Deriving E8 from Cl(8) through Pairing up Elementary Cellular Automata Bits

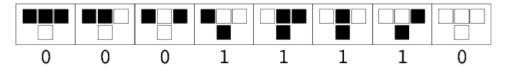
By John C. Gonsowski

Abstract

Tony Smith relates the 256 dimensions of the Cl(8) Clifford Algebra to the 256 rules of Elementary Cellular Automata. The graded dimensions of Cl(8) correspond to graded dimensions of the E8 Lie Algebra used in Smith's physics model. Six Cellular Automata (CA) rules with four one-bits are related to Smith's 8-dim Primitive Idempotent bookended by the single rule with no one-bits and the single rule with all eight bits as ones. The 64 other four one-bit rules are related to E8's 64-dim vector representation used by Smith for a spacetime 8-dim position by 8-dim momentum. The two 28-dim D4 subalgebras of E8 are used for bosons and their ghosts and relate to the CA rules with two one-bits and six one-bits. Paired up CA bits are related to the Cartan subalgebras of these D4s. The two remaining 64-dim spinor representations for E8 are used for eight component fermions/antifermions and relate to the CA rules with one, three, five and seven one-bits.

Introduction

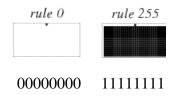
Tony Smith [1] relates the 256 dimensions of the Cl(8) Clifford Algebra to the 256 rules of Elementary Cellular Automata [2]. The graded dimensions of Cl(8) correspond to graded dimensions of the E8 Lie Algebra used in Smith's physics model. An 8-dim Primitive Idempotent half spinor along with the 248-dim E8 are embedded in the 256-dim Cl(8). The grading of this Cl(8) is 1 8 28 56 70 56 28 8 1 which sum to the 256 dimensions. This grading gives the quantity of Cellular Automata (CA) rules that have a certain number of one-bits.



The rule above is called rule 30 because the 4 one-bits produce a binary 2+4+8+16=30. The Cl(8) grading indicates there are 70 rules with 4 of the 8 bits being a one. In other words there are 70 ways to place 4 ones in the 8 bits to form a rule. The bits for the rule represent the next state value for the 8 possible values of the current state and the states to the left and right of the current state being evaluated. Via the Cl(8) grading there is one way to have 0 of 8 ones in the rule; 8 ways to have a single one; 28 ways to have two ones; 56 ways to have five ones; 28 ways to have six ones; 8 ways to have seven ones; and one way to have 8 ones.

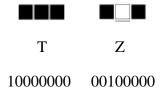
The Primitive Idempotent and Paired Up Cellular Automata

The grading of the 248-dim E8 in Smith's physics model is 28 64 64 64 28. The grading of the 8-dim Primitive Idempotent (PI) half spinor embedded with E8 in Cl(8) is 1 6 1. In Smith's physics, the PI performs a Standard Model Higgs-like role. The two ones of the PI grading fit with the rules having 0 of 8 ones and 8 of 8 ones:

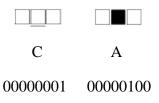


The middle 6 of the PI grading adds to the middle 64 of the E8 grading to get the middle 70 of the Cl(8) grading. This middle 6 grading thus fits with 6 rules having four one-bits. It specifically fits with the 3+2+1=6 rules that have two pairs of bits that can pair up to form the Cartan subalgebra bivectors of Smith's model. The first two bits that pair up form the Y and X of an YX spatial rotation.

The next two bits to pair up form the temporal T and spatial Z of a Lorentz group TZ boost.

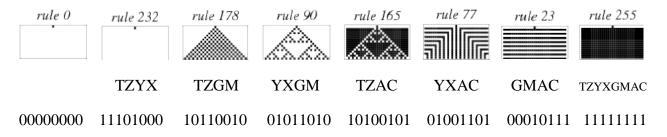


The next two bits to pair up use a Conformal group (C) basis vector and an Anti-DeSitter group (A) translation basis vector to form a dilation (CA). This dilation is the Higgs VEV in Smith's physics model.



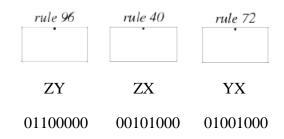
The final two bits to pair up allow Standard Model Ghosts in Smith's physics using basis vectors M (magenta/minus for strong force anticolor and weak force negative charge) and G (green/greater than zero for strong force color/weak force positive charge).

Using these paired up bits gives the following rules with four one-bits for the middle 6 grading of the 8-dim Primitive Idempotent bookended by the single rule with no one-bits and the single rule with all eight bits as ones.

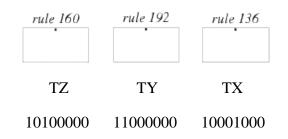


Rotations and Boosts

As mentioned earlier, these paired up bits (TZ, YX, GM, and AC) are to be used for the Cartan subalgebra in Smith's physics model. Smith uses the Cartan subalgebra bivectors for the 28s in his E8 grading which match to the 28s in the Cl(8) grading. The E8 28s come from two D4 subalgebras. The Cartan subalgebra bivectors thus also relate to the axes of a 24-vertex, 4-dim 24-cell, D4's root vector polytope. The 28 Cellular Automata with 2 one-bits and the 28 CA with 6 one-bits will contain the Cartan subalgebra bivectors. Here are the three Lorentz Group gravity spatial rotation bivectors/double one-bits including the YX Cartan subalgebra one.

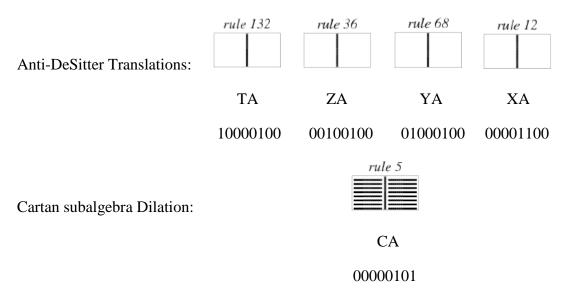


Here are the three Lorentz group gravity boost bivectors/double one-bits including the TZ Cartan subalgebra one.



Translations, Dilation and Special Conformal Transformations

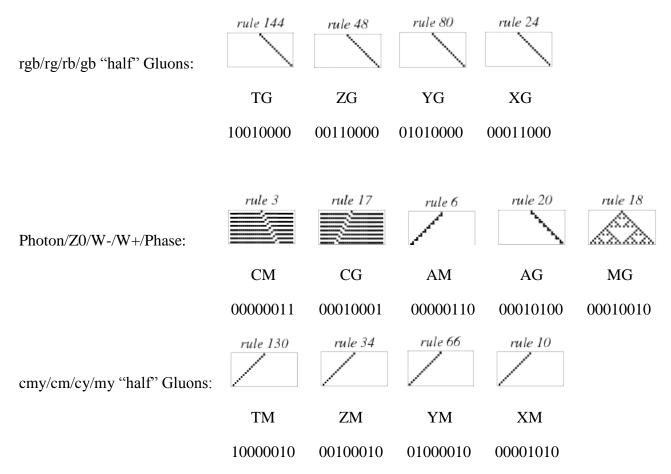
Here are the four Anti-DeSitter group gravity translation bivectors/double one-bits, the CA Cartan subalgebra dilation (Smith's Higgs VEV), and the four special conformal transformations (dark energy related for Smith).



Conformal Transformations:	rule 129	rule 33	rule 65	rule 9
	TC	ZC	YC	XC
	10000001	00100001	01000001	00001001

Ghosts for the Standard Model Bosons

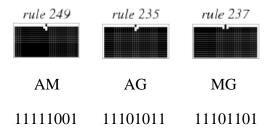
Here are the bivectors/double one-bits for the Standard Model Ghosts of Smith's physics model plus the MG Cartan subalgebra propagator phase.



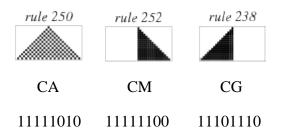
Ghosts for Rotations and Boosts

The above conformal gravity and Standard Model ghost bivectors fit with the 28 Cellular Automata rules with double one-bits. These 28 CA relate to the first 28 in the E8 and Cl(8) grading. The conformal gravity ghost and Standard Model bivectors fit with the 28 CA with six one-bits. These CA relate to the second 28 in the E8 and Cl(8) grading. The CA with six one-bits are also the CA with double zero-bits. These double zero-bits will be matched to Smith's D4 conformal gravity ghost and Standard Model bivectors.

Besides using double zero-bits instead of double one-bits, this ghost boson-actual boson bivector mapping also exchanges XYZT vectors with GMAC vectors. This may relate to how in Smith's model, the XYZT physical spacetime relates to the GMAC Kaluza-Klein internal symmetry space. Here are the three Lorentz Group gravity spatial rotation bivectors/double zero-bit ghosts including the MG Cartan subalgebra one.

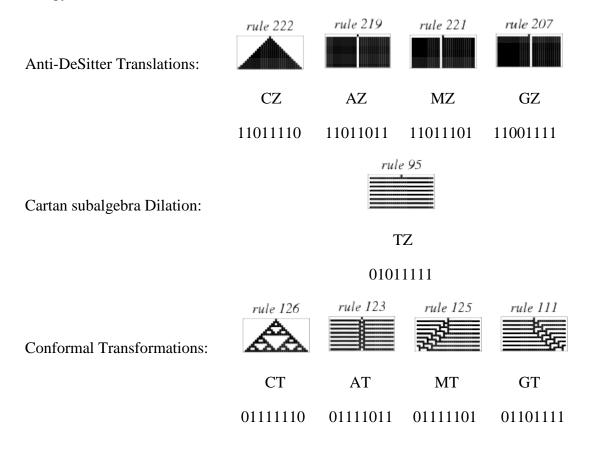


Here are the three Lorentz group gravity boost bivectors/double zero-bit ghosts including the CA Cartan subalgebra one.



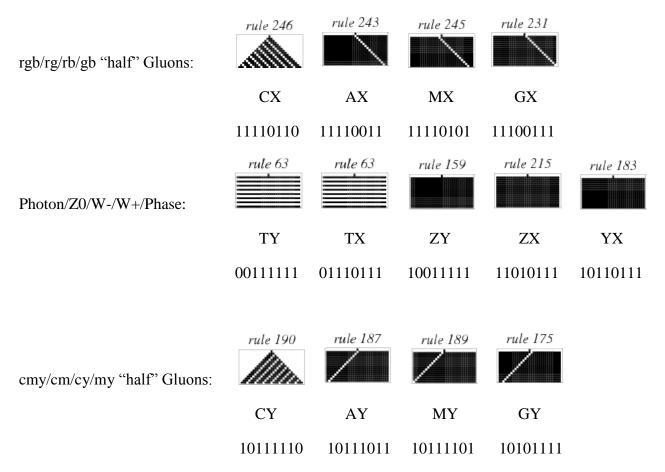
Ghosts for the Translations, Dilation and Special Conformal Transformations

Here are the four Anti-DeSitter group gravity translation bivectors/double zero-bit ghosts, the TZ Cartan subalgebra dilation ghost (for Smith's Higgs VeV), and the four special conformal transformation ghosts (dark energy related for Smith).



Standard Model Bosons

Here are the bivectors/double zero-bits for the Standard Model bosons of Smith's physics model plus the YX Cartan subalgebra propagator phase ghost.

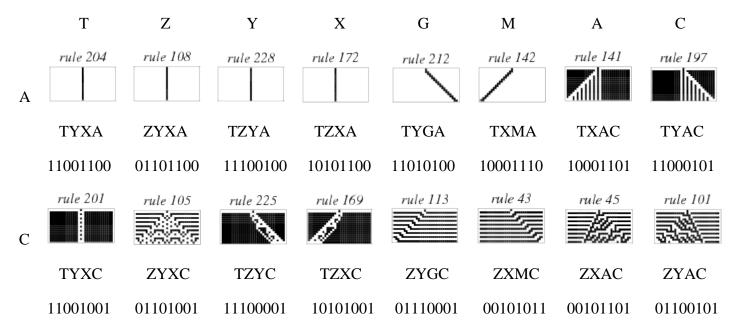


There's a pattern where rules that slant to the left vs. slanting to the right relate to charge for the Standard Model bosons and direction change (like X vs. Y) for gravity bosons. This perhaps relates to how charge, mass, and change of direction are related in Smith's 4-dim Feynman Checkerboard.

Spacetime Position and Momentum

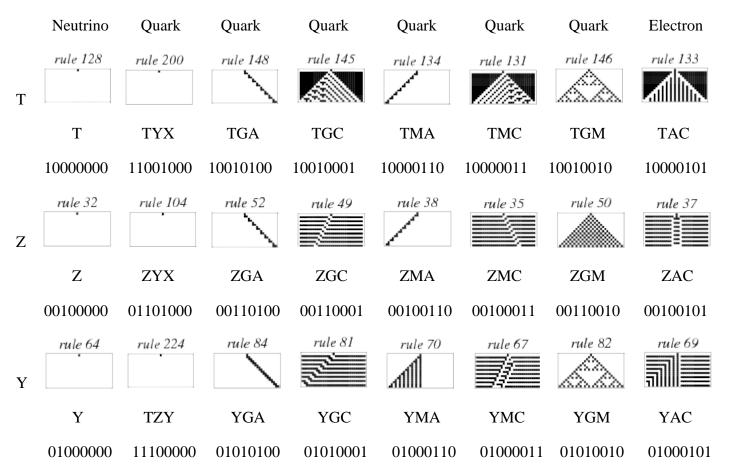
Subtracting the 6 middle grade of the Primitive Idempotent from the 70 Cl(8) middle grade gives the 64 middle grade for E8. This 64 middle grade is the position by momentum 8x8=64-dim vector part of Smith's E8 physics model. This 64-dim part of E8 thus relates to the 4-vector/four one-bit Cellular Automata rules not used for the Primitive Idempotent. The position and momentum are 8-dim due to the GMAC Kaluza-Klein internal symmetry space added to the XYZT physical spacetime.

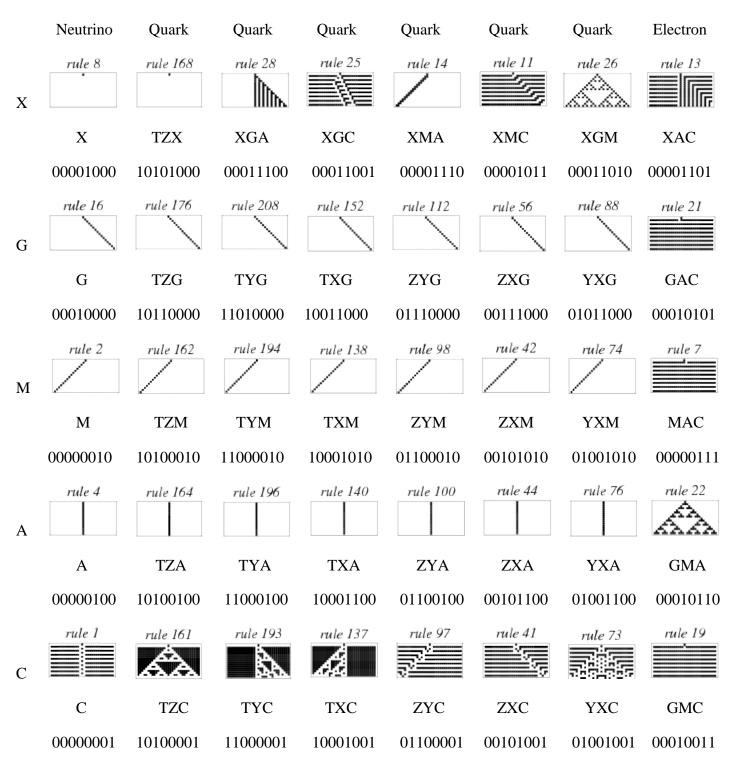
	Т	Z	Y	Х	G	М	А	С
Т	rule 163	rule 177	rule 195	rule 153	rule 149	rule 135	rule 150	rule 147
	TZMC	TZGC	ТҮМС	TXGC	TGAC	TMAC	TGMA	TGMC
	10100011	10110001	11000011	10011001	10010101	10000111	10010110	10010011
Z	rule 166	rule 180	rule 102	rule 60	rule 53	rule 39	rule 54	rule 51
	TZMA	TZGA	ZYMA	ZXGA	ZGAC	ZMAC	ZGMA	ZGMC
	10100110	10110100	01100110	00111100	00110101	00100111	00110110	00110011
Y	rule 198	rule 116	rule 78	rule 92	rule 85	rule 71	rule 86	rule 83
	TYMA	ZYGA	YXMA	YXGA	YGAC	YMAC	YGMA	YGMC
	11000110	01110100	01001110	01011100	01010101	01000111	01010110	01010011
X	rule 139	rule 57	rule 75	rule 89	rule 29	rule 15	rule 30	rule 27
	TXMC	ZXGC	YXMC	YXGC	XGAC	XMAC	XGMA	XGMC
	10001011	00111001	01001011	01011001	00011101	00001111	00011110	00011011
G	rule 216	rule 120	rule 240	rule 184	rule 210	rule 154	rule 156	rule 209
	TYXG	ZYXG	TZYG	TZXG	TYGM	TXGM	TXGA	TYGC
	11011000	01111000	11110000	10111000	11010010	10011010	10011100	11010001
М	rule 202	rule 106	rule 226	rule 170	rule 114	rule 58	rule 46	rule 99
	TYXM	ZYXM	TZYM	TZXM	ZYGM	ZXGM	ZXMA	ZYMC
	11001010	01101010	11100010	10101010	01110010	00111010	00101110	01100001



Spacetime Components of Fermion Creation Operators

The two remaining 64s in the E8 grading of Smith's model are for 8 spacetime components of fermion creation operators and 8 spacetime components of antifermion creation operators. The E8 64 grading for fermions comes from the 8 Cl(8) vectors plus the 56 Cl(8) 3-vectors. Thus the fermions relate to the Cellular Automata rules with a single one-bit and the rules with three one-bits.

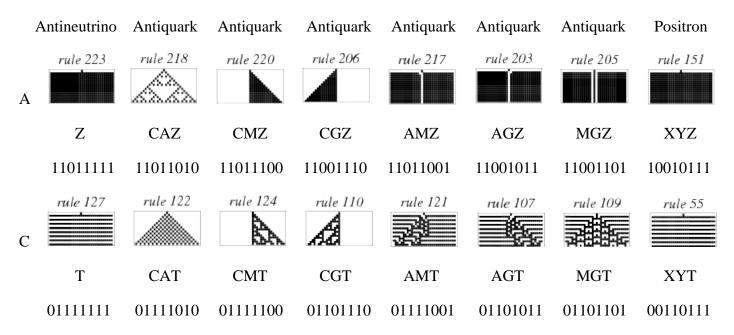




Spacetime Components of Antifermion Creation Operators

The E8 64 grading for antifermions comes from the 8 Cl(8) 7-vectors plus the 56 Cl(8) 5-vectors. Thus the related Cellular Automata rules for the spacetime components of each antifermion creation operator have five one-bits or seven one-bits. Like with the ghost boson to actual boson mapping done earlier, the fermion to antifermion mapping uses zero-bits instead of one-bits and exchanges XYZT vectors with GMAC vectors.

	Antineutrino	Antiquark	Antiquark	Antiquark	Antiquark	Antiquark	Antiquark	Positron
	rule 254	rule 236	rule 214	rule 118	rule 158	rule 62	rule 182	rule 94
Т					HHH.	MIER-		
	С	CMG	CXZ	CXT	CYZ	CYT	CXY	CZT
	11111110	11101100	11010110	01110110	10011110	00111110	10110110	01011110
	rule 251	rule 233	rule 211	rule 115	rule 155	rule 59	rule 179	rule 91
Ζ			\sim					
	А	AMG	AXZ	AXT	AYZ	AYT	AXY	AZT
	11111011	11101001	11010011	01110011	10011011	00111011	10110011	01011011
	rule 253	rule 248	rule 213	rule 117	rule 157	rule 61	rule 181	rule 93
Y				2	a11		$\otimes \mathbb{A}$	
	Μ	CAM	MXZ	MXT	MYZ	MYT	MXY	MZT
	11111101	11111000	11010101	01110101	10011101	00111101	10110101	01011101
	rule 239	rule 234	rule 199	rule 103	rule 143	rule 47	rule 167	rule 79
Х							AA.	
	G	CAG	GXZ	GXT	GYZ	GYT	GXY	GZT
	11101111	11101010	11000111	01100111	10001111	00101111	10100111	01001111
	rule 247	rule 242	rule 244	rule 230	rule 241	rule 227	rule 229	rule 87
G								
	Х	CAX	CMX	CGX	AMX	AGX	MGX	XZT
	11110111	11110010	11110100	11100110	11110001	11100011	11100101	01010111
	rule 191	rule 186	rule 188	rule 174	rule 185	rule 171	rule 173	rule 31
М			Úb.					
	Y	CAY	CMY	CGY	AMY	AGY	MGY	YZT
	10111111	10111010	10111100	10101110	10111001	10101011	10101101	00011111



The different slants mentioned earlier for the G vs. M and X vs. Y bits may relate to up vs down for quarks and antiquarks as well as effecting patterns in general (along with the A/Z bit's straight line and the C/T bit's chaos) for bosons, position-momentum, and fermions/antifermions. The X-Y-Z and G-M-A bits may relate to color for quarks and antiquarks.

References

- 1. <u>http://vixra.org/pdf/1602.0319v3.pdf</u>
- 2. <u>http://mathworld.wolfram.com/ElementaryCellularAutomaton.html</u>
- 3. <u>http://vixra.org/pdf/0910.0023v4.pdf</u>