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Abstract—During the last decades, Power-law distributions
played significant roles in analyzing the topology of scale-free (SF)
networks. However, in the observation of degree distributions
of practical networks and other unequal distributions such
as wealth distribution, we uncover that, instead of monotonic
decreasing, there exists a peak at the beginning of most real
distributions, which cannot be accurately described by a Power-
law. In this paper, in order to break the limitation of the
Power-law distribution, we provide detailed derivations of a
novel distribution called Subnormal distribution from evolving
networks with variable elements and its concrete statistical
properties. Additionally, simulations of fitting the subnormal
distribution to the degree distribution of evolving networks, real
social network, and personal wealth distribution are displayed to
show the fitness of proposed distribution.

Index Terms—Power-law Distribution, Degree Distribution,
Probability Theory, Evolving Networks, Gibrat’s law.

I. I NTRODUCTION

As well known, the Power-law distribution is a nonuniform
distribution, in particular for networks, it appears that amajor-
ity of vertices hold a low number of links while a few vertices
have many links. The history of the Power-law distribution
starts from the Italian economist Pareto in the 19th century,
who first put the “20-80” rule forward, i.e.20% of a population
possess80% social welfare, apparently following a Power-law
distribution. Bababási first employs the Power-law distribution
to explain the degree distribution of SF networks and makes
it gain considerable fame. In 1999, he revolutionarily evolved
the network model into a scale-invariant state with the growing
and preferential attachment character, and revealed that the
degree distribution of evolving networks follows a Power-law
distribution [1]. This discovery soon drew great attentions from
many multidisciplinary researchers and brought a stirringof
interest in SF network. It is well known that, in the real world,
most practical networks such as web networks [2], interaction
networks [3], sorting comparison network [4], social networks
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[5], [6], etc, all follow a Power-law distribution, which can
be described as the “rich-get-richer” or Matthew Effect. The
Power-law degree distribution therefore has shown significance
in the study of complex systems and is the foundation of
exploring the formation mechanism and organizational prin-
ciple of SF networks. Inspired by SF networks, the discovery,
analysis, and application of SF networks, i.e. pattern extraction
[7], search [8] and synchronization [9] [10], now representa
“new science of networks”. Then, many researchers devoted
to the study of degree distribution of evolving networks. They
proposed mean-field [11], master-equation [12] and Markov-
chain approach [13] to mathematically solve the degree dis-
tribution. In addition, the logarithmic binning [14] and other
algorithms [15], [16] were applied to obtain the statistical
degree distribution of practical networks.

In a considerable time, the Power-law distribution holds its
dominant position in network science, but some researchers
doubt whether it fits in all practical networks [17], [18]. In
actual, most practical SF networks are in accord with the rule
“rich-get-richer”, however, many of them are out of accord
with “poor-get-poorer”, indicating that the degree distribution
of these networks is not simply Power-law. The movie actor
collaboration network [19], for example, shows a lift instead
of smoothly descending when the degree is low and can not
completely fit in a Power-law distribution. Apart from network
science, the social welfare in economics and the frequency
of words in natural language also are different from Power-
law distributions but show skew distributions. In this paper,
we call this phenomenon “sub-normalization”, since its curve
seems to fall somewhere between the Power-law and normal
distribution. In order to discover this phenomenon and put
forward the novel distribution, we introduce certain variable
elements to the modeling process of SF network and employ
some common calculation methods to solve the distribution
function of degree. This obtained distribution is called the
“subnormal distribution” processing the properties of both
Power-law and log-normal distribution. Through a mathemat-
ical analysis, we find out that this distribution is a joint
probability density function produced by variable elements
of networks, e.g, number of connections and selection of
individuals. Furthermore, we study the statistical properties of
this distribution. In simulations, we display the construction
process of evolving networks by variable elements, and the
similarity between the network distribution and the proposed
distribution is compared. Besides, the distributions of social
network degree and personal wealth are also compared with
our distribution to show that it can be fit in with the practical.
Finally, we try to find out the mechanism of SF networks
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and discuss the potential value of subnormal phenomenon and
subnormal distribution in other fields such as economics.

The organization of this paper is as follows: A detailed
presentation of the evolving networks with variable elements
is provided in Section II. The derivations of subnormal dis-
tribution and its statistical properties are presented in section
III. Simulations are carried out in Section IV to demonstrate
the fitness to other distributions. Finally, some discussions,
conclusions and outlooks are given in Section V.

II. EVOLVING NETWORKS WITH VARIABLE ELEMENTS

SF networks suggest the growth and preferential attachment
and follow a perfect Power-law distribution. Though the BA
network is closer to the real networks than other network
model, the construction process is still ideal. For practical
networks, it is impossible to introduce one vertex each time
and connect it tom existing vertices. Contrarily, in practical
situation, there exists lots of variable factors, such as the
famousWWW that has a variable vertex growth rate and
edge connection. To reveal these influences on the degree
distribution of networks, we discuss the variable elementsand
show the construction process of a SF model with them in this
section.

A. Variable Elements

First, the variable elements in the process of construction
of a SF network are discussed.

The initial network is one of the most negligent issue which
in fact is also ignored by the BA SF network. The variable el-
ements of the initial network are the number of initial vertices
and their connection rules. As we know, the number of initial
vertices affects the final degree distribution if it is very huge.
However, the initial network are always very small comparing
to the final network, like ARPANET (Advanced Research
Projects Agency Network), the origination of Internet, hasonly
four host computers connecting to each other, and now Internet
has billions of computer connections. Therefore, the number
of an initial network is required to be small enough that it
does not affect the final structure of the network. In addition,
the small initial networks are always highly gathered, e.g,the
beginning of a new journal network is cited by each other
and its average short path distance is low. Considering both
the small and low distance character, we suppose that a small-
world network such as NW is appropriate to describe the initial
network [20].

The other variable element is the arrival rate or interval
time of vertices which is assumed as a constant by many
theoretical models. BA networks, for example, suppose that
one vertex is connected to the network each time. We suggest
that the rates of vertices introduced to the network follow a
certain rate, and in different period, the rate is varied, i.e.
it is related to time. Specifically, the growth rate during the
financial crisis is lower than during a boom time. Thus, a
nonhomogeneous Poisson process can perfectly express the
generation of vertices. In our last research article [21], we have
proven that a nonhomogeneous Poisson process is irrelevant
to the final degree distribution, and specifically, the size of

an evolving networks and its relative rate of growth are
independent, which is precisely consistent with the famous
the Gibrat’s law in economics [22]. In other words, this law
is also valid for evolving networks.

The most significant variable in this paper is the connection
of new arrival vertices which directly affects the degree dis-
tribution of the network. Accelerating growth network model
[23] first notes that the connection is varied, and its connection
follows a Power-law distribution. However, for this kind of
network, a stationary distribution of the degree distribution
does not exist, which disagrees with the practical networks.
The stationary distribution for connections of a network is
one of the goals of this paper. We mainly consider two
kinds of distributions, uniform distributions and nonuniform
distributions. The uniform distributions refer to those networks
whose connections of new arrival vertices are homogeneous,
hierarchical networks for example [24]. On the contrary, the
most common connection rule follows a nonuniform distribu-
tion, since each new vertex has its own fitness to the network,
to which the number of its connections to the existing vertices
in the networks relates. Practically speaking, in the network of
the research reference, once a high quality paper such asEmer-
gence of scaling in random networksby Barab́asi is published,
many related references will emerge in a short time, yet a low
quality paper will not be cited in a long time. The universal
expression for this connection is the Gaussian distribution,
most connection numbers are a mean value, and the extremely
high and low numbers are rare which is much more common in
a steady network than the Power-law distribution. Furthermore,
the Gaussian distribution is just an ideal situation. Thereare
also many dilemmas by applying this distribution, e.g. the
connection can not be negative. There is evidence that the
most income is distributed log-normally, which can be also
interpreted as the new added connection, the income of evolv-
ing networks, is also distributed log-normally [25]. Taking all
factors into consideration, therefore, we employ the log-normal
distribution to simulate the connection of evolving networks
in this paper. The log-normal distribution has a significant
influence on the degree distribution of complex networks,
which makes it free of time, but disobey the traditional Power-
law distribution and break the rule of “poor-get-poorer”.

There are other variable elements, such as the connection
rule and time, which are not topics of this paper.

B. Evolving Network Model based on Variable Elements

Next, we show a constructing process of evolving net-
works with variable elements. The constructing process
mainly includesInitialization, Growth, Connection and
Termination.
Initialization in this paper is a process of a smallNW

network. Assuming that the number of total vertices of the
initial network is n, each of them links tok neighbors, and
has the probabilityp to link to others. Self-loops are avoided.
Growth is the key step of evolving network, which

consists of the vertex growing rate and then arrival vertex
connection. For each timet, we addλ(t) vertices, where
λ(t) is a continuous function for a nonhomogeneous Poisson
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process. In the interval[t, t +△t], the probability of number
of new vertices is then

P{N(t+△t)−N(t) = k} =

[s(t+△t)− s(t)]k

k!
es(t+△t)−s(t), k = 0, 1, · · ·

(1)

wheres(t)=
∫ t

0
λ(s)ds, and thes(t+△t)− s(t) is the mean

value of this process. Besides, for each vertex, we connect
m edges to them different vertices already present in the
network, wherem follows a log-normal distribution with the
parametersµ andσ, i.e. the density ofm is given by

f(m) =







1

m
√
2πσ

e−
(lnm−µ)2

2σ2 , x > 0

0, x ≤ 0

(2)

Connection is simply linearly dependent on the degree
of the target vertex for the benefit of the following derivation,
φ(i), the probability of a connection to a vertexi, is denoted
as

φ(i) =
ki

∑

j

kj
(3)

whereki is the degree of the target vertexi.
Termination is controlled by timet, which directly affect

the scale of networks.

C. Degree Distribution of Evolving Networks

For the proposed model, ast→∞, the small initial network
has little effect on the degree distribution, therefore, inthe
derivation, the initial network is ignored.

Given that the input rate of vertices isλ(t), each new vertex
links to m edges, and the number of verticesN(t) which is
independent of connectionsm, then the expected value of the
total degree is

∑

j

kj = 2E[m]E[N(t)] = 2µs(t) (4)

For a new vertex withm edges, one of which connects to
the existing vertexi, the corresponding probability is

P =
(m

1

)

[φ(i)][1 − φ(i)]m−1 ≈ mki

2µs(t)
(5)

whereφ(i) relates to Eq. 3.
Obviously, for one unit time fromt to t+1, the probability

that the degree of vertexi increases one is approximately
λ(t) mki

2µs(t) . Then, we assume that the degree distribution of
the vertexi Pt+1(k) follows a master degree,

Pk(t+1) ≈ λ(t)m(k − 1)

2µs(t)
Pk−1(t)+(1−λ(t)mk

2µs(t)
)Pt(k), (6)

then, we have

Pk(t+ 1)− Pk(t) =
λ(t)m

2µs(t)
[(k − 1)Pk−1(t)− kPt(k)]. (7)

Note that the differences oft andk are both1, and based on
the definition of the partial derivative, we get

∂Pk(t)

∂t
=

−λ(t)m

2µs(t)
· ∂kPk(t)

∂k
. (8)

Then we multiply both sides of Eq. 8 byk, and integrate over
k, that is

∫ ∞

0

kdk
∂Pk(t)

∂t
=

−λ(t)m

2µs(t)

∫ ∞

0

kdk
∂kPk(t)

∂k
. (9)

Consider that the definition of the expectant degreeki and
employ the integration by part, we can deduce that

ki ≈
∫ ∞

0

kPk(t)dk

= −{[k2Pk(i, t)]
∞
0 −

∫ ∞

0

kPk(t)dk}

= −
∫ ∞

0

kd[kPk(t)] = −
∫ ∞

0

kdk
∂[kPk(t)]

∂k
.

(10)

Thus, Eq. 9 equivalently denotes as

∂ki

∂t
=

λ(t)m

2µs(t)
· ki (11)

the general solution iski = C[s(t)]
m
2µ , whereC is a constant.

Combining with the boundary conditionki(s−1(i)) = m,
wheres−1(i) is the inverse function ofs(t) which indicates
the generation time of vertexi, then we have the solution

ki = m[
s(t)

i
]
m
2µ . (12)

After ki is obtained, the degree distribution of the evolving
network is in demand. As previously stated, the random
variablem follows a log-normal distribution denoted asf(m),
while the vertexi is randomly selected from the vertices of the
evolving network. This means thati follows a uniform distri-
bution on[0, s(t)], denoted asf(i), and their joint distribution
is denoted asf(i,m). And obviously,f(m) as well asf(i) are
the marginal probability densities for joint probability density
f(i,m), and the connection variable is mutually independent
of the selected vertex, which means thatf(i,m)=f(i)f(m).

Then, based on the definition of the degree distribution
function, the joint degree distributionP{ki(t) < k} is derived
as

P{ki(t) < k} =

∫∫

ki(t)<k

f(i,m)didm

=

∫∫

i>s(t)(m
k
)
2µ
m

f(i)f(m)didm

=

∫ k

0

∫ s(t)

s(t)(m
k
)
2µ
m

1

m
√
2πσs(t)

e−
(ln m−µ)2

2σ2 didm

=

∫ k

0

1− (m
k
)

2µ
m

m
√
2πσ

e−
(lnm−µ)2

2σ2 dm.

(13)

For Eq. 13, to solve the derivative of the joint degree
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distribution, by applying the Leibniz integral rule, we yield

p(k) = P ′{ki(t) < k} =
d

dk

∫ k

0

1− (m
k
)

2µ
m

m
√
2πσ

e−
(ln m−µ)2

2σ2 dm

=
1− (k

k
)

2µ
m

m
√
2πσ

e−
(lnm−µ)2

2σ2 · k′ − 1− ( 1
k
)

2µ
m

m
√
2πσ

e−
(ln m−µ)2

2σ2 · 0′

+

∫ k

0

d

dk

1− (m
k
)

2µ
m

m
√
2πσ

e−
(ln m−µ)2

2σ2 dm

=

∫ k

0

−m
2µ
m

m
√
2πσ

e−
(lnm−µ)2

2σ2
d

dk
k−

2µ
m dm

=
2µ
m

k
2µ
m

+1

∫ k

0

m
2µ
m

−1

√
2πσ

e−
(m−µ)2

2σ2 dm.

(14)
So far, the degree distribution is obtained. Obviously, if we

let m in Eq. 14 be a constant, the distribution is reduced to
a Power-law distribution, i.e. the Power-law distributionis a
specific case of the this distribution and the internal mecha-
nism for only those SF networks with constant connections.
However, for most networks and other situations, variable
elements always exist, i.e. the scope of applicability of the
obtained distribution is much broader. Therefore, we suggest
that this distribution is a very promising direction to study
adaptive or evolving networks.

Moreover, from the mathematical derivation, we discover
that the degree distribution for evolving networks is a2-
dimensional joint random variable consisting of the selection
of vertices that follows a uniform distribution and the connec-
tion of new vertices that follows a log-normal distribution. The
Matthew effect relates to the boundary of the joint probability
density function. Consequently, the determinants of a degree
distribution are the selection rule (whether it is selected
randomly or certainly), the newly added links (whether they
are constants or variables following such as a log-normal
distribution, and the connection mechanism (e.g. the Matthew
effect), whichever directly affects the final degree distribution.
We reveal this direction is more significant than the traditional
view that the connection mechanism is the crucial factor for
evolving networks.

Additionally, we uncover that the exponential term of a
degree distribution for an evolving network2µ

m
is traced to

that one link has two degrees, see Eq. 4. If we break the limit
of the network, and regard the value ofm as the increment or
decrement of income in economics, then, one income can be
spent on different places, which means the exponential term
can be not only2µ

m
. In that sense, by setting the exponential

term as a parameterγ, we then figure out the general form of
this kind of distribution in next section.

III. SUBNORMAL DISTRIBUTIONS FOREVOLVING

NETWORKS AND THEIR STATISTICAL PROPERTIES

In this section, we mainly focus on the definition of the
subnormal distribution derived from an evolving network and
displaying its statistical properties.

A. Definition and Derivation of a Subnormal Distribution

For Eqs. 13 and 14, theoretically, consider that the con-
nection variablem as a pure log-normal distribution with the

parametersλ andσ2, while i as a uniform distribution, then the
variablek referred to Eq. 12 is defined as a subnormal distri-
bution is this paper. Above all, we present the detail definition
of a general Subnormal Distribution by its probability density
function and cumulative distribution function in mathematics.

Definition 1 A continuous random variableX is said to
have a subnormal distribution with the parameterγ>0, if its
probability density function (PDF) is given by

f(x) =







γ

xγ+1

∫ x

0

tγ−1

√
2πσ

e−
(ln t−µ)2

2σ2 dt, x > 0

0, x ≤ 0

(15)

or, equivalently, if its cumulative distribution function(CDF)
is given by

F (x) =







∫ x

0

1− ( t
x
)γ√

2πσt
e−

(ln t−µ)2

2σ2 dt, x > 0

0, x ≤ 0

(16)

wheret is a log-normal random variable with the parameters
λ and σ2.

At the first place, we prove that the functionf(x) indeed
is a PDF.

Theorem 1 f(x) in Eq. 15 is a PDF having the properties
that f(x)≥0 and

∫ +∞
−∞ f(x)=1.

Proof: Apparently, forx<0, f(x)=0, otherwise,f(x)>0.
Overall,f(x)≥0.

For all t, having0<t<x<+∞, we can exchange the order
of integral, i.e.

∫ +∞

−∞
f(x) =

∫ +∞

0

∫ x

0

γ
xγ+1 t

γ−1

√
2πσ

e−
(ln t−µ)2

2σ2 dtdx

=

∫ +∞

0

∫ +∞

t

γ
xγ+1 t

γ−1

√
2πσ

e−
(ln t−µ)2

2σ2 dxdt

=

∫ +∞

0

[− 1

γ
x−γ ]+∞

t

tγ−1

√
2πσ

e−
(ln t−µ)2

2σ2 dt

=

∫ +∞

0

1

t
√
2πσ

e−
(ln t−µ)2

2σ2 dt,

(17)

let y= ln t−µ
σ

, that isdy= 1
σt
dt, then by substitutiony anddy

into Eq. 17, we have
∫ +∞

−∞
f(x) =

∫ +∞

−∞

1√
2π

e−
y2

2 dy = 1. (18)

The results follow.
As stated above, a subnormal variable is a joint probability

density of a uniform variable and a log-normal distribution,
thus we have Th. 2.

Theorem 2 Given random variablesX and Y are mutually
independent, andX follows a uniform distribution on [0,a],Y
follows a log-normal distribution with the parametersµ and
σ, if

Z = Y (
a

X
)γ , (19)

then, the random variableZ follows a subnormal distribution
with the parameterγ.
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Proof: For z≤0,

FZ(z) = P{Y (
a

X
)γ ≤ z} = 0. (20)

Otherwise, forz>0, since X and Y are mutually inde-
pendent, the joint probability densityfZ(z) is the product of
marginal probability densitiesfX(x) andfY (y), then

FZ(z) = P{Y (
a

X
)γ ≤ z} =

∫∫

y(a
x
)γ≤z

fZ(z)dxdy

=

∫∫

y(a
x
)γ≤z

f(x, y)dxdy =

∫∫

x>a(y
z
)γ

fX(x)fY (y)dxdy

=

∫ z

0

∫ a

a( y
z
)γ

1√
2πσax

e−
(ln y−µ)2

2σ2 dxdy

=

∫ z

0

1− (x
z
)γ√

2πσx
e−

(ln x−µ)2

2σ2 dx.

(21)

Consider both Eqs. 20 and 21, we have

FZ(z) =







∫ z

0

1− (x
z
)γ√

2πσx
e−

(ln x−µ)2

2σ2 dz, z > 0

0, z ≤ 0

(22)

obviously,FZ(z) follows the CDF of a subnormal distribution.
Further,

fZ(z) = F ′
Z(z) =







γ

zγ+1

∫ z

0

xγ−1

√
2πσ

e−
(ln x−µ)2

2σ2 dx, z > 0

0, z ≤ 0
(23)

which indicates the PDF of a subnormal distribution.
In summary, the results follow.
Additionally, the integration of Def. 1 is difficult to calculate

in practical situation. To address this issue, we can also use the
error function, also called Gaussian error function, to denote
Eq. 15 and 16 in Def. 1, which is presented in Th. 3.

Theorem 3 The PDF of a subnormal distribution is given by

f(x) =



















γ

2xγ+1
eµ+

1
2γ

2σ2

[1 + erf(
lnx− µ− γσ2

√
2σ

)],

x > 0

0, x ≤ 0

(24)

and its CDF is given by

F (x) =



















1

2
{erf(

lnx− µ√
2σ

)− erf[
lnx− µ− (γ + 1)σ2

√
2σ

]},

x > 0

0, x ≤ 0
(25)

wheret is a log-normal random variable with the parameters
λ and σ2, anderf(x) is the Gaussian error function.

Proof: Consider Def. 1, forx≤0, both f(x) and F (x)
are equal to0.

Otherwise, forx>0, we sety= ln t−µ−γσ2

√
2σ

, anddy= 1√
2σt

dt,
notice the integral range, then PDF can be expressed as

f(x) =
γ

xγ+1

∫
ln x−µ−γσ2

√

2σ

−∞

eγ(
√
2σy+γσ2+µ)

√
πσ

e−
(
√

2y+γσ)2

2 dy

=
γ

xγ+1
eµ+

1
2 γ

2σ2

∫
ln x−µ−γσ2

√

2σ

−∞

1√
π
e−y2

dy

=
γ

xγ+1
eµ+

1
2 γ

2σ2

(1 +

∫
ln x−µ−γσ2

√

2σ

0

1√
π
e−y2

dy)

=
γ

2xγ+1
eµ+

1
2γ

2σ2

[1 + erf(
ln x− µ− γσ2

√
2σ

)]

(26)
where erf(x)= 2√

π

∫ x

0 e−t2dt.
Applying the same method, forx>0, we solve CDF

F (x) =
1

2
{erf(

lnx− µ√
2σ

)− erf[
lnx− µ− (γ + 1)σ2

√
2σ

]}.
(27)

The results follow.

Remark 1 The PDF can also expressed as the complemen-
tary error function and standard normal cumulative distribu-
tion function

f(x) =
γ

xγ+1
eµ+

1
2γ

2σ2

∫ +∞

µ+γσ2
−ln x

√

2σ

1√
π
e−y2

dy

=
γ

2xγ+1
eµ+

1
2γ

2σ2

erfc(
µ+ γσ2 − lnx√

2σ
)

=
γ

xγ+1
eµ+

1
2γ

2σ2

Φ(
lnx− µ− γσ2

σ
).

(28)

whereerfc(x)= 2√
π

∫∞
x

e−t2dt, andΦ(x)= 1√
2π

∫ x

−∞ e−
t2

2 dt.
Analogously, CDF can also be denoted as

F (x) =
1

2
{erfc(

µ− lnx√
2σ

)− erfc[
µ+ (γ + 1)σ2 − lnx√

2σ
]}

= Φ(
ln x− µ

σ
)− Φ(

ln x− µ− (γ + 1)σ2

σ
).

(29)

B. Some Statistical Properties of a Subnormal Distribution

In practical situations, a distribution function is of the
nonessential; instead some special properties are more use-
ful. In this subsection, we provide some common statistical
properties in numerals such as the expected value, variance,
etc, and display their solving processes. The default ofγ is
non-zero in all derivations.

1) Expectation Value:In probability theory, the expec-
tation value of a random variable is intuitively the long-
run average value of repetitions of the experiment it rep-
resents. It is the weighted average of all possible values.
Practically, if Z=G(x, y) is a continuous random variable
having a joint probability density functionf(x, y), and
∫ +∞
−∞

∫ +∞
−∞ |G(x, y)|f(x, y)dxdy<+∞ then the expectation

value ofZ is given by

E(Z) =

∫ +∞

−∞

∫ +∞

−∞
G(x, y)f(x, y)dxdy. (30)
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Then, we have

Theorem 4 The expectation value of a general subnormal
variable with the parameterγ 6=1 is γ

γ−1e
µ+σ2

2 .

Proof: A subnormal variableZ is jointed by mutually in-
dependent random variables, a uniform variableX distributed
on [0, a] and a log-normal variableY distributed distributed
on (0,+∞), according to Th. 2, and can be expressed as

z = y(
a

x
)

1
γ . (31)

For γ 6=1, we have

E(Z) =

∫ +∞

0

∫ a

0

y(
a

x
)

1
γ f(x, y)dxdy

=

∫ +∞

0

∫ a

0

y(
a

x
)

1
γ f(x)f(y)dxdy

=

∫ +∞

0

∫ a

0

y(
a

x
)

1
γ

1

ay
√
2πσ

e−
(ln y−µ)2

2σ2 dxdy

= [
γ

γ − 1
x1− 1

γ ]a0 ·
∫ +∞

0

a
1
γ
−1

√
2πσ

e−
(ln y−µ)2

2σ2 dy,

(32)

let t= ln y−µ
σ

, then

E(Z) =
γ

γ − 1

∫ +∞

−∞

1√
2π

e−
t2

2 +σy+µdt =
γ

γ − 1
eµ+

σ2

2 .

(33)
The result follows.

2) Variance: Additionally, we employ the variance to dis-
play the dispersion degree measuring how far a set of numbers
is spread out. Specifically, for a variableX with the expecta-
tion valueE(X), then variance is given byV ar(X)=E([X−
E(X)]2).

Then, we carry out the variance of a subnormal distribution.

Theorem 5 The variance of a general subnormal variable
with the parameterγ 6=1 andγ 6=2 is e2µ+σ2

[ γ
γ−2e

σ2− γ2

(γ−1)2 ].

Proof: The variance of a subnormal variableZ can be
expressed as

V ar(Z) = E(Z2)− [E(Z)]2 (34)

where, by utilizing Eq. 31,

E(Z2) =

∫ +∞

0

∫ a

0

y2(
a

x
)

2
γ

1

ay
√
2πσ

e−
(ln y−µ)2

2σ2 dxdy

=
γ

γ − 2
[x1− 2

γ ]a0 ·
∫ +∞

0

ya
2
γ
−1

√
2πσ

e−
(ln y−µ)2

2σ2 dy,

(35)

here, we rendert= ln y−µ
σ

,

E(Z2) =
γ

γ − 2

∫ +∞

−∞

1√
2π

e−
t2

2 +2σt+2µdt

=
γ

γ − 2
e2µ+2σ2

∫ +∞

−∞

1√
2π

e−
(t−2σ)2

2 dt

=
γ

γ − 2
e2µ+2σ2

,

(36)

and note that Th. 4

[E(Z)]2 =
γ2

(γ − 1)2
e2µ+σ2

. (37)

Then, Eq. 36 and 37 are substituted into 34, we have

V ar(Z) = e2µ+σ2

[
γ

γ − 2
eσ

2 − γ2

(γ − 1)2
]. (38)

The result follows.

Remark 2 Apparently, ifγ=1 or γ=2, the nonexistence of
the variance follows. Furthermore, the variance should be
nonnegative, that is

e2µ+σ2

[
γ

γ − 2
eσ

2 − γ2

(γ − 1)2
] ≥ 0. (39)

For γ 6=1 or 2

eσ ≥ γ(γ − 2)

(γ − 1)2
. (40)

Analogously,

σ ≥ ln
γ(γ − 2)

(γ − 1)2
. (41)

Finally, we conclude that only ifγ 6=1 or 2 andσ≥ln γ(γ−2)
(γ−1)2 ,

the variance of the subnormal distribution will exist.

Remark 3 From Th. 4 and 5, we obtain the relationship
between the parametersµ, σ, γ and the expectation value
E(X) and the varianceV ar(X). Specifically,µ is denoted as

µ = ln[
γ

γ − 1
E(X)]− 1

2
ln{γ(γ − 2)

(γ − 1)2
(1 +

V ar(X)

[E(X)]2
)}

= ln[
γ

γ − 1
E(X)]− 1

2
σ2,

(42)
andσ is

σ =

√

ln{γ(γ − 2)

(γ − 1)2
+

γ(γ − 2)

(γ − 1)2
· V ar(X)

[E(X)]2
}. (43)

From the derivation, we can see that the variance is possibly
nonexistent. And ifγ→∞, the variance numerically equals to
e2µ+σ2

[eσ
2−1], equivalent to the log-normal distribution. And

we can learn from the Eq. 42 and 43 that the values of bothµ

andσ are relatively low, directing the variance to a low value,
which agrees with the assumption in the process of derivation
of a subnormal distribution.

3) Other Statistical Properties:For any real numberk, the
kth moment variableX is given byE(Xk), thus we have

Theorem 6 Thekth moment of a general subnormal variable
with the parameterγ 6=k is γ

γ−k
ekµ+

1
2k

2σ2

.

Proof:

E(Zk) =

∫ +∞

0

∫ a

0

yk(
a

x
)

k
γ

1

ay
√
2πσ

e−
(ln y−µ)2

2σ2 dxdy

=
γ

γ − k
[x1− k

γ ]a0 ·
∫ +∞

0

yk−1a
k
γ
−1

√
2πσ

e−
(ln y−µ)2

2σ2 dy,

(44)
let t= ln y−µ

σ
, then

E(Zk) =
γ

γ − k

∫ +∞

−∞

1√
2π

e−
t2

2 +kσt+kµdt

=
γ

γ − k
ekµ+

1
2k

2σ2

∫ +∞

−∞

1√
2π

e−
(t−kσ)2

2 dt

=
γ

γ − k
ekµ+

1
2k

2σ2

.

(45)
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The result follows.
The arithmetic coefficient of variationCV (X) is the ratio

SD(X)
E(X) , whereSD(X)=

√

V ar(X).

Theorem 7 The CV (X) of a general subnormal variable
with the parameterγ 6=1 and γ 6=2 is γ

γ−k
ekµ+

1
2 k

2σ2

.

Proof:

CV (X) =
SD(X)

E(X)
=

√

e2µ+σ2 [ γ
γ−2e

σ2 − γ2

(γ−1)2 ]

γ
γ−1e

µ+σ2

2

=

√

(r − 1)2

r(r − 2)
eσ

2 − 1.

(46)

The partial expectation (PE) value of a random variable
X with respect to a thresholdξ is denoted asPE(ξ) =
∫∞
ξ

xf(x)dx.

Theorem 8 The partial expectation value of variation
PE(X) of a general subnormal variable with the parameter

γ 6=1 is γ
γ−1e

µ+σ2

2 Φ(σ − ln ξ−µ
σ

).

Proof:

PE(X) =

∫ ∞

ξ

xf(x)dx

=

∫ +∞

ξ

∫ x

0

γ
xγ t

γ−1

√
2πσ

e−
(ln t−µ)2

2σ2 dtdx

=
γ

γ − 1

∫ +∞

ξ

1√
2πσ

e−
(ln t−µ)2

2σ2 dt,

(47)

let y= ln t−µ
σ

−σ, we have

PE(X) =
γ

γ − 1

∫ +∞

ln ξ−µ
σ

−σ

1√
2π

e−
y2

2 +µ+σ2

2 dy

=
γ

γ − 1
eµ+

σ2

2

∫ +∞

ln ξ−µ
σ

−σ

1√
2π

e−
y2

2 dy

=
γ

γ − 1
eµ+

σ2

2 Φ(σ − ln ξ − µ

σ
).

(48)

whereΦ is the standard normal cumulative distribution func-
tion.

The result follows.
In addition, many other statistical properties, such as the

characteristic functionE[eitX ], the moment generating func-
tion E[etX ] (which are easily proved divergent), mode, peak (
which are without analytic solutions), etc, are omitted in this
paper.

IV. SIMULATION AND ANALYSIS

In this section, we first provide the analysis of the influence
of the different parametersγ, µ, and σ of Def. 1 on the
curve of the subnormal distribution. Then, we carry out some
simulations of fitting the subnormal distribution to the the
degree distribution of evolving network in theory and social
network in practical, as well as the wealth distribution in
economics.

A. Parameter Analysis

To explore the influence of the parametersγ, µ, andσ on
the curve of the subnormal distribution of Eq. 15, we let two of
them be constants, and the other one deals with three distinct
values, then the corresponding plots are drawn. The resultsare
illustrated in Fig. 1.

For the parameterγ, as shown in Fig. 1(a), the higher value
makes the curve taller and thinner, which means the peak
grows higher. However, a change from2 to 10 is much more
obvious than from10 to 40. And the influence ofγ on the
mode (x of the peak) is inconspicuous. As a result,γ speeds up
ascent rate before mode, and descent rate after the mode. This
character is very similar to the exponent index of the Power-
law distribution denoting the slope in logarithmic coordinates.

We can see from Fig. 1(b), with the rise of the parameter
µ, the curve becomes shorter and fatter, and the change is
very apparent, evenµ rarely increases by1. That is to say,
µ is positively related to the mode, but has a visibly negative
effect on the peak.

As the last parameterσ illustrated in Fig. 1(c), the higher
value makes the curve taller and thinner. For the peak, the
influence ofσ is similar toγ, in other words, with the increase
of σ, the peak rises, but very slow. Different fromγ, σ is
negatively related to the mode in the exponential, the higher
value makes the mode much lower. Fig. 1(c) displays that the
correspondingx move leftward.

In summary,γ and σ positively affects the peak of a
subnormal distribution indicating the height of the curve,while
µ does it negatively. Besides,µ has a positive influence on the
mode indicating the location of the peak. Contrarily,σ has a
negative influence, andγ has an inapparent influence on the
mode. Furthermore,γ andσ have a positive relationship with
the rate of rise and fall, the latter is more severe, otherwise,µ
has an obviously inverse relationship. With these relationships,
we can determine the approximate curve shape of the required
subnormal distribution.

B. Fitting Subnormal Distribution to Other Distributions

To fit these distributions, the subnormal distribution is
required to be discretized, in other words,x can only be
integers. To clearly compare the fitness of two distributions,
we apply the Pearson product-moment correlation coefficient.
Specifically, for vectors of subnormal variablesX and other
variables, such as the degree distribution of evolving network
Y , the correlation coefficient is denoted as

ρX,Y =
E[(X − E(X))(Y − E(Y ))]

SD(X)SD(Y )
(49)

1) Fitting the Degree Distribution to an Evolving Network:
The modeling of the evolving network is referred to Section
II.B.

In the initialization, we build aNW small-world network
with 20 vertices as the initial network, each connects to2
neighbors and has a50% chance to add a link to others. In
the evolving process, for simplicity, we use a homogeneous
Poisson process instead of a nonhomogeneous one since the
growing is essentially independent of the degree distribution.
Specifically,
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(a) The subnormal curve with differentγs.
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(b) The subnormal curve with differentµs.
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(c) The subnormal curve with differentσs.

Figure 1. The influence of different values of parameters on the curve of the subnormal distribution. The constant arguments are set as (a)µ == 2 and
σ == 1, (b)γ == 2 andσ == 1, and (c)γ == 2 andµ == 1.
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(a) µ=1.
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(b) µ=2.
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(c) µ=3.

Figure 2. The comparison of the degree distributions of evolving networks marked with red circles and their corresponding subnormal distributions marked
with blue circles, all have thatσ=1 andγ=2, but differentµs.
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(a) σ=1.

0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

x

f(
x)

 

 

Degree Distribution

Subnormal Distribution

(b) σ=2.
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(c) σ=3.

Figure 3. The comparison of the degree distributions of evolving networks marked by red circles and their correspondingsubnormal distributions marked
by blue circles, all have thatµ=0 andγ=2, but differentσs.
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Figure 4. An illustration of an evolving network produced byλ=1, t=100,
andµ=1, σ=1.

⋄ Set the values of input rateλ and termination timet;
⋄ Generate exponential distribution random values withλ,

denoted asti, i={1, 2, 3, · · · };
⋄ If the cumulative timeTi≤t, let Ti=Ti + ti, else stop and
output the temporal series.
Then we have the temporal series of arrival vertices. In the
process of connection, we employ thelognrnd function in
Matlab to produce the number of connections, the result is
rounded byround function, and the roulette algorithm is
applied to simulate Eq. 3. As a result, a relatively sparse
sample of a evolving network produced byλ=1, t=100, and
µ=1, σ=1 of log-normal is demonstrated in Fig. 4.

After an evolving network is obtained, we utilize the associ-
ation matrix to record its degrees, and plot the corresponding
degree distribution. Three evolving networks with different µs
andσs are recorded. Then, with the same parameters, we also
use Def. 1 to draw the distributions of the discrete subnormal
variables in the same coordinate. The results are shown in Figs.
2 and 3. Since the distributions are obtained from networks,
we let γ≈2.
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Table I
THE CORRELATION COEFFICIENT OF THE DEGREE DISTRIBUTIONS OF

EVOLVING NETWORKS AND THEIR CORRESPONDING SUBNORMAL
DISTRIBUTIONS.

.

`
`
`
`
`
`
`
`
`

Parameter
Value

1 2 3

µ 0.9937 0.9810 0.9639
σ 0.9985 0.9908 0.9207

In Fig. 2, differentµs of the degree distributions and sub-
normal distributions are compared. To reduce the interruption
of σ, we let it be the smallest integer1. Since the tails of both
distributions are extremely close, we take150 , 200, and250
values ofx for µ=1, 2, and3 for illustration, respectively. By
Eq. 49, the similarity of both distributions is calculated and
listed in Tab. I, (first row). From the results, we see that the
correlation coefficient of two distributions are very high,all
above95%, implying that the degree distribution of evolving
networks is highly similar to the subnormal distribution with
the same parameters. And we also observe that the higherµ

the lower the correlation coefficient, the deviation degreeof
both distributions becomes more obvious.

In Fig. 3, different σs of the degree distributions and
the subnormal distributions are compared. To reduce the
interruption ofµ, we let it be the possibly smallest integer
0. 75, 100, and 125 values of x for σ=1, 2, and 3 are
illustrated. By Eq. 49, the similarity of both distributions is
calculated and listed in Tab. I, (second row). The results also
show a good evaluation of similarity of both distributions,all
above90%. However, the higherσ will rise the variance of
connections, and consequently, the deviation degree is more
apparent, leading to a lower correlation coefficient.

Above all, the subnormal distribution well fits the degree
distribution of evolving networks, and the result is betterfor
relatively low values ofµ andσ.

2) Fitting Distribution of Real Networks:First, a collab-
oration network of Arxiv Astro Physics from the e-print
arXiv which covers scientific collaborations between authors
of papers submitted to Astro Physics category is fitted to the
subnormal distribution [26].

For the collaboration network, if an authori co-authored a
paper with authorj, the network contains a undirected edge
from i to j. The data covers papers in the period from January
1993 to April 2003. It begins within a few months of the
inception of the arXiv, and thus represents essentially the
complete history of its ASTRO-PH section. The number of
nodes is18, 772, and of edges is39, 6160. From this network,
we can obtain its related association matrix, and calculatethe
degree distribution, shown in Fig. 5 as red scatters.

From the data, we can estimate the expectation value of de-
gree of collaboration network, which isE(cn)=21.1038≈21.
Assuming that one subnormal distribution fits this network de-
gree, as we know, theγ for networks approximatively equals to
2, then by employing Th. 4, the relationship of the parameters
µ andσ can be denoted asµ + σ2

2 = log[E(cn)]
2 ≈1.522. Thus,

we let µ=1.15, σ=0.86. The illustration of blue scatters of
subnormal distribution is shown in Fig. 5.

Because in previous studies, the Power-law distribution

is most commonly utilized to describe social networks, we
also introduce a Power-law distribution for comparison which
is denoted asf(x)=γmγx−γ−1 (x>µ), where γ=2. The
expectation value of Power-law distribution, if the distribution
fits the network degree, can be denoted as2m=E(cn). Then,
to simulate the collaboration network, we set the parameter
m≈11. Its black scatters are shown in Fig. 5.
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Figure 5. The comparison of the degree distributions of collaboration network
marked by red circles and its corresponding subnormal distributions marked
by blue circles, Power-law distribution marked by black circles.

Again, the Eq. 49 is employed to calculate the corre-
spondence of the subnormal, Power-law distribution with the
degree distribution of the collaboration network. The first200
values are taken into calculation, but for a clear displaying,
only the first70 values are shown in Fig. 5. The correlation
coefficient with the subnormal distribution is98.68%, while
that with the Power-law distribution is76.31% only (97.45%
and94.45% if only the values beyond11 are compared).

Obviously, the subnormal distribution fits the collaboration
network degree distribution much better in tendency as wellas
correlation. Actually, the Power-law distribution only describes
the tails, i.e. those authors having many collaborations, but
ignores those ones having a few only. From our perspective,
the lower values are much more to be considered, since they
represent the majority. Specifically, the highest collaboration
number is3 in the collaboration network, and can be described
as the most probable value of authors. Additionally, the Power-
law is monotonously decreasing, but social networks usually
grow with a peak, indicating that the poorest are not the most,
and the subnormal distribution perfectly fits that character.

3) Fitting the Wealth Distribution:As mentioned before,
the subnormal can also describe the inequality distribution in
economy. Therefore, we try to fit the subnormal distribution
to the personal wealth distribution.

However, wealth distribution is not easy to measure, since
people avoid reporting their total wealth routinely. And the
statistical data are often quartered or more, which makes it
difficult to seek precise values of each wealth level. But when
a person dies, all assets must be reported for the purpose of
inheritance tax. Using these data and an adjustment procedure,
the British tax agency, the Inland Revenue (IR), reconstructed
wealth distribution of the whole UK population. We mainly
employ the2008 to 2010 data of total gross capital value
obtained from their Web site [27]. These data divide the
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people into five levels of net estate,£ 0 to 50, 000, 50, 000 to
100, 000, 100, 000 to 200, 000, 200, 000 to 300, 000, 300, 000
to 500, 000, 500, 000 to 1, 000, 000, 1, 000, 000 to 2, 000, 000,
and over2, 000, 000, we average the level as{0.25, 0.75, 1.5,
2.5, 4, 7.5, 10, 25}∗105. And the number of people for each
level are{3053, 2382, 4207, 2515, 1682, 889, 224, 98}. From
these data, we obtain the wealth distribution. Since the scatters
are sparse, we connect them as a plot, see the red plot in Fig.
6.

As the data are too poor to calculate the expectation value,
so we can not employ the previous method to evaluate the
parameters of the fit subnormal distribution. Lots of parameters
are tested to present better results, and one of them is that
γ= 1.9, µ=0.6, andσ=0.5, see the blue plot of subnormal
distribution in Fig. 6.
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Figure 6. The comparison of the degree distributions of collaboration network
marked by red circles and its corresponding subnormal distributions marked
by blue circles, Power-law distribution marked by black circles.

For the Power-law distribution, except the expectation value,
we can also calculate the slope of the date in logarithm to
obtainγ, and furtherm. The result is thatγ=0.3 andm≈0.34.
Then, the Power-law distribution in black plot is illustrated in
Fig. 6.

By Eq. 49, the result of correlation coefficient of the
subnormal distribution with wealth distribution is80.53%,
while the Power-law distribution is68.35% only, (99.24% and
97.55% if only the values beyond2.5 are compared). Once
again, we display that the Power-law only fits the tail, but the
subnormal approximatively fits the whole plot. For the wealth,
the head of the distribution represent the lower-middle-classes,
which play significant role in the social wealth and stability
and should not be ignored. Therefore, the fit of a subnormal
distribution to wealth distribution is worth exploring. However,
we observe that at the point of0.25 to 0.75, the tendency
of plot declines, the reason is that negative asset owners are
included in0 to 0.5 making the value at0.25 higher, and for
both subnormal and Power-law distribution negative valuesare
ignored.

V. D ISCUSSION ANDOUTLOOK

In this paper, we have provided a new distribution called
subnormal distributionto simulate the distributions of the
degree of evolving networks such as SF networks, real net-
works such as social networks, economic distribution, and

other uneven distributions. Essentially, from the derivation,
we discover that the degree distribution is a2-dimensional
joint probability density consisting of the selection of vertices
that follows a uniform distribution and the connection of
new vertices that particular follows a log-normal distribution
in here, while the inequality of the Matthew effect relates
to the boundary of the joint probability density function.
Actually, the connection may also be another distribution like
the uniform distribution in some special cases, but in this
paper we employ the log-normal distribution and obtain the
subnormal distribution. In further work, we may continue the
study to other joint probability density functions as well.

We find that the subnormal distribution can also describe the
wealth distribution, which can be explained by network theory.
The income is regarded as the new coming vertex, and the
arrangement or consumption for this income is its connections
to the network. The whole network is the total wealth, each
one vertex is the wealth of the individual. Apparently, the
inequality of the Matthew effect influences the consumption
of individual, for example, people are more likely to buy goods
with famous brand, and these firms are getting richer, which
is highly similar with the connection process of evolving net-
works. Therefore, beyond the evolving networks, we speculate
that the subnormal distribution can be universally employed to
describe the distribution with inequality and growing which
requires further studies.

Additionally, as Gibrat’s law describes, the size of a firm
and its relative rate of growth are independent, which is also
available for evolving networks. One result of Gibrat’s law
is that processes characterized by Gibrat’s law converge toa
limiting distribution, which may be log-normal or power law,
depending on more specific assumptions about the stochastic
growth process. Furthermore, we precisely deduce that this
kind of distribution based on the unequal growth follows that
the poor tends to be poorer; while the rich richer is subnormal
in this paper, which holds both characters of log-normal and
Power-law. For the special situation that the connection or
income is constant, the subnormal distribution reduces to a
Power-law, and if the individual is constant and non-random,
the distribution reduces to a log-normal one. In that sense,we
can also argue that the subnormal distribution is a combination
of log-normal and Power-law with the peak of the former and
the tail of the latter. Above all, we agree with Gibrat’s law
that the income/connection is log-normally distributed, while
the final wealth/degree follows a subnormal distribution.

However, we also have a dilemma on how to confirm the
parameters of subnormal distribution. In this paper, we can
only roughly decide the influence ofγ, µ, and σ on the
tendency of a subnormal curve, but not accurately deduce their
attributes for a subnormal function. One possible solutionis to
solve the mode and median of the probability density function,
which greatly contributes to determine the function curve and
is our goal for the next stage.
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