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Abstract—During the last decades, Power-law distributions
played significant roles in analyzing the topology of scaléee (SF)
networks. However, in the observation of degree distributbns
of practical networks and other unequal distributions such
as wealth distribution, we uncover that, instead of monotorc

[5], [6], etc, all follow a Power-law distribution, which pa
be described as the “rich-get-richer” or Matthew EffecteTh
Power-law degree distribution therefore has shown sidgrifie

in the study of complex systems and is the foundation of

decreasing, there exists a peak at the beginning of most real €xploring the formation mechanism and organizational -prin

distributions, which cannot be accurately described by a Paer-
law. In this paper, in order to break the limitation of the
Power-law distribution, we provide detailed derivations d a
novel distribution called Subnormal distribution from evolving
networks with variable elements and its concrete statistial
properties. Additionally, simulations of fitting the subnormal
distribution to the degree distribution of evolving networks, real
social network, and personal wealth distribution are dispayed to
show the fitness of proposed distribution.

Index Terms—Power-law Distribution, Degree Distribution,
Probability Theory, Evolving Networks, Gibrat's law.

I. INTRODUCTION

ciple of SF networks. Inspired by SF networks, the discavery
analysis, and application of SF networks, i.e. patterraexion
[7], search [8] and synchronization [9] [10], now represant
“new science of networks”. Then, many researchers devoted
to the study of degree distribution of evolving networkseyh
proposed mean-field [11], master-equation [12] and Markov-
chain approach [13] to mathematically solve the degree dis-
tribution. In addition, the logarithmic binning [14] andhetr
algorithms [15], [16] were applied to obtain the statidtica
degree distribution of practical networks.

In a considerable time, the Power-law distribution holds it
dominant position in network science, but some researchers

As well known, the Power-law distribution is a nonunifornfloubt whether it fits in all practical networks [17], [18]. In

distribution, in particular for networks, it appears thahajor-

actual, most practical SF networks are in accord with the rul

ity of vertices hold a low number of links while a few verticesrich-get-richer”, however, many of them are out of accord
have many links. The history of the Power-law distributioWith “poor-get-poorer”, indicating that the degree distiiion
starts from the Italian economist Pareto in the 19th centuf these networks is not simply Power-law. The movie actor

who first put the “20-80" rule forward, i.€0% of a population

collaboration network [19], for example, shows a lift iresde

posses80% social welfare, apparently following a Power-lawef smoothly descending when the degree is low and can not

distribution. Bababéasi first employs the Power-law dittion

completely fit in a Power-law distribution. Apart from netiko

to explain the degree distribution of SF networks and makgsience, the social welfare in economics and the frequency

it gain considerable fame. In 1999, he revolutionarily gedl

of words in natural language also are different from Power-

the network model into a scale-invariant state with the gngvv law distributions but show skew distributions. In this pape

and preferential attachment character, and revealed tieat e call this phenomenon “sub-normalization”, since itsveur
degree distribution of evo|ving networks follows a Powar:| S€EMS to fall somewhere between the Power-law and normal
distribution [1]. This discovery soon drew great attensiémm distribution. In order to discover this phenomenon and put
many mu'tidiscip”nary researchers and brought a St|rmhg forward the novel distribution, we introduce certain vhal@éa
interest in SF network. It is well known that, in the real vehrl €lements to the modeling process of SF network and employ
most practical networks such as web networks [2], intepactiSOme common calculation methods to solve the distribution

networks [3], sorting comparison network [4], social nestkg
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function of degree. This obtained distribution is calle@ th
“subnormal distribution” processing the properties of thot
Power-law and log-normal distribution. Through a mathemat
ical analysis, we find out that this distribution is a joint
probability density function produced by variable elensent
of networks, e.g, number of connections and selection of
individuals. Furthermore, we study the statistical préiperof

this distribution. In simulations, we display the constioic
process of evolving networks by variable elements, and the
similarity between the network distribution and the pragubs
distribution is compared. Besides, the distributions dfiaio
network degree and personal wealth are also compared with
our distribution to show that it can be fit in with the practica
Finally, we try to find out the mechanism of SF networks
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and discuss the potential value of subnormal phenomenon amd evolving networks and its relative rate of growth are
subnormal distribution in other fields such as economics. independent, which is precisely consistent with the famous
The organization of this paper is as follows: A detailethe Gibrat's law in economics [22]. In other words, this law
presentation of the evolving networks with variable eletaenis also valid for evolving networks.
is provided in Section Il. The derivations of subnormal dis- The most significant variable in this paper is the connection
tribution and its statistical properties are presentedeictisn of new arrival vertices which directly affects the degres-di
[ll. Simulations are carried out in Section IV to demongtrattribution of the network. Accelerating growth network mbde
the fitness to other distributions. Finally, some discussio [23] first notes that the connection is varied, and its cotioec
conclusions and outlooks are given in Section V. follows a Power-law distribution. However, for this kind of
network, a stationary distribution of the degree distiitnuit
II. EVOLVING NETWORKS WITHVARIABLE ELEMENTS does not exist, which disagrees with the practical networks

SF networks suggest the growth and preferential attachmgnle stationary distribution for connections of a network is

and follow a perfect Power-law distribution. Though the B#&"€ Of the goals of this paper. We mainly consider two
network is closer to the real networks than other netwo nds of distributions, uniform distributions and nonurif

model, the construction process is still ideal. For prmticd|str|but|ons. The uniform distributions refer to thosewarks

networks, it is impossible to introduce one vertex each tin}410S€ connections of new arrival vertices are homogeneous,

and connect it ton existing vertices. Contrarily, in practical "€rarchical networks for example [24]. On the contrary, th

situation. there exists lots of variable factors. such as tﬂwost common connection rule follows a nonuniform distribu-
famous WWW that has a variable vertex gro;/vth rate anHon, since each new vertex has its own fitness to the network,
edge connection. To reveal these influences on the deg hich the number of its connections to the existing vedic
distribution of networks, we discuss the variable elemants in the networks relates. Practically speaking, in the nekvab

show the construction process of a SF model with them in tH2€ research reference, once a high quality paper suemas-
gence of scaling in random networkyg Barakisi is published,

section. . : '
many related references will emerge in a short time, yet a low
) quality paper will not be cited in a long time. The universal
A. Variable Elements expression for this connection is the Gaussian distribytio
First, the variable elements in the process of constructiomst connection numbers are a mean value, and the extremely
of a SF network are discussed. high and low numbers are rare which is much more commoniin

The initial network is one of the most negligent issue which steady network than the Power-law distribution. Furtroeem
in fact is also ignored by the BA SF network. The variable ethe Gaussian distribution is just an ideal situation. Thee
ements of the initial network are the number of initial vee8 also many dilemmas by applying this distribution, e.g. the
and their connection rules. As we know, the number of initimlonnection can not be negative. There is evidence that the
vertices affects the final degree distribution if it is venyge. most income is distributed log-normally, which can be also
However, the initial network are always very small comparininterpreted as the new added connection, the income of -evolv
to the final network, like ARPANET (Advanced Researcing networks, is also distributed log-normally [25]. Tagiall
Projects Agency Network), the origination of Internet, bayy factors into consideration, therefore, we employ the logamal
four host computers connecting to each other, and now leterdistribution to simulate the connection of evolving netlsor
has billions of computer connections. Therefore, the numhia this paper. The log-normal distribution has a significant
of an initial network is required to be small enough that influence on the degree distribution of complex networks,
does not affect the final structure of the network. In additiowhich makes it free of time, but disobey the traditional Powe
the small initial networks are always highly gathered, &g, law distribution and break the rule of “poor-get-poorer”.
beginning of a new journal network is cited by each other There are other variable elements, such as the connection
and its average short path distance is low. Considering bathe and time, which are not topics of this paper.
the small and low distance character, we suppose that a-small
world network such as NW is appropriate to describe theahiti
network [20].

The other variable element is the arrival rate or interval Next, we show a constructing process of evolving net-
time of vertices which is assumed as a constant by mawprks with variable elements. The constructing process
theoretical models. BA networks, for example, suppose thaginly includednitialization, Growth, Connection and
one vertex is connected to the network each time. We sugg@strmination.
that the rates of vertices introduced to the network follow a Initialization in this paper is a process of a smalll/
certain rate, and in different period, the rate is varied, i.network. Assuming that the number of total vertices of the
it is related to time. Specifically, the growth rate during thinitial network isn, each of them links td neighbors, and
financial crisis is lower than during a boom time. Thus, has the probability to link to others. Self-loops are avoided.
nonhomogeneous Poisson process can perfectly express tH@rowth is the key step of evolving network, which
generation of vertices. In our last research article [2H have consists of the vertex growing rate and then arrival vertex
proven that a nonhomogeneous Poisson process is irrelev@nrinection. For each timé we add A(¢) vertices, where
to the final degree distribution, and specifically, the size d\(t) is a continuous function for a nonhomogeneous Poisson

B. Evolving Network Model based on Variable Elements



process. In the intervdt, ¢ + At], the probability of number Then we multiply both sides of Eq. 8 by, and integrate over
of new vertices is then k, that is

P{N(t+ At) = N(t) =k} =
[s(t + At) — s(t)]* eSO —=s(t) 1. —( 1. ...
k! ’ -

t .
wheres(t)=[; A(s)ds, and thes(t + At) — s(t) is the mean  consider that the definition of the expectant degegand

value of this process. Besides, for each vertex, we conn@gfpioy the integration by part, we can deduce that
m edges to then different vertices already present in the

1 APt =A@ > OkPy(t)
1) A kdk o Sns) ), kdk T

C)

network, wherem follows a log-normal distribution with the o0
parameterg, and o, i.e. the density ofn is given by ki ~ / kPy(t)dk
0
1 _(nm-—p)? 00
f(m) = { mvare. "7 ! (2) = ARG OIF _/o EPL()dk) (10)
07 X S 0 8] [ee]
o ) = —/ kd[kPy(t)] = —/ kdkw.
Connection is simply linearly dependent on the degree 0 0 Ok

of the target vertex for the benefit of the following dericai;
¢(1), the probability of a connection to a vertéxis denoted  Thus, Eq. 9 equivalently denotes as
as

ki

2k
J

wherek; is the degree of the target vertéx

Termination is controlled by time, which directly affect the gene_rgl SOILft'On i = Cls(t)] >, wr_u_ereC 's a constant.
the scale of networks. Combining with the boundary conditiok;(s~1(i)) = m,

wheres~1(i) is the inverse function of(¢) which indicates
the generation time of vertex then we have the solution

() Ok  At)m

(i) = _
ot 2us(t)

ki (11)

C. Degree Distribution of Evolving Networks

For the proposed model, &s:oo, the small initial network s(t)
has little effect on the degree distribution, therefore thie ki =m][
derivation, the initial network is ignored.

_ Given that the input rate of verticesi¢t), each new vertex  ager 1. is obtained, the degree distribution of the evolving
links to m edges, and the number of vertica&t) which is - herwork is in demand. As previously stated, the random
independent _of connections, then the expected value of the, jiabiem follows a log-normal distribution denoted gi¢m),
total degree is while the vertex is randomly selected from the vertices of the
Z k; = 2E[m]|E[N(t)] = 2us(t) (4) evolving network. This means thatfollows a uniform distri-
7 bution on|0, s(¢)], denoted ag (), and their joint distribution
. . is denoted ag (¢, m). And obviously,f (m) as well asf (i) are
tht'a:(()a;iz tir;eng\éﬁ[retix tvr;lghg)r?ggs;girrzz gfrc\),\tl)r;girllitf/czzneds tothe marginal probability densities for joint probabilitersity
' f(i,m), and the connection variable is mutually independent

]2 (12)

p— ( )[¢(Z)][1 @) ~ (5) of the selected vertex, whm_h _n_”neans thiét, m) f(z)f_(m_) .
1 2ps(t) Then, based on the definition of the degree distribution
where (i) relates to Eq. 3. function, the joint degree distributioR{%;(t) < k} is derived

Obviously, for one unit time from to ¢ + 1, the probability aS
that the degree of vertex increases one is approximately
A\t)s2E Then, we assume that the degree distribution of P{ki(t) < k} = // f(i,m)didm

2ps(t)
the vertexi P;;1(k) follows a master degree, itk
A)m(k — 1) A(t)mk
P(t+1) ——— P, _1(t)+(1— P,(k), (6 = ; i
(1) S P (0 +(1= 5 GO R(R), 6 [ ssmydian
then, we have i>s(t)(m) (13)
k s(t) , 2
A(t)m / 1 _nm-w?
_ - _ _ = ——e¢ 202 didm
Pult+1) = Pelt) = 5 sk = DPees(t) = kP(R). (7) A P ey oy
Note that the differences a¢fandk are bothl, and based on k11— (%)% _nmop?
the definition of the partial derivative, we get = A N 2me e 27 dm
OPy(t) _ —A(t)m OkPg(t) 8
ot 2ust) | ok ®)  For Eq. 13, to solve the derivative of the joint degree



distribution, by applying the Leibniz integral rule, we e  parameters. ando?, whilei as a uniform distribution, then the

d (k1 (m)z_u o 2 variablek referred to Eq. 12 is defined as a subnormal distri-
—_ —_— | m nm-—p . . . . “ g .
p(k) = P'{k;(t) < k} = —/ — kL ™ 2 dm  bution is this paper. Above all, we present the detail definit
. dk Jo  m 27;0 of a general Subnormal Distribution by its probability digns
I— (5% _tam—w? , 1—=($)™ _um-—w? function and cumulative distribution function in matherost
Y LA 202 -k o 202 -0
my2ro o mv2ro Definition 1 A continuous random variableX is said to
k d1-(F)™= e,m;niyw?dm have a subnormal distribution with the parameter0, if its
o dk m~2ro probability density function (PDF) is given by
k 20 2 z -1
—mm  _nm-w? d 2 ¥ t (nt—pw)?
= e 22—k mdm ——e 2% dt,x >0
/0 myv2no dk flz)=< 7+t Jy \/27me ’ v (15)
2u ko1 -
= o mr e‘xtayzdnn _ Oﬂ _ ) o x?§0 )
kmtlJo V270 (14) or, equivalently, if its cumulative distribution functig@DF)
So far, the degree distribution is obtained. Obviously, é&f w?® given by
let m in Eq. 14 be a constant, the distribution is reduced to T1— (&) ,an%w?dt 0
a Power-law distribution, i.e. the Power-law distributisna F(z) = 0 2rot € 7 &> (16)
specific case of the this distribution and the internal mecha 0, <0

nism for only those SF networks with constant connections. ) ) )
However, for most networks and other situations, variabf¥eret is a log-normal random variable with the parameters

elements always exist, i.e. the scope of applicability af th* ando?.

obtained distribution is much broader. Therefore, we sagge At the first place, we prove that the functigifz) indeed

that this distribution is a very promising direction to sfudis 3 PDFE.

adaptive or evolving networks. ) ) . )
Moreover, from the mathematical derivation, we discovéiheorem 1 f(x) in Eq. 15 is a PDF having the properties

that the degree distribution for evolving networks is2a thatf(z)>0and [77° f(x)=1.

dimensional joint random variable consisting of the sébect Proof: Apparently, forz<0, f(z)=0, otherwise f (z)>0.
of vertices that follows a uniform distribution and the ceon ara| £(z)>0.

tion of new vertices that follows a log-normal distributidrhe For all ¢, having0<t<z <00, we can exchange the order
Matthew effect relates to the boundary of the joint prokigbil ¢ integral, i.e.
density function. Consequently, the determinants of aekegr

.. . . oo +o0 +oo  px _ Y ﬂfl  (nt—p)2
distribution are the selection rule (whether it is selected f(x) :/ 1 e 2o dtda
randomly or certainly), the newly added links (whether they J_ 0 o V2rmo
are constants or variables following such as a log-normal too ptoo x]“ﬂ—l  (nt—w?
distribution, and the connection mechanism (e.g. the Matth = /0 \ 207 duwdt

r— ¢
V2o

effect), whichever directly affects the final degree disition. too g 1 i 17)
We reveal this direction is more significant than the tradil = / [—=2~ 7] e” 27 dt
view that the connection mechanism is the crucial factor for 0+oo v 2o
evolving networks. _ / 1 e
Additionally, we uncover that the exponential term of a 0 tV2rmo ’

degree distribution for an evolving netwoﬁj{i is traced to Int—p T _
that one link has two degrees, see Eq. 4. Ifri/ve break the Iinlﬁt 7 thatisdy=czdt, then by substitutiony anddy

y_
of the network, and regard the valuesafas the increment or ! tto Eq. 17, we have

decrement of income in economics, then, one income can be oo B oo ‘%d _1 18
spent on different places, which means the exponential term - flz) = o Vo YT (18)
can be not only?2. In that sense, by setting the exponential

y% y 9 P The results follow. [ |

term as a parameter, we then figure out the general form of

this kind of distribution in next section. As stated above, a subnormal variable is a joint probability

density of a uniform variable and a log-normal distribution
[1l. SUBNORMAL DISTRIBUTIONS FOREVOLVING thus we have Th. 2.

NE_TWOR}TS ANDTHE'_R STATISTICAL PROPE_R.T'.ES Theorem 2 Given random variablesX' and Y are mutually
In this section, we mainly focus on the definition of thgndependent, and follows a uniform distribution on [0,a]y
subnormal distribution derived from an eVOIVing networldanfo”ows a |Og_n0rma| distribution with the parameteﬁsand
displaying its statistical properties. o, if
a
A. Definition and Derivation of a Subnormal Distribution X
For Egs. 13 and 14, theoretically, consider that the cothen, the random variabl& follows a subnormal distribution
nection variablen as a pure log-normal distribution with thewith the parameter.

Z=Y(%)y, (19)

4



Proof: For 2<0, Otherwise, forz>0, we sety_lnt% anddy_ﬁdt,
notice the integral range, then PDF can be expressed as

a
F =P{Y(=)"<z}=0. 20
2(2) { (X) <z} (20) o~ 71”75;”” Y (V2oytyo®+u) (502
_ _ _ fx) = —3 ————e 2 dy
Otherwise, forz>0, since X and Y are mutually inde- 7 Vo
pendent, the joint probability densitf (=) is the product of o e 1”}% 1 )
. i, " _ +37°0 e
marginal probability densitiegx () and fy (y), then = e elrzy N ﬁe Ydy
a Inz—p—vyo?
Fz(z)=P{Y(=)" <z} = / fz(z)dzdy — 0 entivie’(g n V2o Lefgfd
= Y)
X y(a)7<z Y+l ( 0 ﬁ )
0 it Inz—p—v0"
// fardy = [[ px@)f oy =g T et
)<z z>a(¥)y (21) .2 (26)
iy where erfz)= \/_fo —tdt.
/ / dzxdy Applying the same method, far>0, we solve CDF
(% )7 27r0a:c ) | | ( 1o?
nr—pu nr—pu—((y+1)o
_ (3) —nzop? F(z) = —{erf( NG ) — erf| % 1}.
0 2mox d 7 (27)
The results follow. ]

Consider both Eqgs. 20 and 21, we have
Remark 1 The PDF can also expressed as the complemen-

#1- (f)w Mdz 2> 0 tary error function and standard normal cumulative distrib
Fz(z) = o \/%ax (22) tion function
0, z S 0 +00
iy b [ Ly
obviously,F (z) follows the CDF of a subnormal distribution. 7 pingine \/T
Further, _ 7 e#Jr%VzgzerfC(u + 02 — 1n:c> (28)
Y Z gl ns 2 207 V2o 2
fa) = By =4 7y Vame© T 0 - m]+ et g(REZLZAT
0, z2<0 )
(23) whereerfc(z)=-2 = [ e~ dt, and ®(z)= = e T dt.
which indicates the PDF of a subnormal distribution. Analogously, CDF can also be denoted as
In summary, the results follow. [ | P i+ (v + 1o —Inz
Additionally, the integration of Def. 1 is difficult to caltate ~ F(z) = E{erfc( ) — erfd 1}
in practical situation. To address this issue, we can alsdhes V2o V2o )
error function, also called Gaussian error function, toaien - q)(ln:” —Hy q)(ln:” —p=(y+1o ).
Eqg. 15 and 16 in Def. 1, which is presented in Th. 3. g g (29)

Theorem 3 The PDF of a subnormal distribution is given by
B. Some Statistical Properties of a Subnormal Distribution

2:lclrle’““%”z"z[lJrerf(lmc%)], In practical situations, a distribution function is of the
flz) = g (24) nonessential; instead some special properties are more use
x>0 ful. In this subsection, we provide some common statistical
0, <0 properties in numerals such as the expected value, variance
etc, and display their solving processes. The defauly a$
and its CDF is given by non-zero in all derivations.
1 1 1 Do 1) Expectation Value:In probability theory, the expec-
“lerf(E Yy et T H T (v +1)o ]}, tation value of a random variable is intuitively the long-
F(z) = 2 V20 V20 run average value of repetitions of the experiment it rep-
x>0 resents. It is the weighted average of all possible values.
0, <0 Practically, if Z=G(z,y) is a continuous random variable

(25) having a joint probability density functionf(z,y), and
wheret is a log-normal random variable with the parametersfroo f+°° |G (z,y)|f(z,y)dzdy<+oo then the expectation

A ando?, anderf(z) is the Gaussian error function. value of Z is given by
Proof: Consider Def. 1, forz<0, both f(z) and F(z) A
are equal ta). E@2)= | n G(z,y)f(z,y)dzdy.  (30)



Then, we have Then, Eqg. 36 and 37 are substituted into 34, we have

L

Theorem 4 The expectation value of a general subnormal Var(Z) =e
(v=12"

variable with the parameter#1 is ~2Zyet% . v—2
The result follows.

2u+02[ Y 602 _

(38)

. [ ]
Proof: A subnormal variable” is jointed by mutually in-

dependent random variables, a uniform variaKlelistributed Remark 2 Apparently, ify=1 or y=2, the nonexistence of

on [0,a] and a log-normal variablé& distributed distributed the variance follows. Furthermore, the variance should be

on (0, 400), according to Th. 2, and can be expressed as honnegative, that is

2

a1 2 Y 2 Y
=y(=)7. 31 2uto o _ > 0.
2=y() (31) e [7_26 (7_1)2]_0 (39)
For v#1, we have For v#£1 or 2 ( :
Yy —2
a1 7> . 40
2= /y;” (2 y)ddy T o)
0
400 a ) Analogously,
/ / y(=)7 f(z) f(y)dady o>1n (v —2) (41)
0 0 35 (y—1)2°
Foo a 1 (ny—p)? (32)
/ / y( ; g 5 ————e 207 dudy Finally, we conclude that only if#1 or 2 and o>In ?(7_’1)22),
oo + T B the variance of the subnormal distribution will exist.
* a~ _ (ny—pw?
= 71 7]0- f/_ 202 dy, Remark 3 From Th. 4 and 5, we obtain the relationship
0 between the parameters, o, v and the expectation value
let t:“‘yT‘“, then E(X) and the variancé/ar(X). Specificallyu is denoted as
400 ) ) 1 (v—2) Var(X)
_ 7 1 ~Stoytpg Tt w=In v E(X)]—-=In 7 (1+ )
(33) _ 2l 1,
The result follows. | B hl[»y - 1E(X)] 27
2) Variance: Additionally, we employ the variance to dis- _ (42)
play the dispersion degree measuring how far a set of numb@psl o is
is spread out. Specifically, for a variahle with the expecta- : (=2 , v —2) Var(X) 43
tion value E(X), then variance is given by ar(X)=E([X — n{~ CESIE + =12 [EXR (43)

E(X)P).

Then, we carry out the variance of a subnormal distribution. From the derivation, we can see that the variance is possibly

Theorem 5 The variance of a general subnormal varlableezu+a e o?

with the parametery#£1 andy£2 is e2#+°” [2

Proof: The variance of a subnormal variable can be

expressed as

2
72¢ ~ ek

noneX|stent And ify— o0, the variance numerically equals to
—1], equivalent to the log-normal distribution. And
we can learn from the Eq. 42 and 43 that the values of poth
ando are relatively low, directing the variance to a low value,
which agrees with the assumption in the process of derivatio
of a subnormal distribution.

Var(Z) = E(Z*) - [E(Z)] (34)  3) Other Statistical PropertiesFor any real numbek, the
e kth moment variableX is given by E(XF¥), thus we have
where, by utilizing Eq 31,
+o0 a oy Theorem 6 Thekth moment of a genzergl subnormal variable
E(Z%) = - dady with the parametery£k is —L-ekntzho”
ﬂf ay\/27ra 3 vk
+o0 yav -1 2 o (35) Proof:
—[ 7]8 . dy, +oo X 1 (ny #)
-2 0 Voro B(Z%) :/ / L L dxdy
here, we rendet=""4-L, 0 0 z ay\2mo k
' +oo k—1,-—1 2
Y 1-E Y a” _(ny—p)?
+oo — €T 5. z ¢ 202 d ,
E(ZQ) — o v / \/12_6 +20t+2”dﬁ v — k[ ]0 0 o (324)
™
oo 2 —Iny—p
_ 2M+20 /+ 1 “’i") i@t (36) let ¢ ra then
/ +oo
T ~ o E(Zk) — L 1 e—é-{—kat-{-kudt
- —+ , vk Vom
-2 Y kutik202 too (t—ko)?2 (45)
= L1 eFHT2N T e~ 2 dt
and note that Th. 4 i T —k /_OO NG
g 2u+o Y 172 2
E(2)? = pt (37) _ kpt k2o
FOF =5 =



The result follows. B A. Parameter Analysis

SD‘I;?;(? arithmetic coefficient of variatio@'V (X) is the ratio  Tq explore the influence of the parametersy, ando on
)+ WhereSD(X)=/Var(X). the curve of the subnormal distribution of Eq. 15, we let tio o
them be constants, and the other one deals with three distinc
values, then the corresponding plots are drawn. The remudts
illustrated in Fig. 1.

Theorem 7 The CV(X) of a general subnormal variable
with the parametery£1 and y#£2 is ﬁekw%kza?_

Proof: For the parametey, as shown in Fig. 1(a), the higher value
T = makes t.he curve taller and thinner, which. means the peak
CV(X) = SD(X) _ \/@ [%26 (7,1)21 grows higher. However, a change frcgno 10 is much more
E(X) [ obvious than fromlO_ to 40. An_d the influence ofy on the
v-1 (46) mode ( of the peak) is inconspicuous. As a restlgpeeds up
(r—1)2 .2 ascent rate before mode, and descent rate after the mode. Thi
V= 2)6 -1 character is very similar to the exponent index of the Power-

law distribution denoting the slope in logarithmic cooraties.
u We can see from Fig. 1(b), with the rise of the parameter
The partial expectation (PE) value of a random variable the curve becomes shorter and fatter, and the change is
X with respect to a threshold is denoted asPE({) = very apparent, evep rarely increases by. That is to say,
foo z f(z)dx w is positively related to the mode, but has a visibly negative

Theorem 8 The partial expectation value of variation€ffect on the peak.

PE(X) of a general subnormal variable with the parameter As the last parameter illustrated in Fig. 1(c), the higher
P Iné—p value makes the curve taller and thinner. For the peak, the
’}/751 is ﬁe’ 2 (I)( — T)

influence ofo is similar to+, in other words, with the increase
Proof: of o, the peak rises, but very slow. Different from o is
oo negatively related to the mode in the exponential, the highe
PE(X) = / xf (z)dx value makes the mode much lower. Fig. 1(c) displays that the
JON H . corresponding: move leftward.
/ A _lniop? > dtd (47) In summary,~ and o positively affects the peak of a
0 \/ﬁg subnormal distribution indicating the height of the cunvhijle
1 (ot )2 1 does it negatively. Besideg, has a positive influence on the
= -1 / \/ﬁae 207 dL, mode indicating the location of the peak. Contrarityhas a
¢ negative influence, ang has an inapparent influence on the
let y:m%—g, we have mode. Furthermorey ando have a positive relationship with
the rate of rise and fall, the latter is more severe, othexwyis
s . dy has an obviously inverse relationship. With these relatigus,
Y—1 men , 7r we can determine the approximate curve shape of the required

2 subnormal distribution.

+o00 1

PE(X) =

e’”‘ z

1[15 n_

B. Fitting Subnormal Distribution to Other Distributions

To fit these distributions, the subnormal distribution is
required to be discretized, in other words,can only be
where® is the standard normal cumulative distribution funcintegers. To clearly compare the fitness of two distribugjon
tion. we apply the Pearson product-moment correlation coefficien

The result follows. B Specifically, for vectors of subnormal variablés and other

In addition, many other statistical properties, such as thariables, such as the degree distribution of evolving ngtw
characteristic functiorZ[¢®*X], the moment generating func-Y, the correlation coefficient is denoted as

P In¢ —
= LelH—Tq)(g — né M).
v—1 o

tion E[e!] (which are easily proved divergent), mode, peak ( E[(X — E(X))(Y — B(Y))]
which are without analytic solutions), etc, are omittedhiist pXyY = SD(X)SD(Y) (49)
paper.

1) Fitting the Degree Distribution to an Evolving Network:
The modeling of the evolving network is referred to Section
IV. SIMULATION AND ANALYSIS II.B.

In this section, we first provide the analysis of the influence In the initialization, we build aV 1/ small-world network
of the different parameters, u, and o of Def. 1 on the with 20 vertices as the initial network, each connects2to
curve of the subnormal distribution. Then, we carry out sommeighbors and has 80% chance to add a link to others. In
simulations of fitting the subnormal distribution to the thé¢he evolving process, for simplicity, we use a homogeneous
degree distribution of evolving network in theory and sbcidoisson process instead of a nonhomogeneous one since the
network in practical, as well as the wealth distribution igrowing is essentially independent of the degree distidbut
economics. Specifically,
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The comparison of the degree distributions ofwengl networks marked by red circles and their correspondinignormal distributions marked
by blue circles, all have thai=0 and~y=2, but differentos.

denoted asg;, i={1,2,3,--- };

o If the cumulative timeT;<t, let T;=1T; + t;, else stop and
output the temporal series.

Then we have the temporal series of arrival vertices. In the
process of connection, we employ theynrnd function in
Matlab to produce the number of connections, the result is
rounded byround function, and the roulette algorithm is
applied to simulate Eq. 3. As a result, a relatively sparse
sample of a evolving network produced by-1, t=100, and
u=1, o=1 of log-normal is demonstrated in Fig. 4.

After an evolving network is obtained, we utilize the associ
ation matrix to record its degrees, and plot the correspandi
Figure 4. An illustration of an evolving network produced &1, =100, degree distribution. Three evolving networks with differgs
andp=1, o=1. andos are recorded. Then, with the same parameters, we also
use Def. 1 to draw the distributions of the discrete subnérma

variables in the same coordinate. The results are showmgy# Fi
o Set the values of input rate and termination time; 2 and 3. Since the distributions are obtained from networks,
o Generate exponential distribution random values with ~ we lety~2.




Table | . | i d ib ial K
THE CORRELATION COEFFICIENT OF THE DEGREE DISTRIBUTIONS oF 1S MOSt commonly utilized to describe social networks, we

EVOLVING NETWORKS AND THEIR CORRESPONDING SUBNORMAL also introduce a Power-law distribution for comparison ahhi

DISTRIBUTIONS. is denoted asf(x)=ym x~7"! (x>u), where y=2. The
b : Value 1 2 3 expectation value of Power-law distribution, if the distriion
arameter .
m 09937 T 09810 | 0.9639 fits the network degree, can be denoteas=E(cn). Then,
o 0.9985 | 0.9908 | 0.9207 to simulate the collaboration network, we set the parameter

m=a11. Its black scatters are shown in Fig. 5.

0.14

In Fig. 2, differentus of the degree distributions and sub-

normal distributions are compared. To reduce the inteioopt 012} o

of o, we let it be the smallest integér Since the tails of both il & 7 Degree Distbution.
distributions are extremely close, we tak&) , 200, and250 s © Subnomal Distbution

values ofz for u=1, 2, and3 for illustration, respectively. By Lo e T Powerlawbisrhuten

Eq. 49, the similarity of both distributions is calculatedda Toosl

listed in Tab. I, (first row). From the results, we see that the ool

correlation coefficient of two distributions are very higii| '

above95%, implying that the degree distribution of evolving 0.02¢

networks is highly similar to the subnormal distributionthwvi ol ‘ RS |
the same parameters. And we also observe that the hjgher oo B R s e
the lower the correlation coefficient, the deviation degoée

both distributions becomes more obvious. Figure 5. The comparison of the degree distributions ofbaltation network

. . s . marked by red circles and its corresponding subnormalilolistons marked
In Fig. 3, differentos of the degree distributions andby blue circles, Power-law distribution marked by blaclcles.

the subnormal distributions are compared. To reduce the

interruption of ;, we let it be the possibly smallest integer Again, the Eq. 49 is employed to calculate the corre-
0. 75, 100, and 125 values ofz for o=1, 2, and 3 are gpondence of the subnormal, Power-law distribution with th
illustrated. By Eq. 49, the similarity of both distributieris degree distribution of the collaboration network. The f&0
calculated and listed in Tab. I, (second row). The resubie al,5|yes are taken into calculation, but for a clear displgyin
show a good evaluation of similarity of both distributioadl, ony the first70 values are shown in Fig. 5. The correlation
above90%. However, the highet will rise the variance of coefficient with the subnormal distribution #8.68%, while
connections, and consequently, the deviation degree i® Mgat with the Power-law distribution i86.31% only (97.45%
apparent, leading to a lower correlation coefficient. and94.45% if only the values beyond1 are compared).

Above all, the subnormal distribution well fits the degree opyiously, the subnormal distribution fits the collabooati
distribution of evolving networks, and the result is befier network degree distribution much better in tendency as agll
relatively low values ofx ando. correlation. Actually, the Power-law distribution onlysieibes

2) Fitting Distribution of Real NetworksFirst, a collab- the tails, i.e. those authors having many collaborations, b
oration network of Arxiv Astro Physics from the e-printignores those ones having a few only. From our perspective,
arXiv which covers scientific collaborations between awhothe lower values are much more to be considered, since they
of papers submitted to Astro Physics category is fitted to tigpresent the majority. Specifically, the highest collalion
subnormal distribution [26]. number is3 in the collaboration network, and can be described

For the collaboration network, if an authoico-authored a as the most probable value of authors. Additionally, the &ew
paper with authorj, the network contains a undirected edggaw is monotonously decreasing, but social networks uguall
fromi to j. The data covers papers in the period from Januagyow with a peak, indicating that the poorest are not the most
1993 to April 2003. It begins within a few months of the and the subnormal distribution perfectly fits that chanacte
inception of the arXiv, and thus represents essentially the3) Fitting the Wealth Distribution:As mentioned before,
complete history of its ASTRO-PH section. The number afie subnormal can also describe the inequality distribuitio
nodes isl8, 772, and of edges i89,6160. From this network, economy. Therefore, we try to fit the subnormal distribution
we can obtain its related association matrix, and calculee to the personal wealth distribution.
degree distribution, shown in Fig. 5 as red scatters. However, wealth distribution is not easy to measure, since

From the data, we can estimate the expectation value of geople avoid reporting their total wealth routinely. Anceth
gree of collaboration network, which 8(cn)=21.1038~21. statistical data are often quartered or more, which makes it
Assuming that one subnormal distribution fits this netwaek d difficult to seek precise values of each wealth level. Butmwhe
gree, as we know, thefor networks approximatively equals toa person dies, all assets must be reported for the purpose of
2, then by employing Th. 4, the relationship of the parameteifsheritance tax. Using these data and an adjustment progedu

1 ando can be denoted as + ”—;ZWml.mz Thus, the British tax agency, the Inland Revenue (IR), reconstdic
we let u=1.15, 0=0.86. The illustration of blue scatters ofwealth distribution of the whole UK population. We mainly
subnormal distribution is shown in Fig. 5. employ the2008 to 2010 data of total gross capital value

Because in previous studies, the Power-law distributiabtained from their Web site [27]. These data divide the



people into five levels of net estaté,0 to 50,000, 50,000 to  other uneven distributions. Essentially, from the derivat
100, 000, 100, 000 to 200, 000, 200, 000 to 300, 000, 300,000 we discover that the degree distribution is2alimensional
to 500, 000, 500, 000 to 1, 000, 000, 1,000, 000 to 2,000,000, joint probability density consisting of the selection oftiees
and over2, 000,000, we average the level g9.25, 0.75, 1.5, that follows a uniform distribution and the connection of
2.5, 4, 7.5, 10, 25}*10°. And the number of people for eachnew vertices that particular follows a log-normal disttiba
level are{3053, 2382, 4207, 2515, 1682, 889, 224, 98}. From in here, while the inequality of the Matthew effect relates
these data, we obtain the wealth distribution. Since théessa to the boundary of the joint probability density function.
are sparse, we connect them as a plot, see the red plot in Bigtually, the connection may also be another distributika |
6. the uniform distribution in some special cases, but in this
As the data are too poor to calculate the expectation valy@per we employ the log-normal distribution and obtain the
so we can not employ the previous method to evaluate thebnormal distribution. In further work, we may continue th
parameters of the fit subnormal distribution. Lots of parterge study to other joint probability density functions as well.
are tested to present better results, and one of them is thaVe find that the subnormal distribution can also describe the
~v= 1.9, u=0.6, and 0=0.5, see the blue plot of subnormalwealth distribution, which can be explained by network tiyeo
distribution in Fig. 6. The income is regarded as the new coming vertex, and the
arrangement or consumption for this income is its connastio
0.35 ‘ ‘ ‘ ‘ to the network. The whole network is the total wealth, each
one vertex is the wealth of the individual. Apparently, the
o Wealth Distribution | inequality of the Matthew effect influences the consumption
0.25[ || — — Subnormal Distribution 1 of individual, for example, people are more likely to buy geo
[ —+— Power-law Distribution ] with famous brand, and these firms are getting richer, which

0.3

0.2
\‘ k) is highly similar with the connection process of evolving-ne
0.1ST 1 .
| works. Therefore, be_yor_1d the evolving ne_tworks, we speeula
0.1p \ 1 that the subnormal distribution can be universally empdoye
describe the distribution with inequality and growing whic
‘ : requires further studies.
0 5 oo® 0 % Additionally, as Gibrat's law describes, the size of a firm
and its relative rate of growth are independent, which is als
Figure 6. The comparison of the degree distributions otaltation network available for evolving networks. One result of Gibrat's law
e e et o e man oy maer® meed is that processes characterized by Gibrat’s law converge to
limiting distribution, which may be log-normal or power law
depending on more specific assumptions about the stochastic
owth process. Furthermore, we precisely deduce that this
kind of distribution based on the unequal growth followsttha
the poor tends to be poorer; while the rich richer is subnbrma
in this paper, which holds both characters of log-normal and
éi’ower law. For the special situation that the connection or
income is constant, the subnormal distribution reduces to a
Power-law, and if the individual is constant and non-random
the distribution reduces to a log-normal one. In that sewse,
can also argue that the subnormal distribution is a comioimat
of log-normal and Power-law with the peak of the former and
the tail of the latter. Above all, we agree with Gibrat’s law
that the income/connection is log-normally distributedhiles
F final wealth/degree follows a subnormal distribution.
However, we also have a dilemma on how to confirm the
parameters of subnormal distribution. In this paper, we can
gply roughly decide the influence of, u, and o on the
tendency of a subnormal curve, but not accurately dedude the
attributes for a subnormal function. One possible soluiscio
solve the mode and median of the probability density fumgtio
which greatly contributes to determine the function curmd a
is our goal for the next stage.

f(x)

0.05L

For the Power-law distribution, except the expectationeal
we can also calculate the slope of the date in logarithm
obtain~, and furthem. The result is thaty=0.3 andm=~0.34.
Then, the Power-law distribution in black plot is illusedtin
Fig. 6.

By Eqg. 49, the result of correlation coefficient of th
subnormal distribution with wealth distribution i80.53%,
while the Power-law distribution i68.35% only, (99.24% and
97.55% if only the values beyon@.5 are compared). Once
again, we display that the Power-law only fits the tail, ba th
subnormal approximatively fits the whole plot. For the wealt
the head of the distribution represent the lower-middéssts,
which play significant role in the social wealth and stajoiht
and should not be ignored. Therefore, the fit of a subnorma
distribution to wealth distribution is worth exploring. Wever,
we observe that at the point @25 to 0.75, the tendency
of plot declines, the reason is that negative asset owners
included in0 to 0.5 making the value af.25 higher, and for
both subnormal and Power-law distribution negative vaares
ignored.

V. DISCUSSION ANDOUTLOOK
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