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Abstract

In this paper we look at the escape velocity for subatomic particles. We suggest a new and simple
interpretation of what exactly the escape velocity represents at the quantum level. At the quantum level,
the escape velocity leads to an escape probability that is likely to be more useful at the subatomic scale
than the escape velocity itself. The escape velocity seems to make simple logical sense when studied in
light of atomism. Haug [1] has already shown that atomism gives us the same mathematical end results as
Einstein’s special relativity. Viewed in terms of general relativity and Newtonian mechanics, the escape
velocity seems to be simple to understand. It also seems to explain phenomena at the quantum scale
if one maintains an atomist’s point of view. This strengthens our hypothesis that everything consists
of indivisible particles and void (empty space). From an atomistic interpretation, our main conclusion
is that the standard escape velocity formula likely is the most accurate formula we can generate and it
appears to hold all the way down to the Planck scale. An escape velocity of v

e

> c simply indicates
that an indivisible particle cannot escape from a fundamental particle (for example an electron) without
colliding with the indivisible particles making up the fundamental particle.

To understand this paper in detail, I highly recommend reading the article The Planck Mass Finally
Discovered [2] first.

Key words: Escape velocity, escape probability, orbital velocity, quantum, Planck length, Planck
mass, atomism, shape of indivisible particles.

1 Introduction

The escape velocity formula is normally found by simply solving the following equation with respect to
v
e

; see, for example [3]

1
2
mv2

e

�G
Mm
r

= 0 (1)

This gives the traditional Newtonian escape velocity

v
e

=

r
2GM
r

(2)

where G is Newton’s gravitational constant and M is the mass we are escaping from. Further, r is
known as the radius we are standing at when we are trying to escape. An identical escape velocity formula
can be derived from Einstein’s theory of general relativity [4].

The escape velocity has, to our knowledge, actually never been experimentally confirmed1. It is
assumed to be the minimum velocity needed to leave an object’s gravitational field. A rocket moving
out of a gravity field does not actually need to attain the escape velocity to exit the gravity field. A
rocket or spaceship can actually escape at any velocity, given a suitable mode of propulsion and su�cient
propellant to accelerate with enough force to escape. Still, it is assumed that the escape velocity holds
for a “bullet” that not itself have any propolusion to maintain the acceleration.

A particular interesting case is when the radius r is set equal to

r = r
s

=
2GM
c2

(3)

At this radius, the escape velocity is c. This has been interpreted as a radius where nothing inside this
radius (for a given mass) can escape the gravitational field, not even light. This radius is well-known as
the Schwarzschild radius, [5, 6, 7, 8]. At a radius inside this radius, the escape velocity will normally be

1
We could be wrong here, as we have only completed a limited literature search at this point in time.

1
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higher than c, and since nothing can move faster than light, in general this implies that it cannot escape.
In some of the literature, this observation has been interpreted as being evidence of black holes. Yet, a
few researchers have been very critical of the black hole hypothesis and also of the typical interpretation
of the escape velocity. See [10, 9, 11], for example.

Here we will show that the current interpretation of the escape velocity may be incorrect, or at
least that it not been fully investigated and understood at the quantum level. We will see that the
escape velocity for subatomic particles seems to fit the new atomistic interpretation of matter and energy
introduced by [1, 2] perfectly. Haug has reintroduced the old view that the ultimate fundamental particle
(making up both mass and energy) has spatial dimension and a diameter and that it is perpetually moving
around at the speed of light. He has shown that all of Einstein’s special relativity end results can be
derived from atomism. In addition, Haug has shown how atomism is consistent with the equations related
to Heisenberg’s uncertainty principle, the Schwarzschild radius, and much more, but often with new and
much simpler interpretations than are often given by the established views in physics. In this article we
show how the well-known escape velocity makes complete sense under atomism, even at the subatomic
level.

2 Orbital Velocity from Subatomic Particles

Let us start with the standard orbital velocity for an object with the mass of an electron. We will
concentrate on the case where the radius is set equal to the reduced Compton wavelength of the electron.
Do not confuse this scenario with the orbital velocity of an electron around a proton, which is not the
topic of this article2. The electron’s mass is given by m

e

⇡ 9.1094⇥ 10�31 kg and the reduced Compton
wavelength of an electron is �̄

e

⇡ 3.86 ⇥ 10�13 meter. Further, Newton’s gravitational constant is
G ⇡ 6.674⇥ 10�11Nṁ2/kg2. We can now calculate the orbital velocity from the electron mass:

v
o

=

r
Gm

e

�̄

v
o

=

r
6.674⇥ 10�11 ⇥ 9.1094⇥ 10�31

3.86⇥ 10�13
⇡ 1.25473⇥ 10�14 m/s

That is equal to 1.25473 ⇥ 10�14 meter per second, which is equal to 4.52 ⇥ 10�14 km/s. So, as
expected, this represents an incredibly low orbital velocity, due to a very low mass. There is no surprise
so far, as an electron’s mass is a very low and the gravitational field, even at such a short distance, is
also very low. Therefore, it should require a low velocity to orbit such a low mass. Still, we pose the
question, Why is the orbital velocity for an electron exactly this number? Some physicists would possibly
even question whether or not we can calculate the orbital velocity for such small masses at such short
distances. After all, Newton and Einsteins gravitational theories do not necessary hold at the subatomic
level. However, as we will see, the orbital velocity given here seems to make sense under atomism, even
for subatomic particles like the electron.

Assume for a moment that an electron consists of two small sphere-shaped indivisible particle. These
indivisible particles each have a diameter equal to the Planck length and they are moving back and
forth along the reduced Compton wavelength of the electron at the speed of light; see [2] for a detailed
introduction on looking at matter in this way. When the two indivisible particles are at a maximum
distance from each other, they are twice the reduced Compton wavelength away. And when they are
closest together, then they are l

p

apart. This makes the average distance between them equal to the
reduced Compton wavelength. Next let us assume that an indivisible particle with diameter l

p

is placed
inside the electron and is now moving out of the electron. To allow as much time as possible to escape
the electron, we will place this indivisible particle at a position in the very center of the electron; see
Figure 1.

The indivisibles making up the electron are shown in red and the indivisible particle that is trying
to escape from the electron is marked in blue. To escape the electron, the blue indivisible particle (that
has a diameter of l

p

itself) needs to move a distance of l
p

without getting hit by the two indivisibles
making up the electron. How much time does the indivisible have to escape from the electron? Again,
the indivisibles making up the electron are moving at the speed of light and they are taking the following
time to move along the reduced Compton wavelength

t =
2�̄

e

2c
=

�̄
e

c
= 1.28809⇥ 10�21 (4)

2
The proton is considered a composite particle and we have too little knowledge about the proton to explain its orbital and

escape velocities from this approach at the present time.
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Figure 1: Illustration of escape velocity (“orbital velocity”) for a subatomic particle from atomist point of

view.

One can look at this as the time it takes for the sliding doors (of the electron) to close.3

For an indivisible particle to escape from the electron, it would need, at a minimum, to move at a
speed of

v =
l
p

t
=

l
p

�̄e
c

=
l
p

�̄
e

c ⇡ 1.25473⇥ 10�14 m/s (5)

same as
This is exactly the same rate as the orbital velocity calculated from the standard formula. In other

words, the orbital velocity calculated by the traditional orbital velocity formula can, at the subatomic
level, be interpreted as the minimum velocity necessary to escape the fundamental particle in question.
When the fundamental particle consist of two indivisible particles moving at the speed of light and the
particle passing through this fundamental particle has a diameter of l

p

, it makes full logical sense and
we get exactly the same value as is produced by the standard orbital velocity formula. An identical
mathematical result v

o

=
lp

�̄

c has recently been derived by [12] in a slightly di↵erent way as well.
Any velocity slower than this and one would not be able to escape before colliding with the slid-

ing “doors” of the electron, that is to say, with the indivisible particles making up the electron. The
same principle holds true for any subatomic “fundamental” particle. The escape velocity formula makes
complete sense at a subatomic level when we follow the insights on matter and energy given by Haug’s
atomism.

However, according to Haugs atomist particle model, an indivisible particle will always travel at the
speed of light. This means that an indivisible particle positioned as in Figure 1 always would be able to
escape the electron, because its velocity is enormous compared to the minimum pass velocity. However,
one would typically not know where the indivisible particles making up the electron are situated along
the reduced Compton wavelength when they are trying to escape from the electron. At the subatomic
level, it makes more sense to focus on the escape probability rather than the minimum escape velocity.
After all, the indivisible particle is always traveling at speed c and not at the minimum escape velocity.
The escape probability is given by

p
e

= 1� l
p

�̄
(6)

where �̄ is the reduced Compton wavelength of the “fundamental” particle one indivisible particle try
to escape from. Thus, the probability that an indivisible half Planck mass particle (Uniton) can escape
from an electron is very high. For an electron, this probability is

3
Bear in mind that the speed of an indivisible particle relative to another indivisible particle moving towards it is 2c, as

observed from the laboratory frame. This is not in contrast with special relativity theory, but is actually well-known according

to special relativity; it has been described as the closing speed or the mutual speed.
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p
e

= 1� l
p

�̄
e

⇡ 0.99999999999999999999995815 (7)

This also means the probability that an indivisible trying to escape an electron will get hit is given by

p
n

= 1� p
e

=
l
p

�̄
⇡ 4.18532⇥ 10�23 (8)

3 Escape Velocity

The escape velocity given by Einstein’s general relativity or Newtonian mechanics is equal to
p
2 times

the orbital velocity, that is

v
e

=

r
2GM
r

(9)

For an electron, the escape velocity is given by

v
e

=

r
2Gm

e

�̄

v
e

=

r
2⇥ 6.674⇥ 10�11 ⇥ 9.1094⇥ 10�31

3.86⇥ 10�13
⇡ 1.77445⇥ 10�14 m/s

What does this velocity truly represent at the subatomic level? At a subatomic level, the di↵erence
between the orbital velocity and the escape velocity could be interpreted simply as the angle at which
the particle is escaping relative to the reduced Compton wavelength axis of the electron (or any other
subatomic particle). When it comes to escape velocity, this is when the indivisible particle is crossing at
a 45� degree angle relative to the axis of the fundamental particle it is escaping from, as illustrated in
Figure 2.

Figure 2: Illustration of the escape velocity for a subatomic particle from an atomist point of view.

Using the Pythagorean theorem, we can find the distance the indivisible particle has to cross in order
to escape the “sliding doors” must be

d2 = l2
p

+ l2
p

d =
q

l2
p

+ l2
p

d = l
p

p
2

(10)
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The time the sliding door is open in the electron is given by t = 2�̄e
2c = �̄e

c

, and this means that the
minimum escape velocity, when escaping at a 45� degree angle, is

v
e

=

r
2Gm

e

�̄
=

d
t
=

p
l2
p

+ l2
p

�̄e
c

=
p
2
l
p

�̄
e

c ⇡ 1.77445⇥ 10�14 m/s (11)

This formula can be derived directly from the gravitational potential as shown in Appendix A, and
an identical result has recently been given by [12], without any discussion on the precise interpretation.
Again, the indivisible particle is always moving at the speed of light, so at the subatomic level it makes
more sense to look at an escape probability than a minimum escape velocity. The escape probability at
a subatomic level for an electron is given by

p
e

= 1�
p
2
l
p

�̄
⇡ 0.99999999999999999999994081068 (12)

and the probability that an indivisible particle will collide with the electron while trying to escape
from it is

p
h

= 1� p
e

=
p
2
l
p

�̄
e

⇡ 5.91893⇥ 10�23 (13)

4 Any Angle Generalized Minimum Escape Velocity

We can generalize the approach above to hold for an escape attempt at any angle. The generalized
minimum escape velocity is then given by

v =
l
p

sin(✓)�̄
c (14)

where ✓ is the angle at which the indivisible particle is traveling relative to the particle axis of the
particle it is traveling through. If ✓ = 45�, we have the traditional escape velocity formula, and if ✓ = 90�,
we have the traditional orbital velocity formula.

Similar the generalized escape probability is given by

p
e

= 1� l
p

sin(✓)�̄
(15)

Further, the corresponding hit probability when trying to escape a fundamental particle is

p
h

= 1� p
e

=
l
p

sin(✓)�̄
(16)

5 Escape Velocity for an Indivisible Particle

When a particle is moving close to or even at the speed of light, as we assume that the indivisible particle
does, then we should also assume that its energy is E = mv2, rather than the kinetic energy 1

2mv2. This
gives us an escape velocity of (see Appendix B)

m
i

v2
e,i

�G
Mm

i

r
= 0 (17)

v
e

=

r
GM
r

(18)

That is to say, the escape velocity for an indivisible particle is the same as the orbital velocity. Sato
and Sato [13] have recently pointed out (with somewhat di↵erent arguments) that the escape velocity of a
photon must actually be identical to the orbital velocity formula. That is the well-known escape velocity
formula divided by

p
2. Since the indivisible particle in our theory is the light particle itself, this makes

much more sense under atomism. From a quantum perspective, this is the minimum velocity needed to
escape a particle with mass M . This can be rewritten as

v
e,i

=

r
GM

�̄
=

l
p

�̄
c (19)

where �̄ is the reduced Compton wavelength of the mass we need to escape from. Further, the escape
probability for an indivisible particle is
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p
e,i

= 1� l
p

�̄
(20)

6 The Shape of the Indivisible Particles and the Need for
Planck Scale Quantum Corrections

Modern physics does not really explain what matter and energy consist of at the depth of reality. There-
fore, despite their great success, they seems to o↵er a limited understanding of space-time, in particular
down to the Planck scale. As Richard Feynman once stated, “It is important to realize that in physics

today, we have no knowledge what energy is.”.
On the other hand, under atomism we assume that matter consists of indivisible particles moving

back and forth in the void. Thus, in our theory we have very precise definitions of the subatomic world,
all the way down to the Planck scale. The indivisible particle has a radius of half a Planck length and a
diameter equal to the Planck length. The reduced Compton wavelength is the average distance from the
center of one indivisible particle to the center of the other indivisible particle making up the mass. Taking
an electron as an example, on average the distance between the two indivisible particles making up the
electron is �̄

e

, and the closest distance is naturally l
p

, when the two indivisible particles are laying side
by side counter-striking and creating a Planck mass4, and the furthest away is 2�̄

e

. When two indivisible
particles are l

p

apart (center to center), there is no space for another indivisible particle inside the particle
and it is therefore meaningless to talk about an escape velocity. Even when the two indivisible particles
are 2l

p

apart (center to center), there is only a void distance of l
p

between them, and no indivisible
particle can escape from this, because the indivisible particles making up the mass we aretrying to escape
from are closing the l

p

“gap” at the speed of light.
To get closer to understanding any quantum corrections that may be needed, let us first start with

the simplified assumption that the indivisible particles are cube- shaped rather than sphere-shaped. In
this case, the exact escape velocity would be

v
e,i,c

=

s
GM

�̄

�̄2

�
�̄� l

p

�2 =

s
GM �̄

�
�̄� l

p

�2 =
l
p

�̄� l
p

c (21)

and the corresponding escape probability would be

p
e,i,c

= 1� l
p

�̄� l
p

(22)

Further, the minimum reduced Compton wavelength that an indivisible particle could escape from
would then be �̄ = 2l

p

. Figure 3 illustrates the escape velocity in relation to cube- shaped indivisible
particles.

Figure 3: Illustration of escape velocity for a cube-shaped indivisible particle.

Table 1 shows the escape velocity for cube-shaped indivisible particles. The cube-shaped formula gives
quite a large error compared to the standard formula. The standard formula is basically much closer to
what we get for sphere-shaped particles.

4
The Planck mass only last for a Planck second and is created in an electron with a frequency of

c

�̄

,which again gives us the

electron mass.
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Times lp Reduced Compton Cubed shaped Standard % di↵erence

prediction prediction

a
in

�̄
lp

¯� ve,i,c =
lp

�̄�lp
c vi ⇡

q
GM
r =

lp
�̄
c ve,i,c�vi

ve,i,c

1 1.616E-35 1 299,792,458 N/A

1.5 2.424E-35 599,584,916 199,861,639 66.67%

2 3.232E-35 299,792,458 149,896,229 50.00%

3 4.849E-35 149,896,229 99,930,819 33.33%

4 6.465E-35 99,930,819 74,948,115 25.00%

5 8.081E-35 74,948,115 59,958,492 20.00%

6 9.697E-35 59,958,492 49,965,410 16.67%

7 1.131E-34 49,965,410 42,827,494 14.29%

8 1.293E-34 42,827,494 37,474,057 12.50%

9 1.455E-34 37,474,057 33,310,273 11.11%

10 1.616E-34 33,310,273 29,979,246 10.00%

11 1.778E-34 29,979,246 27,253,860 9.09%

12 1.939E-34 27,253,860 24,982,705 8.33%

13 2.101E-34 24,982,705 23,060,958 7.69%

14 2.263E-34 23,060,958 21,413,747 7.14%

15 2.424E-34 21,413,747 19,986,164 6.67%

20 3.232E-34 15,778,550 14,989,623 5.00%

25 4.041E-34 12,491,352 11,991,698 4.00%

50 8.081E-34 6,118,213 5,995,849 2.00%

100 1.616E-33 3,028,207 2,997,925 1.00%

2.389E+22

¯�e =3.86159E-13 1.255E-14 1.255.E-14 0.00%

Table 1: The table shows the exact escape velocity predicted by cube-shaped indivisible particles versus what

is predicted from Einstein and Newton (sphere-shaped). We see that the errors in assuming cube-shaped

indivisible particles are quite substantial when we approach the Planck scale. We have no reason to think

that the ultimate particle is cube-shaped; in fact, we expect it to be sphere-shaped.

a
This formula is exact if the indivisible particles are cube-shaped, but is only an approximation if we assume the indivisible

particles are spherical. In that case, the Einstein and Newton formulas are the much more accurate ones; see also [1, 2].

The shortest reduced Compton wavelength we can have in a mass that a cube-shaped indivisible
particle can escape from without collision (getting caught by the sliding doors) is �̄ = 2l

p

. Then when
the two indivisible particles making up this mass are maximum distance away from each other, they are
4l

p

away from each other. This is the distance center to center between them. However, the void distance
between them is only 3l

p

. In one Planck second, 2l
p

is closed. Be aware that we have to handle mutual
velocities (also known as closing speed) here; in short, this is related to the speed of a particle relative to
another particle as observed from the laboratory frame (a third frame). See [14], for example.

In the much more realistic case of sphere-shaped indivisible particles, the escape velocity must be (see
appendix C for the full derivation)

v
e,i,s

=

p
3

2 l
p

�̄
c =

r
3
4
GM

�̄
(23)

Figure 4: Illustration of escape velocity for a sphere-shaped indivisible particle.
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Formula 23 was simply figured out by playing with identical circle shapes that I moved around at the
same velocity combined with simple logic to figure out the approximate minimum velocity needed for a
spherical indivisible particle to escape at Planck scale distances5. The intuition is that even when the door
opening is less than l

p

, the indivisible particle trying to escape can still be moving part of itself out of the
“door” opening. This because both the sliding “doors” are circular (sphere-shaped) and the indivisible
particle attempting to escape is also sphere-shaped, as illustrated in figure 4. If these quantum corrections
should hold later on, it would mean that the standard escape formulas of Einstein and Newton (actually
the orbital formulas) are always o↵ (for light) by about 9%. However, this mostly only has an impact
on conclusions based on distances close to the Planck length. The reason for this is that the indivisible
particles never move at the escape velocity (which is just the minimum velocity needed to have a chance
to escape), but instead they are always moving at the speed of light. Even so, this has implications on
escape probabilities that could be relevant for moving deeper into physics. The theory presented here, in
particular our Planck scale quantum correction approximations, should be studied further.

The corresponding modified escape probability is

p
e,i,s

= 1�
p
3
2

l
p

�̄
(24)

This special case with quantum corrections is only valid if the indivisible particle is situated exactly at
the middle of the fundamental particle; this is extremely unlikely in practice. If even it lies slightly o↵

from this position, then the standard formula: v
e,i

=
q

GM

�̄

=
lp

�̄

would be a better approximation. We

conclude that the Einstein and Newton escape velocities6 likely are the most accurate formulas we can
come up with in atomism for the escape velocity at the Planck scale. However, the interpretation is quite
di↵erent than the one given in modern physics. The escape velocity is the minimum velocity needed for
an indivisible particle placed at the very center of the “fundamental” particle to travel at in order to
avoid collision with the indivisible particles making up the “fundamental” particle from which it is trying
to escape.

7 Conclusion

We have looked at the escape velocity at the subatomic level and evaluated the well-known formulas in
the light of an atomist interpretation. It seems that the escape velocity at a subatomic scale can be
interpreted as the minimum velocity needed to escape the particle that contains it. However, since the
indivisible particle always moves at the speed of light, it makes more sense to look at escape probabilities
at the subatomic scale. Atomism seems to have a very simple explanatory model for escape velocities and
probabilities. The escape velocity is simply the minimum velocity an ideally placed indivisible particle
inside the fundamental particle needs to move at in order to avoid collision with the indivisible particles
that make up the fundamental particle.

Appendix A

The escape velocity in the subatomic world can be derived in terms of Haug’s discovery that the Newton
gravitational constant likely is a universal composite constant; thus it can be written as

1
2
mv2 � GMm

r
= 0

v2 � 2GM
r

= 0

v2 �
2
l

2
pc

3

h̄

h̄

�̄

1
c

r
= 0

v2 �
2c2

l

2
p

�̄

r
= 0

v = c

r
2
l2
p

�̄r
(25)

5
As the Planck length here would be hypothetical represented by the diameter of the circle played with, it is not hard to

work out good approximations even by moving some circles.

6
More precisely the orbital velocity formula, when dealing with a light particle escaping from a mass, or alternatively the

standard Einstein and Newton escape velocity formula v
e,i

=

q
2GM

�̄

=

p
2

lp

�̄

if dealing with an escape at a 45

�
angel.
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and when we in the quantum world assume r = �̄, we get

v =

r
2GM

�̄
=

p
2
l
p

�̄
c (26)

Appendix B

For light, the escape velocity is given by

m
i

v2 � GMm
i

r
= 0

v2 � GM
r

= 0

v2 �
l

2
pc

3

h̄

h̄

�̄

1
c

r
= 0

v2 �
c2

l

2
p

�̄

r
= 0

v = c

r
l2
p

�̄r
(27)

and when we assume r = �̄, we get

v =

r
GM

�̄
=

l
p

�̄
c (28)

When this v is lower than c this simply means that it is the minimum velocity the indivisible particle
would have to travel at in order to escape the mass it is inside. However, an indivisible particle always
travels at a speed of c, so it makes more sense to talk about escape probabilities than escape velocity, at
least when it comes to indivisible particles.

Appendix C

The radius of a indivisble particle is r = 1
2 lp.

a

Figure 5: The figure illustrates how we can find how far the blue particle has to travel to escape the two

red particles (the closing door). The distance we need to travel 2r � r + (

p
3� 1)r =

p
3r.

a
Thanks to Thijs van den Berg for useful discussion on the wilmott.com forum in relation to circle geometry.
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