the Dirac Equation

In our new approach, the Hamiltonian has 24 representations and because of this, we shall add a new
index-ℓ so that it is now represented as Hℓ : ℓ = (1, 2, . . . , 24). That said, we are to demanded of Hℓ and
E to be such that a multiplication of (3.1) from the left by (Hℓ − E)†, we must – as in the case of Dirac
– obtain the Klein-Gordon equation, i.e.:

(Hℓ − E)†(Hℓ − E)ψ =
(

H†
ℓHℓ −

{

H†
ℓ , E

}

+ E†E
)

ψ = 0, (4.1)

where now we will require H†
ℓHℓ, E

†E and
{

H†
ℓ , E

}

, to be such that:

H†
ℓHℓ = |Hℓ|

2 = m2

0
c2 − ~

2∂k∂k, (4.2)

E†E = |E|
2
= ~

2I4
∂2

∂t2
, (4.3)
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Table 1: List of the 24 Uℓ-Matrices:

List of the 24 Uℓ-Matrices

U1 =

(

I 0
0 I

)

U2 =

(

σ1 0
0 σ1

)

U3 =

(

σ2 0
0 σ2

)

U4 =

(

σ3 0
0 σ3

)

Group (I)

U5 =

(

I 0
0 −I

)

U6 =

(

σ1 0
0 −σ1

)

U7 =

(

σ2 0
0 −σ2

)

U8 =

(

σ3 0
0 −σ3

)

Group (II)

U9 =

(

0 I
I 0

)

U10 =

(

0 σ1

σ1 0

)

U11 =

(

0 σ2

σ2 0

)

U12 =

(

0 σ3

σ3 0

)

Group (III)

U13 = i

(

0 I
−I 0

)

U14 = i

(

0 σ1

−σ1 0

)

U15 = i

(

0 σ2

−σ2 0

)

U
16 = i

(

0 σ3

−σ3 0

)

Group (IV)

U17 = 1√
2

(

−I I
I I

)

U18 = 1√
2

(

−σ1 σ1

σ1 σ1

)

U19 = 1√
2

(

−σ2 σ2

σ2 σ2

)

U20 = 1√
2

(

−σ3 σ3

σ3 σ3

)

Group (V)

U21 = 1√
2

(

I I
I −I

)

U22 = 1√
2

(

σ1 σ1

σ1
−σ1

)

U23 = 1√
2

(

σ2 σ2

σ2
−σ2

)

U24 = 1√
2

(

σ3 σ3

σ3
−σ3

)

Group (VI)
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{

H†
ℓ , E

}

= H†
ℓE + E†Hℓ = 0. (4.4)

In-order for (4.2), (4.3) and (4.4), to hold, where the new Hamiltonian Hℓ will have to be defined such
that:

H = i~γ̃0γ̃k∂k − γ̃0Uℓm0c and H = i~
∂

∂t
, (4.5)

where the 24 unitary hermitian matrices Uℓ : ℓ = (1, 2, . . . , 24) are listed in Table (1), and γ̃0 and γ̃k are
such that:

{

γ̃0 =

(

0 I2
−I2 0

)

and γ̃k =

(

σk 0
0 σk

) }

⇒ γ̃µ. (4.6)

The matrices γ̃µ satisfy the following Dirac Algebra:

γ̃µ†γ̃ν + γ̃ν†γ̃µ = −2I4η
µν , (4.7)

The resulting set of 24 Dirac equations will be given by:

(i~Uℓγ̃
µ∂µ −m0c)ψ = 0. (4.8)

This new set of 24 Dirac equations (4.8), is such that:

(i~Uℓγ̃
µ∂µ −m0c)

†
(i~Uℓγ̃

µ∂µ −m0c)ψ = 0 =⇒
[

~
2
�−m2

0c
4
]

ψ = 0. (4.9)

Equation (4.8) is the same as the Dirac equation – albeit, with the Dirac γµ matrices now replaced with
Uℓγ̃

µ. If (4.8) is indeed equivalent to the Dirac equation, then, the matrices Uℓγ̃
µ must be such that:

(Uℓγ̃
µ)

†
(Uℓγ̃

ν) + (Uℓγ̃
ν)

†
(Uℓγ̃

µ) = γ̃µ†γ̃ν + γ̃ν†γ̃µ = −2I4η
µν . (4.10)

As one can verify for themselves, equation (4.10) does indeed holds true. The meaning of this is that the
new equation (4.8) is indeed equivalent to the Dirac equation.

5 Lorentz Invariance

Obviously, all the 24 representations (4.8) of the Dirac equation are Lorentz invariant. Perhaps, we
must not just say this, but demonstrate this explicitly that equation (4.8), is indeed Lorentz invariant as
claimed. For this purpose, we shall write equation (4.8) as follows:

i~γ̃µ∂µψ = Uℓm0cψ (5.1)

To ‘prove’ (demonstrate) Lorentz invariance for equation (5.1), two sine qua non conditions must be
satisfied and these are:

1. Given any two inertial observers O and O′ anywhere in spacetime, if in the frame O we have the state
ψ described by the equation: [i~γ̃µ∂µψ = Uℓm0cψ(x)], then: [i~γ̃µ′

∂µ′ψ′(x′) = U
′
ℓm0cψ

′(x′)], is the corre-
sponding equation describing the same state in the frame O′.

2. Given that ψ(x) is the wavefunction as measured by observer O, there must exist a prescription for observer
O′ to compute ψ′(x′) from ψ(x) and this describes to O′ the same physical state as that measured by O.
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In the above, the x in ψ(x) represents the four spacetime coordinates xµ.
Now – to proceed with our proof, we know that the Lorentz transformation is linear – and, because

of this, it is to be required or expected of the transformations between ψ(x) and ψ′(x′) to be linear too,
that is:

ψ′(x′) = ψ′(Λx) = S(Λ)ψ(x) = S(Λ)ψ(Λ−1x′), (5.2)

where S(Λ) is a non-singular 4× 4 matrix which depends only on the relative velocities of O and O′ and
Λ is the Lorentz transformation matrix Λ µ′

µ = ∂xµ
′

/∂xµ or Λ µ
µ′ = ∂xµ/∂xµ

′

. The matrix S(Λ) has an

inverse if O → O′ and also O′ → O. This inverse is such that:

ψ(x) = S−1(Λ)ψ′(x′) = S−1(Λ)ψ′(Λx) (5.3)

or we could write:

ψ(x) = S(Λ−1)ψ′(Λx) =⇒ S(Λ−1) = S−1(Λ). (5.4)

By replacing the wavefunction ψ(x) in (5.1), with S−1(Λ)ψ′(x′), we can now write this equation as:

i~γ̃µS−1(Λ)∂µψ
′(x′) = m0cUℓS

−1(Λ)ψ′(x′). (5.5)

Multiplying this equation (5.5) from the left by S(Λ) and substituting ∂µ = Λ µ′

µ ∂µ′ we will have:

i~S(Λ)γ̃µΛ µ′

µ S−1(Λ)∂µ′ψ′(x′) = m0cS(Λ)UℓS
−1(Λ)ψ′(x′). (5.6)

As desired, the above equation (5.6) can be rewritten as:

i~γ̃µ
′

∂µ′ψ′(x′) = U ′
ℓm0cψ

′(x′), (5.7)

where:

γµ
′

ℓ = S(Λ)γµℓ Λ
µ′

µ S−1(Λ) and U ′
ℓ = S(Λ)UℓS

−1(Λ). (5.8)

In this way, we have shown that equation (5.1) – hence equation (5.1); is indeed Lorentz invariant as
claimed since the two afore-stated sine qua non conditions for Lorentz invariance are satisfied. Before
we close, we must make mention that – according to Pauli (1936)’s Fundamental Theorem, because γ̃µ

satisfies the Dirac Algebra (4.7), the matrix S = S(Λ) does exist. In the next section, we shall proceed
to investigate whether or not this equation obeys charge conjugation symmetry, parity symmetry, time
reversal symmetry together with the different combinations of these discrete symmetries.

6 Symmetries of the New Dirac Equations

We here investigate the symmetries of the 24 new Dirac equations (5.1) i.e. their invariance (or lack
thereof) under charge conjugation (C), parity (P), time reversal (T) together with the different combi-
nations of these discrete symmetries. Before we can embark on this exercise, we need to consider first
how the electric (E) and magnetic fields (B), currents (J) and charges (̺) behave under C, P and T

transformations. Under a P transformation, the positions of electrical charges will be interchanged and so
the electric field will change sign as a consequence. Currents will flow in opposite direction so they also
will change sign as a result. Since the magnetic field is proportional to J × r, its sign will be preserved.
All this can be summarised as:

P : E(r, t) 7→ −E(−r, t)
P : B(r, t) 7→ B(−r, t)
P : J(r, t) 7→ −J(−r, t)
P : ∇ 7→ −∇

. (6.1)
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Under a T-transformation, the charges and positions will remain unchanged, whereas the currents will
flow in opposite direction, in which case we will get:

T : E(r, t) 7→ E(r,−t)
T : B(r, t) 7→ −B(r,−t)
T : J(r, t) 7→ −J(r,−t)
T : ∂/∂t 7→ −∂/∂t

. (6.2)

Using similar arguments as above, we will get for the C-transformation, the following:

C : ̺(r, t) 7→ −̺(r, t)
C : E(r, t) 7→ −E(r, t)
C : B(r, t) 7→ −B(r, t)
C : J(r, t) 7→ −J(r, t)

. (6.3)

Finally under the combined CPT-transformation the charges and currents change sign and the electric and
magnetic fields will retain their signs. These properties can be summarised in terms of the four vector
potential Aex

µ = (A0, Ak) of the ambient electromagnetic field as:

C : (A0, Ak) → (−A0,−Ak)
P : (A0, Ak) → (−A0, Ak)
T : (A0, Ak) → (A0,−Ak)

. (6.4)

Of particular importance here are the transformations (6.4) of the four vector potential Aµ = (A0, Ak),
this the reader will have to know as we will not remind them in the derivations that follow.

6.1 Commutation of Uℓ with γ
0, γ2 and γ

0
γ
2

In sections (6.2) to (6.8), we are going to investigate whether or not the new Lorentz invariant Dirac
equation (5.1) does obey the discrete symmetries C, P, T and their combinations. In these investigations,
the commutation (or lack thereof) the three matrices γ0, γ2 and γ0γ2 with Uℓ will be crucial. As such,
we have worked these out and the results are presented in the self explanatory Table (2). Below we give
an explanation of this table:

1. When the matrix γ0, γ2 or γ0γ2 commutes with Uℓ, a value of “ + 1” appears in the table entry.

2. When the matrix γ0, γ2 or γ0γ2 anti-commutes with Uℓ, a value of “− 1” appears in the table entry.

3. When the matrix γ0, γ2 or γ0γ2 neither commutes nor anti-commutes with Uℓ, a value of “0” appears in
the table entry.

The reader must take note that the matrices γ0, γ2 & γ0γ2 are not the same as γ̃0, γ̃2 & γ̃0γ2, and that
it is not a mistake that we have considered these matrices γ0, γ2 & γ0γ2 and not γ̃0, γ̃2 & γ̃0γ̃2.

6.2 C-Symmetry

To investigate whether or not equation (5.1) is invariant under charge conjugation, we proceed as usual,
that is, we bring the Dirac particle ψ under the influence of an ambient electromagnetic magnetic field
Aµ (which is a real function). The normal procedure of incorporating this ambient electromagnetic
magnetic field into the Dirac equation is by making the canonical transformation of the derivatives, i.e.:
(∂µ 7−→ Dµ = ∂µ + iAµ), hence, under this transformation, equation (5.1) will now be given by:

[

i~γ̃0 (∂0 + iA0) + i~γ̃k (∂k + iAk)− Uℓm0c
]

ψ = 0. (6.5)
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Table 2: Commutation of Uℓ with γ0, γ2 and γ0γ2.

ℓ γ0 γ2 γ0γ2

1 +1 +1 +1
2 +1 −1 +1
3 +1 +1 +1
4 +1 −1 +1

5 +1 −1 −1
6 +1 +1 −1
7 +1 −1 −1
8 +1 +1 −1

9 −1 −1 +1
10 −1 +1 +1
11 −1 −1 +1
12 −1 +1 +1

13 −1 +1 −1
14 −1 −1 −1
15 −1 +1 −1
16 −1 −1 −1

17 0 −1 0
18 0 +1 0
19 0 −1 0
20 0 +1 0

21 0 −1 0
22 0 +1 0
23 0 −1 0
24 0 +1 0

Equation (6.5) represents the Dirac particle ψ which is immersed in an ambient electromagnetic magnetic
represented by the four vector potential Aµ. If we are to reverse the ambient electromagnetic magnetic
field i.e. (Aµ 7−→ −Aµ), then, (6.5) becomes:

[

i~γ̃0 (∂0 − iA0) + i~γ̃k (∂k − iAk)− Uℓm0c
]

ψ = 0. (6.6)

Further, if (6.5; hence 5.1) is symmetric under charge conjugation, then, there must exist some mathe-
matical transformation, which if applied to (6.6) would lead us back to an equation that is equivalent to
(6.5).

Now, starting from (6.6), in-order to revert back to (6.5), the first mathematical operation to be
applied to (6.6) is the complex conjugate operation on the entire equation – this operation allow us to
get rid of the minus sign attached to the vector Aµ. So doing, we will have:

[

−i~γ̃0
∗

(∂0 + iA0)− i~γ̃k∗ (∂k + iAk)− U∗
ℓ m0c

]

ψ∗ = 0. (6.7)

Written more compactly, equation (6.7) is:

− i~γ̃µ
∗

[Dµ + U∗
ℓ m0c]ψ

∗ = 0. (6.8)

Now, next, we need to get rid of the complex conjugate operator-∗ attached to γ̃µ
∗

; to do this, we
proceed by multiplying equation (6.8) throughout by γ0γ2 and having done this, knowing that:

γ0γ2γ̃µ
∗

= −γ̃µγ0γ2, (6.9)
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we will require of Uℓ to be such that:

γ0γ2U∗
ℓ = Uℓγ

0γ2. (6.10)

If (6.10) holds true, it follows that, we will have:

[

i~γ̃0 (∂0 + iA0) + i~γ̃k (∂k + iAk)− Uℓm0c
]

γ0γ2ψ∗ = 0. (6.11)

The above equation (6.11) can be written more conveniently as:

[

i~γ̃0 (∂0 + iA0) + i~γ̃k (∂k + iAk)− Uℓm0c
]

ψc = 0, (6.12)

where (ψc = γ0γ2ψ∗). This equation (6.12) is the same as equation (6.5), albeit, all we have done is to
replace ψ with ψc. If the condition (6.10) holds for the case ℓ, then equation (5.1) is symmetric under
charge conjugation for the case ℓ, else, it is not. So, of the 24 new Dirac equations, only those for which
this condition (6.10) holds – will the corresponding equation be symmetric under change conjugation.
Calculations with the 24 matrices Uℓ reveals that for the cases (ℓ = 1− 4; 9− 12), C-symmetry is obeyed,
while for the cases (ℓ = 5− 8; 13− 24), it (C-symmetry) is not observed.

6.3 P-Symmetry

A parity transformation requires that we reverse the space coordinates i.e. (xk 7−→ −xk). This transfor-
mation of the coordinates implies that the space derivatives will transform as: (∂k 7−→ −∂k). Applying
these transformations to (5.1), we will have this equation (5.1) now being given by:

[

i~γ̃0∂0 − i~γ̃k∂k − Uℓm0c
]

ψ = 0. (6.13)

Now, we need to get rid of the minus sign that we have just introduced in the space derivatives. To do
this, we multiply equation (6.13) throughout by γ0 and then make use of the fact that:

γ0γ̃0 = −γ̃0γ0

γ0γ̃k = γ̃kγ0
. (6.14)

Applying this fact (6.14) to equation (6.13) and then multiply the resulting equation by “ − 1”, we will
have:

[

i~γ̃µγ0∂µ + γ0Uℓm0c
]

ψ = 0. (6.15)

Now, if:

γ0Uℓ = −Uℓγ
0, (6.16)

then, equation (6.15) will reduce to:

[

i~γ̃0∂0 + i~γ̃k∂k − Uℓm0c
]

ψp = 0, (6.17)

where (ψp = γ0ψ). This equation (6.17) is the same as equation (5.1), albeit, all we have done is to
replace ψ with ψp. If (6.16) holds, then, equation (5.1) is symmetric under charge conjugation. So, of
the 24 Dirac equations, only those for which this condition (6.16) holds – will the corresponding equation
be symmetric under parity reversal. Calculations with the 24 matrices Uℓ reveals that for the cases
(ℓ = 9 − 16), P-symmetry is obeyed, while for the cases (ℓ = 1 − 8; 17 − 24), it (P-symmetry) is not
observed.
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6.4 T-Symmetry

A time reversal transformation requires that we reverse the time coordinate i.e. (t 7−→ −t) and in-turn,
this implies the time derivative will transform as: (∂0 7−→ −∂0). Applying these transformations to (5.1),
we will have equation (5.1) now being given by:

[

−i~γ̃0∂0 + i~γ̃k∂k − Uℓm0c
]

ψ = 0, (6.18)

Now, in-order to revert back to equation (5.1), we apply commutation relations (6.14) where upon we
will obtain:

[

i~γ̃0γ0∂0 + i~γ̃kγ0∂k − γ0Uℓm0cγ̃
2
]

ψ = 0. (6.19)

Now, if:

γ0Uℓ = Uℓγ
0, (6.20)

then, equation (6.19) will reduce to:

[

i~γ̃0∂0 + i~γ̃k∂k − Uℓm0c
]

ψt = 0, (6.21)

where (ψt = γ0ψ∗). This equation (6.21) is the same as equation (6.18), albeit, all we have done is to
replace ψ with ψt. If (6.20) holds, then equation (5.1) is symmetric under charge conjugation. So, of the
24 Dirac equations, only those for which this condition (6.20) holds – will the corresponding equation
be symmetric under parity reversal. Calculations with the 24 matrices Uℓ reveals that for the cases
(ℓ = 1− 8), T-symmetry is obeyed, while for the cases (ℓ = 9− 24), it (T-symmetry) is not observed.

6.5 CP-Symmetry

A simultaneous reversal of the electronic charge and parity requires that we:

1. Introduce an ambient electromagnetic field (∂µ 7−→ Dµ = ∂µ + iAµ).

2. Reverse the sign of the ambient electromagnetic field, that is to say (Aµ 7−→ −Aµ).

3. Reverse the sign in the space coordinates i.e. (xk
7−→ −xk) which implies (∂k 7−→ −∂k).

4. From the relation in equation (6.4), remember that (xk
7−→ −xk) which implies (A0 7−→ −A0).

Effecting all these transformations into (5.1), we will have:

[

i~γ̃0 (∂0 + iA0)− i~γ̃k (∂k + iAk)− Uℓm0c
]

ψ = 0. (6.22)

Now, multiplying (6.22) by “ − γ0” from the left, thereafter applying the commutation relations (6.14),
we will have:

[

i~γ̃µγ0Dµ + γ0Uℓm0c
]

ψ = 0. (6.23)

If:

γ0Uℓ = −Uℓγ
0, (6.24)

then, equation (6.23) will reduce to:

[

i~γ̃µγ0Dµ − Uℓm0c
]

ψcp = 0. (6.25)

where (ψcp = γ0ψ). This equation (6.25) is the same as equation (6.22), albeit, with ψ now replaced
with ψcp. If the condition (6.24) holds, then, equation (5.1) is symmetric under simultaneous reversal of
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charge and parity. So, of the 24 Dirac equations, only those for which this condition (6.24) holds – will
the corresponding equation be symmetric under change conjugation. Calculations with the 24 matrices
Uℓ reveals that for the cases (ℓ = 9− 16), CP-symmetry is obeyed, while for the cases (ℓ = 1− 8; 17− 24),
it (CP-symmetry) is not observed.

6.6 CT-Symmetry

A simultaneous reversal of the electronic charge and time requires that we:

1. Introduce an ambient electromagnetic field (∂µ 7−→ Dµ = ∂µ + iAµ).

2. Reverse the sign of the ambient electromagnetic field, that is to say (Aµ 7−→ −Aµ).

3. Reverse the sign in the time coordinate i.e. (x0
7−→ −x0) which implies (∂0 7−→ −∂0).

4. From the relation in equation (6.4), remember that (x0
7−→ −x0) which implies (Ak 7−→ −Ak).

Effecting all these transformations into (5.1), we will have:

[

−i~γ̃0 (∂0 + iA0) + i~γ̃k (∂k + iAk)− Uℓm0c
]

ψ = 0, (6.26)

Now, multiplying (6.26) by “γ0” from the left, thereafter applying the commutation relations (6.14), we
will have:

[

i~γ̃µγ0Dµ − γ0Uℓm0c
]

ψ = 0. (6.27)

If:

γ0Uℓ = Uℓγ
0, (6.28)

then, equation (6.27) will reduce to:

[

i~γ̃µγ0Dµ − Uℓm0c
]

ψct = 0. (6.29)

where (ψct = γ0ψ). This equation (6.29) is the same as equation (6.26), albeit, with ψ now replaced with
ψct. If the condition (6.28) holds, then, equation (5.1) is symmetric under charge conjugation. So, of the
24 Dirac equations, only those for which this condition (6.28) holds – will the corresponding equation
be symmetric under change conjugation. Calculations with the 24 matrices Uℓ reveals that for the cases
(ℓ = 1− 8), CT-symmetry is obeyed, while for the cases (ℓ = 9− 24), it (CT-symmetry) is not observed.

6.7 PT-Symmetry

If we are to reverse the space and time coordinates, that is (xµ 7→ −xµ) ⇒ (∂µ 7→ −∂µ), and thereafter
take the complex conjugate and then multiply the resulting equation by “− γ0γ2” from the left and then
making use of the commutation relations (6.9), the resultant equation will be:

[

i~γ̃µ
∗

γ0γ2∂µ − γ0γ2U∗
ℓ m0c

]

ψ∗ = 0, (6.30)

If:

γ0γ2U∗
ℓ = Uℓγ

0γ2, (6.31)

then, equation (6.33) will reduce to:

[

i~γ̃µ
∗

γ0γ2∂µ − Uℓm0c
]

ψpt = 0. (6.32)
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where (ψpt = γ0γ2ψ∗). This equation (6.32) is the same as equation (6.30), albeit, with ψ now replaced
with ψpt. If the condition (6.31) holds, then, equation (5.1) is symmetric under charge conjugation. So, of
the 24 Dirac equations, only those for which this condition (6.31) holds – will the corresponding equation
be symmetric under change conjugation. Calculations with the 24 matrices Uℓ reveals that for the cases
(ℓ = 1, 2, 3), PT-symmetry is observed while for the cases (ℓ = 1, 2, 3, ) this symmetry is not obeyed.

6.8 CPT-Symmetry

The seemingly sacrosanct CPT-symmetry involves the simultaneous reversal of electronic charge, parity
and time. First, we place the particle in an ambient electromagnetic field – this implies: (∂µ 7→ ∂µ+ iAµ),
i.e.:

[

i~γ̃0 (∂0 + iA0) + i~γ̃k (∂k + iAk)− Uℓm0c
]

ψ = 0. (6.33)

Second, we reverse the spacetime coordinates, that is to say: (xµ 7−→ −xµ) and this implies (∂µ 7−→ −∂µ).
Third, we reverse the ambient electromagnetic magnetic (Aµ 7−→ −Aµ). Lastly, according to (6.4), the
reversal of the spacetime coordinates requires that we reverse – once again – the ambient electromagnetic
magnetic (Aµ 7−→ −Aµ). Applying all these transformations to (6.33), we will have:

[

−i~γ̃µD∗
µ − Uℓm0c

]

ψ = 0. (6.34)

Now, in-order to revert back to the original equation (6.33), we (1) take the complex conjugate, (2)
multiply the resulting equation throughout by γ0γ2 and thereafter make use of the fact commutation
relations (6.9). Applying the said operations to (6.34), this equation will now be given by:

[

i~γ̃µγ0γ2Dµ + γ0γ2U∗
ℓ m0c

]

ψ∗ = 0. (6.35)

If:

γ0γ2U∗
ℓ = −Uℓγ

0γ2, (6.36)

then, equation (6.35) will reduce to:

[i~γ̃µDµ − Uℓm0c]ψcpt = 0. (6.37)

where (ψcpt = γ0γ2ψ∗). This equation (6.37) is the same as equation (6.33), albeit, with ψ now replaced
with ψcpt. If the condition (6.36) holds, then, equation (5.1) is symmetric under charge conjugation.
So, of the 24 Dirac equations, only those for which this condition (6.36) holds – will the corresponding
equation be symmetric under change conjugation. Calculations with the 24 matrices Uℓ reveals that for
the cases (ℓ = 5− 8; 13− 16), CPT-symmetry is obeyed, while for the cases (ℓ = 1− 4; 9− 12; 17− 24), it
(CPT-symmetry) is not observed.

6.9 Summary

Table (3) gives a summary of the symmetries of all the twenty four Dirac equations. For each ℓ-
representation, if the a symmetry is obeyed, a value of “1” is entered and if it not obeyed, a value
of “0” is entered. It is seen from this table that 33% of the equations obey C and CP-symmetry and that
the CPT-symmetry is not spared as 66.6% of the equations obey violate this symmetry.
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Table 3: Symmetries:

Case Symmetry

———————————————–
ℓ C P T CP CT PT CPT

1 1 0 1 0 1 1 0
2 1 0 1 0 1 1 0
3 1 0 1 0 1 1 0
4 1 0 1 0 1 1 0

5 0 0 1 0 1 0 1
6 0 0 1 0 1 0 1
7 0 0 1 0 1 0 1
8 0 0 1 0 1 0 1

9 1 1 0 1 0 1 0
10 1 1 0 1 0 1 0
11 1 1 0 1 0 1 0
12 1 1 0 1 0 1 0

13 0 1 0 1 0 0 1
14 0 1 0 1 0 0 1
15 0 1 0 1 0 0 1
16 0 1 0 1 0 0 1

17 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0

7 General Discussion

We have shown that if one adheres to the prescription [(H+E)(H−E)ψ = 0] handed down to us by Dirac
on how to arrive at the Dirac equation – albeit, with a subtle change in prescription [(H−E)†(H−E)ψ = 0];
then, they would come to the realization that the Dirac equation is just one amongst a set of 25 possible
equation. All the new 24 equations are Lorentz invariant. The basis (γµ) of Dirac equation is reducible
while the basis (γ̃µ) of the present 24 new equations is irreducible. What is interesting about these new
24 Dirac-type equations is that unlike the Dirac equation which obeys all the seven discrete symmetries
C, P, T, CP, CT, PT and CPT-symmetries, these equations violate at least one of these symmetries. Of
particular interest to us here is the violation of C, CP and CPT-symmetries.

8 Conclusion

Assuming the acceptability of what has been presented herein, we hereby make the following conclusion:

1. As the original Dirac equation, the new twenty four Dirac equations have equal legitimacy to be considered
as physical equations possibly describing a part of our Universe. If any of them are not equations describing
the Universe (or a part thereof) that we live in, then, there must be some extra physical constraints presently
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beyond us, that is, constraints that are a part of the Laws of Nature, constraints that ultimately rule out
these equations.

2. The revered, seemingly sacrosanct and highly regarded CPT-Theorem that holds that all Lorentz invariant
theories must uphold CPT-symmetry does not hold true for twelve of the Dirac equations.

9 Future Work

There is need to study the free particle solutions of the new twenty four equations. What one will have to
check in these free particle solutions is whether or not they resulting equations give physically meaningful
energy solutions. We have not done this in the present.
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