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I. Introduction

Liénard equations are widely used in many branches of science and

engineering to model various types of phenomena like oscillations in

mechanical and electrical systems. Particulary, more than fifty years,

there has been a continued interest among different authors for paying

attention of Liénard type differential equation [1,2]

d2x

dt2
+ f(x)(

dx

dt
)2 + g(x)x = 0 (1)

where f(x) and g(x) are functions of x since it admits position-dependant

mass dynamics useful for several applications of quantum physics. These

types of second order differential equation are interesting for physicists

provided one generates suitable Hamiltonian. For all possible values

of f(x) and g(x), it may not be possible to generate Hamiltonian hav-

ing stable eigenvalues. Secondly a classical model solution can also be

obtained using He’s approximation [3-6] by using procedure given below

d2x

dt2
+ f(x)(

dx

dt
)2 + g(x)x = R(t) (2)

Let us consider now two different values of x as

x1 = Acosw1t (3)

and

x2 = Acosw2t (4)
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then

w2 = w2
2 =

R2(0)w2
1 −R1(0)w2

2

R2(0)−R1(0)
(5)

here w1 = 1. In this paper, we address the above differential equation

by selecting a general type of values on f(x) and g(x), and generate

suitable Hamiltonian and study its stable eigenvalues.

II. General type of Differential Equation and Solution

Here we consider a general type of differential equation as

d2x

dt2
+

NλxN−1

2(1 + λxN)
(
dx

dt
)2 + w2

0

KxK−1

2(1 + λxN)
= 0 (6)

where N,K = 2, 4, 6, ...... In this equation one has to fix the value of

K and vary N or vice versa. Let us consider that the general solution

of this differential equation be

x = Acoswt (7)

w = w2
0

KAK−2

2(1 + λAN)
(8)

III. Hamiltonian generation

In order to generate Hamiltonians we multiply the differential equa-

tion by ẋ and rewrite it as

d[
ẋ2(1+λxN )+w2

0x
K

2
]

dt
= 0 (9)

Let the bracket term be denoted as H where

H =
1

2
[ẋ2(1 + λxN) + w2

0x
K ] (10)
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Now define momentum p as

p =
∂H

∂ẋ
(11)

Hence one can be write

H =
1

2
[

p2

(1 + λxN)
+ w2

0x
K ] (12)

One can interpret this Hamiltonian as a model in which mass varies

with distance [3].

IV. Eigenvalues of Generated Hamiltonian

Here we solve the eigenvalue relation

HΨ = EΨ (13)

using matrix diagonalisation method [7]. In fact one will notice that

the above Hamiltonian is not invariant under exchange of momentum

p and 1
1+λxN

. Hence following the literature [8] we write the invariant

Hamiltonian as

H =
1

2
[p

1

(1 + λxN)
p+ w2

0x
K ] (14)

and reflect the first four states eigenvalues in table-1.

Table -1 : First four eigenvalues of Hamiltonians with w0 = 1,

λ = 1
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. Hamiltonian Eigenvalues

H = 1
2
[p 1

(1+x2)
p+ x2] 0.355 026 280

1.226 397 537

1.846 999 994

2.445 481 398

H = 1
2
[p 1

(1+x4)
p+ x2] 0.338 179 394

1.199 312 190

1.770 479 342

2.154 962 590

H = 1
2
[p 1

(1+x6)
p+ x2] 0.320 091 281

1.169 152 075

1.662 103 201

1.897 043 406

H = 1
2
[p 1

(1+x2)
p+ x4] 0.342 163 615

1.447 762 223

2.733 381 643

3.824 351 590

H = 1
2
[p 1

(1+x4)
p+ x4] 0.326 786 311

1.447 762 223

2.733 381 643

3.824 351 590

H = 1
2
[p 1

(1+x6)
p+ x4] 0.306 713 747

1.392 267 754

2.676 140 588

3.519 276 808

H = 1
2
[p 1

(1+x2)
p+ x6] 0.354 476 360

1.652 542 050

3.294 555 429

5.270 061 821

H = 1
2
[p 1

(1+x4)
p+ x6] 0.341 508 635

1.617 435 142

3.393 428 656

5.181 678 146

H = 1
2
[p 1

(1+x6)
p+ x6] 0.321 159 736

1.549 155 545

3.368 343 106

4.976 607 101
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V. Phase portrait in the (x, p) plane

Phase trajectories of the system (12) are represented in the following

figures for different parametric choices.

VI. Conclusion

In this paper we have generated a general form of differential equa-

tion which can be termed as Liénard type. Further we find classical

solution and quantum eigenvalues of the generated system. We hope

interested reader can follow the present approach and generate many

similar type of Hamiltonians. Last but not the least present analysis

reveals the quantum behaviour in classical differential equation.
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Figure 1: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = K = 2, for various values of E = H.

Figure 2: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = 4, K = 2, for various values of E = H.
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Figure 3: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = 6, K = 2, for various values of E = H.

Figure 4: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = 2, K = 4, for various values of E = H.
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Figure 5: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = K = 4, for various values of E = H.

Figure 6: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = 6, K = 4, for various values of E = H.
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Figure 7: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = 2, K = 6, for various values of E = H.

Figure 8: Phase trajectories of the Hamiltonian system (12) with ω0 =

λ = 1, N = 4, K = 6, for various values of E = H.
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