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In the year 1928, the pre-eminent British physicist – Paul Adrien Maurice Dirac, derived his
very successful equation now popularly known as the Dirac equation. This unprecedented equation
is one of the most beautiful, subtle, noble and esoteric equations in physics. One of its greatest
embellishments is embedded in that this equation exhibits a perfect symmetry – which amongst
others – requires, that the Universe contain as much matter as antimatter, or that, for every known
fundamental particle, there exists a corresponding antiparticle. We show here that the Dirac theory
in its bare form – without the need of the Pauli Exclusion Principle; can – via, its internal logic –
beautifully explain the stability of the Dirac Void i.e., the empty Dirac Sea. There is no need for
one to ‘uglify’ Dirac’s otherwise beautiful, self-contained and consistent theory by indiscriminately
stuffing the Dirac vacuum with an infinite amount of invisible negative energy in-order to prevent
the positive energy Electron from falling into the negative energy state.

–oOo–
“A great deal more was hidden in the Dirac equation . . .

than the author had expected when he wrote it down in 1928.

Dirac himself remarked in one of his talks that . . .

his equation was more intelligent than its author.

It should be added, however, that it was . . .

Dirac who found most of the additional insights.”

– Victor Frederick Weisskopf (1908 − 2002)
–oOo–

PACS numbers:

INTRODUCTION

AS with the Klein-Gordon equation [1, 2], the Dirac
equation [3, 4] admits of negative energy solutions.

Though no-longer considered a problem today – for some
time – their interpretation (negative energies) presented
a great deal of difficulty as these negative energy solu-
tions were considered a serious shortcoming of the Dirac
theory. For example – from Albert Einstein [5]’s cele-
brated mass-energy equivalence (E = mc2), negative en-
ergy implies negative mass (m = E/c2). According to
our mundane understanding of Newton’s Second Law of
Motion, a negative mass particle would be accelerated in
the opposite direction of an externally applied force [6].
This is not only weird, but absurd! Despite this, physicist
have not stopped to imagine or consider the possibility
of the existence of negative mass and the consequences
thereof [6–12].

In classical physics, a negative energy state causes no
trouble because no transition between positive and nega-
tive energy states occurs. Therefore – in classical physics,
if a particle occupies a positive energy state at any given
time, it will never appear cascade down to a negative
energy state. The negative energy states are then elimi-
nated as a result of initial conditions stipulating that no
such state occurred in the past. In a quantum theory,

this device is no longer admissible, as spontaneous emis-
sion of radiation can occur as long as a state of lower en-
ergy is unoccupied and as long as conservation of angular
and linear momenta can be fulfilled. These conservation
principles can always be fulfilled under appropriate con-
ditions. There is nothing to prevent an Electron from ra-
diating energy in making a transition to lower and lower
states.
In 1930, Dirac [13] resolved the difficulties of interpre-

tation of these ‘nagging’ negative energy states by sug-
gesting his so-called ‘hole’ theory which he prophetically
formulated as follows:

“Assume that nearly all the negative energy

states are occupied, with one Electron in each

state in accordance with the Exclusion Princi-

ple of Pauli. The Exclusion Principle makes it

impossible for positive energy Electrons to make

transition to negative energy states unless they

are emptied by some means. Such an unoccupied

negative energy state will now appear as some-

thing with positive energy, since to make it dis-

appear, i.e. to fill it up, we should have to add

an Electron with negative energy. We assume

that these unoccupied negative-energy states are

the Positrons. The ‘hole’ would have a charge

opposite of that of the positive energy particle.”

In an unparalleled triumphant moment for the Dirac
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theory, the Positron was experimentally discovered in
1932 by American physicist – Carl David Anderson
(1905− 1991). It has the same spin as the Electron but
opposite electrical charge. For this monumental achieve-
ment Anderson was awarded the 1936 Nobel Prize in
Physics:

. . . for his discovery of the Positron.

After the direct detection of the Positron, Germany’s
great physicist – Werner Karl Heisenberg (1901− 1976),
who made major contributions to Quantum Theory
spoke of Dirac’s discovery of antimatter as:

“. . . perhaps the biggest change of all the big
changes in physics of our century . . . because
it changed our whole picture of matter . . . ”

It was one of the touchstone and most spectacular conse-
quence of Dirac’s theory that the old concept of the ele-
mentary particle based on their stable identity collapsed
completely. Sadly, the preponderance of matter over an-
timatter remains an intriguing puzzle in the otherwise
marvellous edifice of the Dirac theory.
Of its endowment – i.e., Dirac’s vacuum out of which

the Positron’s existence was foretold: Dirac [13] sug-
gested of it that there be in it – a distribution of Electrons
of infinite density everywhere in the Universe and that a
perfect vacuum should whence-forth be a region where all
the states of positive energy are unoccupied and all those
of negative energy are occupied – leading to a crowded
Dirac vacuum. However, this infinite distribution does
not contribute to the electric field of the vacuum, as,
off-course, Maxwell [14]’s equation in a perfect vacuum,
(∇ · E = 0), must hold true. Thus, only departures
from the distribution in a vacuum will contribute to the
electric charged density of the vacuum. There will be a
contributions of “ − e” for each occupied state of posi-
tive energy and a contribution “+e” for each unoccupied
state of negative energy.
In Dirac’s ‘hole’ theory, the Pauli Exclusion Principle

is central and pivotal as it operates so as to prevent a
positive-energy Electron from ordinarily making a down-
ward transition to a state of negative energy. It will still
be possible, however, for such an Electron to drop into
an unoccupied state of negative energy. In this case we
should have an Electron and a Positron disappearing si-
multaneously, their energy being emitted in the form of
radiation. The converse process would consist in the cre-
ation of an Electron and a Positron from electromagnetic
radiation.
What we have presented thus far is only bonafide his-

tory of the problem of the interpretation of negative en-
ergy solutions in the Dirac theory. The issue of the vac-
uum, that is, its contents and dynamics is no longer a
problem as most of the sticking issues have since been
resolved in quantum field theory. In this history that we
have presented, we wanted to highlight the importance of

the Pauli Exclusion Principle in the stability and dynam-
ics of the vacuum. Dirac evoked this principle in-order to
safeguard the E-positive to E-negative (and vise-versa)
transitions from occurring. It is this that we demonstrate
herein that the Dirac does not need the Pauli Exclusion
Principle as it can do without it from its own internal
logic. We believe, this is a significant result insofar as
understanding the Dirac equation is concerned.

DIRAC EQUATION

For instructive and completeness purposes, we here write
down the Dirac equation. The Dirac equation is given by:

[ı~γµ∂µ −m0c] |ψ〉 = 0, (1)

where |ψ〉 is the Dirac four component wavefunction and:

γ0 =

(

I2 0
0 −I2

)

, γi =

(

0 σi

−σi 0

)

, (2)

are the 4 × 4 Dirac gamma matrices where I2 and 0
are the 2×2 identity and null matrices respectively.
Throughout this reading, the Greek indices will be
understood to mean µ, ν, ... = 0, 1, 2, 3 and lower case
English alphabet indices i, j, k... = 1, 2, 3. In the
subsequent section (which is expository in nature and is
presented for latter instructive purposes), we will drop
the use of the Dirac Bra-Ket notation and thereafter, we
will resume the use of this notation.

DIRAC FREE PARTICLE SOLUTIONS

The free particle solutions of the Dirac equation are
obtained by assuming a wavefunction of the form
(ψ = ue+ıpµx

µ/~) where u is a four component object,
i.e.:

u =









u0
u1
u2
u3









. (3)

Substituting this free particle solution (ψ = ue+ıpµx
µ/~)

into (1), one is led to the following set of simultaneous
equations:

(E −m0c
2)u0 − c(px − ıpy)u3 − cpzu2 = 0

(E −m0c
2)u1 − c(px + ıpy)u2 + cpzu3 = 0

(E +m0c
2)u2 − c(px − ıpy)u1 − cpzu0 = 0

(E +m0c
2)u3 − c(px + ıpy)u0 + cpzu1 = 0

. (4)

From this – one obtains the following two solutions:
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ψ(1) =

√

E +m0c2

2E









1
0
cpz

E+m0c2
c(px+ıpy)
E+m0c2









e+ıpµx
µ/~ and ψ(2) =

√

E +m0c2

2E









0
1

c(px−ıpy)
E+m0c2

− cpz

E+m0c2









e+ıpµx
µ/~,

(5)

The factor
√

(E +m0c2)/2E has been inserted as a nor-
malization constant. These solution ψ(1) is obtained
by setting (u0 = 1;u1 = 0) and then solving for u2
and u3 and the solution ψ(2) is obtained by setting
(u0 = 0;u1 = 1) and then solving for u2 and u3. These
two solutions ψ(1) and ψ(2) are all positive energy solu-
tions and ψ(1) is a spin-up particle while ψ(2) is a spin
down particle.
The second set of solutions is obtained by assuming a

wavefunction of the form (ψ = ue−ıpµx
µ/~). Substitut-

ing this free particle solution (ψ = ue−ıpµx
µ/~) into (1),

one is led to the following set of simultaneous equations:

(E +m0c
2)u0 − c(px − ıpy)u3 − cpzu2 = 0

(E +m0c
2)u1 − c(px + ıpy)u2 + cpzu3 = 0

(E −m0c
2)u2 − c(px − ıpy)u1 − cpzu0 = 0

(E −m0c
2)u3 − c(px + ıpy)u0 + cpzu1 = 0

. (6)

From this – one obtains the following two solutions:

ψ(3) =

√

E +m0c2

2E









cpz

E+m0c2
c(px+ıpy)
E+m0c2

1
0









e−ıpµx
µ/~ and ψ(4) =

√

E +m0c2

2E









c(px−ıpy)
E+m0c2

− cpz

E+m0c2

0
1









e−ıpµx
µ/~.

(7)

Again, the factor
√

(E +m0c2)/2E has been inserted as
a normalization constant. These solutions ψ(3) have ob-
tained by setting (u2 = 1;u3 = 0) and then solving for
u0 and u1 and the solution ψ(4) is obtained by setting
(u2 = 0;u3 = 1) and then solving for u0 and u1. These
two solutions ψ(3) and ψ(4) are all negative energy solu-
tions and ψ(3) is a spin-up particle while ψ(3) is a spin
down particle.

As shown in Figure (1), we shall assume that the Dirac
particle has spin angular momentum along the z-axis. It
moves along the xy-plane, the meaning of which is that
(px 6= 0; py 6= 0) and (pz = 0).

FIG. (1): Dirac Particle: We shall assume that the Dirac
particle has orbital angular momentum along the z-axis, the
meaning of which is that (px 6= 0; py 6= 0) and (pz = 0).

In the next section – we shall for latter instructive
purpose – demonstrate that the Dirac equation is in-
deed symmetric under charge conjugation. Otherwise
this next section together with the previous section, these
are both not necessary as these sections present bona-fide
knowledge that lays in the public domain. We however,
have presented these sections so as to make this reading
self-contained and complete by itself.

DIRAC’S ANTIMATTER

As is well known – if |ψ〉 is a Dirac particle, then,
(|ψc〉 = γ2 |ψ∗〉) is the anti-Dirac particle. Stated oth-
erwise or in a much clearer manner – if |ψ〉 is a particle,
then, (|ψc〉 = γ2 |ψ∗〉) is the corresponding antiparticle.
An antiparticle is one that would behave exactly the same
as its particle counterpart when placed in an ambient
electromagnetic field that is reversed in comparison to
the ambient electromagnetic field in which the particle is
immersed. The Physical Law(s) governing |ψ〉 and |ψc〉
are the same. We will demonstrate this by showing that
the Dirac equation is symmetric under the reversal of an
ambient electromagnetic field.

To demonstrate this symmetry, we proceed as usual,
that is, we bring the Dirac particle |ψ〉 under the influ-
ence of an ambient electromagnetic magnetic field Aex

µ
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(which is a real function). Having done this, the normal
procedure of incorporating this ambient electromagnetic
magnetic field into the Dirac equation is by making the
canonical transformation (∂µ 7−→ Dµ = ∂µ+ıA

ex
µ ), hence

equation (1) will now be given by:

[

ı~γµ
(

∂µ + ıAex
µ

)

−m0c
]

|ψ〉 = 0. (8)

Equation (8) represents the Dirac particle |ψ〉 in the im-
mersement of an ambient electromagnetic magnetic field.
If we are to reverse the particle’s electromagnetic field
and that of the ambient electromagnetic magnetic field
i.e. (Aex

µ 7−→ −Aex
µ ), then, (8) becomes:

[

ı~γµ(as)
(

∂µ − ıAex
µ

)

−m0c
]

|ψ〉 = 0. (9)

If the Dirac equation is symmetric under charge conjuga-
tion, then, there must exist some mathematical transfor-
mations, which if applied to (9), would ultimately lead
us back to an equation that is equivalent to (8).
To that end – starting from (9), in-order to revert back

to (8), the first mathematical operation to be applied
to (9) is the complex conjugate operation on the entire
equation. So doing, we will have:

[

−ı~γµ∗
(

∂µ + ıAex
µ

)

−m0c
]

|ψ∗〉 = 0. (10)

Now – using the fact that:

γ2γµ∗ = −γµγ2, (11)

it follows that multiplying equation (10) from the left by
γ2, this will lead us to the equation:

[

ı~γµ
(

∂µ + ıAex
µ

)

−m0c
]

|ψc〉 = 0, (12)

where (|ψc〉 = γ2 |ψ∗〉). Equation (8) and (12) are the
same Physical Laws each describing the two particles |ψ〉
and |ψc〉 respectively. Hence our assertion – that if |ψ〉
is the particle, then, |ψc〉 is the antiparticle; is proved.

QUANTUM PROBABILITY

Now, according to the set rules of quantum probability
calculus developed from the works of the great – German
born – British physicist, Max Born (1882−1970) [15], the
probability that a particle initially prepared in the state
|ψ〉 will make a transition to another state (defined by
|Ψ〉), this is given by the inner-product 〈Ψ| ψ〉. For all
conditions of existence, this inner product is not only a
positive real number i.e.:

〈Ψ| ψ〉 ∈ R
+, (13)

but lays between the interval “zero and unity” i.e.:

0 ≤ 〈Ψ| ψ〉 ≤ 1. (14)

Whenever (〈Ψ| ψ〉 = 0), this means that such a tran-
sition (ψ 7→ Ψ) is strictly forbidden and as such, this
transition (ψ 7→ Ψ) can never take place in the physi-
cal Universe; and whenever (〈Ψ| ψ〉 = 1), this transition
will occur with 100% certainty. On the other hand, if we
have (〈Ψ| ψ〉 /∈ R+) and or (〈Ψ| ψ〉 > 1) or (〈Ψ| ψ〉 < 0),
clearly, such transitions are not physical hence not feasi-
ble.
Written in full, this inner-product 〈Ψ| ψ〉 is defined:

〈Ψ| ψ〉 =

∫ z2

z1

∫ y2

y1

∫ x2

x1

(ΨT )∗ψdxdydz, (15)

where (ΨT )∗ is transpose conjugate of ψ and 〈Ψ| ψ〉
is the probability of transition of the particle |ψ〉 into
the state |Ψ〉. This transition will take place in the
volume space defined by the physical space boundaries:
(x := [x2, x1]); (y := [y2, y1]) and (z := [z2, z1]). If we
where to consider the entire Universe and assume it to be
infinite, then: (x := [+∞,−∞]); (y := [+∞,−∞]) and
(z := [+∞,−∞]). In the next section, we will evaluate
this inner-product and see if it meets the first condition
given in equation (13). From this evaluation, our major
result shall flow thereof.

DIRAC & THE PAULI EXCLUSION PRINCIPLE

What is interesting and constitutes the main point (re-
sult) of the present paper is that, if |ψ(i)〉 : i = 1, 2, 3, 4;
is any of free particle solutions of the Dirac equation and
(|ψc(i)〉 = γ2 |ψ∗(i)〉) is the corresponding antiparticle,
then:

〈ψc(i)| ψ(i)〉 ≡ 0. (16)

The meaning of (16) is that the particle-antiparticle tran-
sitions (|ψ(i)〉 7→ |ψc(i)〉) are strictly forbidden hence the
Pauli Exclusion Principle is not needed to prevent E-
positive to E-negative transitions. So, Dirac did not re-
ally have to look outside for a solution to prevent the
particle-antiparticle transitions (i.e., E-positive to E-
negative transitions).
Apart from the particle-antiparticle transitions we

have four E-positive to E-negative transitions and these
are: (1) (|ψ(1)〉 7→ |ψ(3)〉), represented by the prob-
ability 〈ψ(1)| ψ(3)〉, (2) (|ψ(1)〉 7→ |ψ(4)〉), repre-
sented by the probability 〈ψ(1)| ψ(4)〉, (3) (|ψ(2)〉 7→



5

|ψ(1)〉), represented by the probability 〈ψ(2)| ψ(3)〉 and
(4) (|ψ(2)〉 7→ |ψ(4)〉), represented by the probability
〈ψ(2)| ψ(4)〉. Below, we evaluate these probabilities. For
〈ψ(1)| ψ(3)〉, we have:

〈ψ(1)| ψ(3)〉 =
cpz
E

∫ z2

z1

∫ y2

y1

∫ x2

x1

dxdydz. (17)

Since (pz = 0), it follows that (〈ψ(1)| ψ(3)〉 ≡ 0). For
〈ψ(1)| ψ(4)〉 and 〈ψ(2)| ψ(3)〉, we have:

〈ψ(1)| ψ(4)〉 =
c(px − ıpy)

E

∫ z2

z1

∫ y2

y1

∫ x2

x1

dxdydz, (18)

and:

〈ψ(2)| ψ(3)〉 =
c(px + ıpy)

E

∫ z2

z1

∫ y2

y1

∫ x2

x1

dxdydz. (19)

Since (px 6= 0) and (py 6= 0), then, in both cases (18 and
19), we have (〈ψ(1)| ψ(4)〉 ∈ C) and (〈ψ(2)| ψ(3)〉 ∈ C)),
the meaning of which is that these transitions are not
feasible. For 〈ψ(2)| ψ(4)〉, we have:〈ψ(2)| ψ(4)〉 ≡ 0, the
meaning of which is that this transition is strictly and
completely forbidden. In-summary, particle-antiparticle
transitions (ψ 7→ ψc) are strictly and completely forbid-
den while E-positive to E-negative transitions are also
not allowed. Hence, the Dirac Void does not need the
Pauli Exclussion Principle to stabilize it. The Dirac Void
is simple an empty Dirac Sea.

GENERAL DISCUSSION

While the free particle solutions of the Dirac equation
have been known since the Dirac equation was discov-
ered (88 years ago), it strongly appears to us – that –
simple as it may, the result obtained in the present read-
ing may very well be new. For if this where not the
case, it certainly would be a popular and bona-fide re-
sult as this would have lead to the (beautiful) discarding
of the Pauli Exclusion Principle in midst of the Dirac
theory where this principle has ‘painfully’ been used to
try to bring about harmony in the Dirac World. The
Dirac theory in its bare form – without the Pauli Exclu-
sion Principle; can beautifully explain the stability of the
Dirac Void. There was – and there, is no need for Dirac
(or anyone for that matter) to ‘uglify’ his (Dirac’s) oth-
erwise beautiful, self-contained and consistent theory by
indiscriminately stuffing the Dirac vacuum with an infi-
nite amount of negative energy in-order to prevent the
positive energy Electron from falling into the negative
energy state.
At the end of the day, the result that we have is:

(〈ψc| ψ〉 = 0), which means E-positive to E-negative

transitions are not allowed. Apart from this – this result
(〈ψc| ψ〉 = 0), also means that the matter and antimat-
ter states do not overlap, the deeper meaning of which is
that both matter and antimatter can not be found in the
region of space or Universe. Just as two Fermionic quan-
tum states can not overlap – i.e., can not be found in the
same region of space (Universe), matter and antimatter
can not harmoniously reside in the same Universe. The
Universe can only contain one form of material – i.e.,
either, it contains matter or antimatter and never both.

Conclusion

(1). The Pauli Exclusion Principle is not necessary in-order
to prevent the E-positive states from transmuting to E-
negative states. There really is no need for an exogenous
explanation as the internal logic of the Dirac theory can
handle this.

(2). The ponderous cosmic mystery of the preponderance of
matter over antimatter which is widely believed to be a
shortcoming of the Dirac theory is well explained by the
Dirac theory well within the internal logic of the theory
since the theory boldly predicts a non-overlap between
matter and antimatter.
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