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Abstract 
This paper generalizes an earlier investigation of linear differential equation solutions via 

Padé approximation (viXra:1509.0286), for the case of nonhomogeneous equations.  Formulas 
are provided for Padé polynomial orders 1, 2, 3, and 4, for both constant-coefficient and 
functional-coefficient cases.  The scale-and-square algorithm for the constant-coefficient case is 
generalized for nonhomogeneous equations.  Implementation details including step size 
initialization and tolerance control are discussed. 
 

1. Introduction 
An earlier study [1] investigated solutions of the linear differential equation 

[ ] [ ] [ ]F x D x F x′ =  via Padé approximation: 1[ ] [ ] [ ] [ ]F h Q h Q h F h−≈ − − , where [ ]Q h  is a 
polynomial, D  and Q  are square matrices, and F  may be a column vector or a multi-column 
matrix.  (In this paper, square braces “[ ] ” delimit function arguments while round braces 
“ ( ) ” are reserved for grouping.) 

We consider here the more general nonhomogeneous equation, 

 [ ] [ ] [ ] [ ]F x D x F x C x′ = + .  (1) 

where C  is a vector or matrix, size-matched to F .  Eq. (1) can be recast in the form of a 
homogeneous equation, 

 
[ ] [ ] [ ] [ ]F x D x C x F xd

dx
    

=    
    I 0 0 I

.  (2) 

where “ I ” is an identity matrix and “ 0 ” is a zero matrix.  For this case, Eq’s. (7) and (8) in [1] 
result in relations of the form 

 2 1[ ] [ ] [ ] [ ] [ ] [ ]
; [0] , [0]nQ h R h F h Q h R h F h

O h Q R+− − −     
− = = =     

     
I 0

0 I I 0 I I
.  (3) 

where Q  and R  are matrix polynomials.  This simplifies to 
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 2 1[ ] [ ] [ ] [ ] [ ] [ ] nQ h F h Q h F h R h R h O h +− − − + − − = . (4) 

The Q  polynomial has the form given in [1]; it is determined from D  and has no 
dependence on C .  The R  polynomial depends on both D  and C  and has a linear dependence 
on C .  In some cases [ ]R h  is an odd function of h  (i.e., [ ] [ ]R h R h− = − ), in which case the 

[ ] [ ]R h R h− −  term in Eq. (4) is replaced by 2 [ ]R h . 

In the case that C  is constant, [ ]R h  has a right-factor of C , 

 [ ] [ ]R h L h C=   (constant C ), (5) 

where [ ]L h  is a square matrix that has has no C  dependence.  Eq. (4) is replaced by the 
following for this case, 

 2 1[ ] [ ] [ ] [ ] ( [ ] [ ]) nQ h F h Q h F h L h L h C O h +− − − + − − =   (constant C ). (6) 

The homogeneous equation (C = 0  in Eq. (1)) has solutions of the form [ ] [ ] [0]F x x F= F , 
where [ ]xΦ  is the solution of the initial value problem, 

 [ ] [ ] [ ], [0]x D x x′Φ = ΦΦ  = I . (7) 

For the nonhomogeneous case, general solutions of Eq. (1) are of the form 

 ( )1

0
[ ] [ ] [0] [ ] [ ]

x
F x x F t C t dt−= F + F∫ .  (8) 

For the special case of constant D , [ ]xΦ  is an exponential matrix, 

 [ ] exp[ ]x x DΦ =   (constant D ). (9) 

If C  is also constant, Eq. (8) reduces to 

 1[ ] exp[ ] [0] (exp[ ] )F x x D F x D D C−= + − I   (constant D  and C ). (10) 

The factor 1(exp[ ] )x D D−− I  is well defined by its Taylor series even when D  is singular, and 
the factor can be robustly calculated by setting [0]F = 0  and C = I  in Eq. (10). 

If [ ]C x  can be an arbitrary linear combination of basis functions within a finite basis set, then 
particular solutions of Eq. (1) can be efficiently calculated by setting [0]F = 0  and setting [ ]C x  
to a matrix containing all basis functions in its columns.  The resulting [ ]F x  columns can be 
linearly combined to obtain particular solutions for any combination of [ ]C x  basis functions.  
The result can then be added to [ ] [0]x FF  to obtain general solutions [ ]F x  for any [0]F . 

Eq. (4) is used to integrate [ ]F x  across a small interval, from x h= −  to x h= .  The 
independent variable x  can be scaled and shifted to convert this to an integration from 0x x=  to 

0x x x= + ∆  for a sufficiently small x∆ , and multiple such integrations are concatenated to 
calculate [ ]F x  over a large integration interval.  For the homogeneous, constant-coefficient case 
( D  constant, C = 0 ), the concatenation can be efficiently implemented using a “scale-and-
square” technique based on the relation 
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 2 2 2exp[ ] ( ((exp[2 ]) ) )
j

jx D x D
×

−=
((

  . (11) 

(For some sufficiently large integer j , a Padé approximant is used to calculate exp[2 ]j x D− , and 
the result is squared j  times to obtain exp[ ]x D .)  This algorithm can be generalized for the 
nonhomogeneous case with constant D  and C . 

This paper is organized as follows:  Section 2 lists polynomial functions Q  and R  in Eq. (4) 
for various Padé polynomial orders.  Section 3 outlines the scale-and-square algorithm, 
generalized for the nonhomogeneous case.  Sections 4 and 5 discuss the choice of integration 
interval size based on error tolerancing.  Appendix A derives the Padé polynomial coefficients.  
Appendix B discusses MATLAB® implementation details for the constant-coefficient case.  
Appendix C derives an inequality used for the error analysis in section 4.  Appendix D provides 
Mathematica code validating the results of section 2. 

MATLAB® implementation code and application test cases are posted on the MathWorks 
File Exchange [2].  The algorithms and code incorporate and extend the functionality of 
MATLAB’s expm function [3-5], and provide an efficient alternative to MATLAB’s differential 
equation solvers [6] (e.g., ode45) for linear differential equations. 

 

2. Padé-approximation formulas 

The Q  and R  polynomials in Eq. (4) (or Q  and L  in Eq. (6)) are listed below for Padé 
polynomial orders 1, 2, 3, and 4, first for the case of constant D  and C , and then for the non-
constant case.  For Padé order n , the approximation order is 2n ; i.e., the single-step 
approximation error is of order 2 1nh + .  (A formula for the approximation error will be derived in 
section 4.) 

 

3

, constant , :
[ ]
[ ]
[ ] [ ] [ ] [ ] 2 [ ]

Padé order 1 D C
Q h h D
L h h
Q h F h Q h F h L h C O h

= −
= −

− − − + =

I
I

 (12) 

 
( )2 21

3

5

Padé or , constant , :

[ ]
[ ]
[ ] [ ] [ ] [ ] 2 [

de

]

r 2 D C

Q h h D h D
L h h
Q h F h Q h F h L h C O h

= + −

= −

− − − + =

I
I

 (13) 

 
( ) ( )
( )

2 2 2 22 1
5 15

2 21
15

7

Padé , constant , :

[ ]

[ ]

[ ] [ ] [ ] [ ]

 

2 [ ]

order 3 D C

Q h h D h D h D

L h h D h

Q h F h Q h F h L h C O h

= + − +

= − +

− − − + =

I I

I
 (14) 



 

4 
 

 
( ) ( )
( )

2 2 4 4 2 23 1 2
7 105 21

2 22
21

9

Padé ord , constant , :

[ ]

[ ]

[ ] [ ] [ ] [

er 

]

4

2 [ ]

D C

Q h h D h D h D h D

L h h D h

Q h F h Q h F h L h C O h

= + + − +

= − +

− − − + =

I I

I
 (15) 

Eq’s. (12)-(15) can be obtained from the following condition for Padé order n , in which Eq. 
(10) has been substituted with x h= ± :  

 

( )
( )

1

1

2 1

[ ] [ ] [ ] [ ] 2 [ ]

[ ] exp[ ] [0] (exp[ ] )

[ ] exp[ ] [0] (exp[ ] )
2 [ ]

n

Q h F h Q h F h L h C

Q h h D F D h D C

Q h h D F D h D C
L h C

O h

−

−

+

− − − +

= + −

− − − + − −

+

=

I

I  (16) 

Q  and L  are order- n  polynomials of the following form (with L  restricted to being an odd 
polynomial), 

 1

0,1, 1,3, ;
[ ] ( ) , [ ] ( )j j

j j
j n j j n

Q h q h D L h r h D h−

= = ≤

= =∑ ∑
 

. (17) 

Considering separately the cases (1) [0] ,F C= =I 0 , and (2) [0] ,F C= =0 I , the following two 
conditions follow from Eq. (16) with substitution from Eq’s (17) and replacement of the 
exponentials with Taylor series, 

 2 1

1,3,
0,1, min[ , ]

[0] , :

[ ]exp[ ] [ ]exp[ ] 2 ( )
( )!

j k n

k
j n k

F C
q

Q h h D Q h h D h D O h
k j

+

= ∞
=

= =

− − − = =
−∑

I 0





 (18) 

 ( )
( )

1

1 2 1 2 1

[0] , :
2 [ ] [ ](exp[ ] ) [ ](exp[ ] )

2 [ ] [ ] [ ] n n

F C
L h Q h h D Q h h D D

L h Q h Q h D O h O h

−

− + +

= =

+ − − − − −

= − − − + =

0 I
I I  (19) 

Eq. (18) implies n  conditions on the 1n +  coefficients 0q , …, nq : 

 
0,1, min[ , ]

0 , 1,3, 2 1
( )!

j

j n k

q
k n

k j=

= = −
−∑



 . (20) 

With the supplemental condition 0 1q =  (so that [0]Q = I ), Eq. (20) has the solution 

 !(2 )!( 2) , 0,1,
(2 )!( )! !

j

j
n n jq j n

n n j j
− −

= =
−

 . (21) 

(Eq. (21) is derived in Appendix A.)  Eq. (19) implies that  

 ( ) 11
2[ ] [ ] [ ] ,  for  oddj jL h Q h Q h D r q j−= − − = . (22) 
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The generalization of Eq’s. (12)-(15) is 

 
0,1,

1

1,3, ;

2 1

, constant , :
!(2 )![ ] ( 2 )

(2 )!( )! !
!(2 )![ ] ( 2 ) ( 2 )

(2 )!( )! !

[ ] [ ] [

Pa

] [ ] 2

dé orde

[ ]

r 

j

j n

j

j j n

n
n

D C
n n jQ h h D
n n j j

n n jL h h D h
n n j j

Q h F h Q h F h L h C O h

n

=

−

= ≤

+

−
= −

−

−
= − −

−

− − − + =

∑

∑





 (23) 

(In these equations 0D = I .)  Using an “ n ” subscript to indicate the Padé order, the polynomial 
coefficients for nQ  and nL  can be efficiently calculated from the following recursion relations, 

 
0

1
2 2

1 1

[ ] ,
[ ] ,

[ ] [ ] [ ]
(2 1) (2 1)n n n

Q h
Q h h D

h DQ h Q h Q h
n n+ −

=
= −

= +
+ −

I
I  (24) 

 
0

1
2 2

1 1

[ ] ,
[ ] ,

[ ] [ ] [ ]
(2 1) (2 1)n n n

L h
L h h

h DL h L h L h
n n+ −

=
= −

= +
+ −

0
I  (25) 

For non-constant D  and C , general formulas such as Eq’s. (23) have not been developed, 
but several special cases are listed below.  (Eq’s. (26)-(29) are validated in Appendix D.) 

 

3

, non-constant , :
[ ] [0]
[ ] [0]
[ ] [ ] [ ] [

Padé order 

] 2 ]

1

[

D C
Q h h D
R h hC
Q h F h Q h F h R h O h

= -
= -

---   + =

I
 (26) 

 
2 21 2 1 1

6 3 2 3
21 2 1 1

6 3 2 3
5

, non-constant , :
[ ] ( [ ] [0] [ ]) [ ]

[ ] ( [ ] [0] [ ]) [ ] [ ]

[ ] [ ] [ ] [ ]

Padé or

[ ] [

d

]

er 2 D C
Q h h D h D D h h D h

R h h C h C C h h D h C h

Q h F h Q h F h R h R h O h

= ---   + + +

= ---   + + +

---   + --  =

I
 (27) 
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72 1 2 2 1
45 2 15 3 2 45

1 1 1 11 1
15 2 5 15 2

2 3 272 1 1 1 1 1
5 9 2 2 2 18 15

72 1 2 2 1
45 2 15 3 2 45

, non-constant , :
[ ] ( [ ] [0] [ ] [ ])
(

Padé 

[ ] [0] [ ])

( ( [ ] [0] [ ] [ ])

o

[ ] )
[ ] ( [ ] [0] [ ] [

r 3

]

der D C
Q h h D h D D h D h

D h D D h

h D h D D h D h h D h
R h h C h C C h C h

= --  + + + +

- + +

--  + + -

= --  + + +

I

1 1 1 11 1
15 2 5 15 2

2 372 1 1 1 1 1
5 9 2 2 2 18 15

7

)
( [ ] [0] [ ])

( ( [ ] [0] [ ] [ ]) [ ] [ ])

[ ] [ ] [ ] [ ] [ ] [ ]

D h D D h

h C h C C h C h h D h C h

Q h F h Q h F h R h R h O h

+

- + +

--  + + -

---   + --  =

 (28) 

 

403 279 992 1
1 16800 2800 3 800 3

34 333 1719 12371 2
105 5600 3 2800 3 16800

57 243 1269 32 1
2 1120 560 3 1120 3 4

891 1
1120

, non-constant , :
[ , ] [ ] [ ] [ ]

[0] [ ] [ ] [ ]

[ , ]

Padé orde

[ ] [ ] [ ] [0]
[

r 4 D C
L h X X h X h X h

X X h X h X h

L h X X h X h X h X
X

= ---   + -

+ - + +

= ---   + --

+ 27 2 41
3 112 3 1120

2067 6021 5805 18632 1
3 9680 4840 3 1936 3 484

103415697 7271 2
1936 3 4840 3 9680

63 1809 2295 8012 1
4 16 40 3 16 3 4

2133 1
16 3

] [ ] [ ]
[ , ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]
[ , ] [ ] [ ] [ ] [0]

[

h X h X h
L h X X h X h X h X

X h X h X h
L h X X h X h X h X

X

+ -

= --  + ---   +

- + -

= ---   + --

+ 297 2332
8 3 80

123 135 22952 1
5 160 8 3 32 3

3861 1917 1491 2
32 3 40 3 32

6 27 1053 572 1
6 35 10 3 112 3 4

621 729 2771 2
56 3 140 3 560

] [ ] [ ]
[ , ] [ ] [ ] [ ] 132 [0]

[ ] [ ] [ ]
[ , ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]

h X h X h
L h X X h X h X h X

X h X h X h
L h X X h X h X h X

X h X h X h

- +

= ---   + --

+ - +

= --  + ---   +

- + -

( )

2 3121 2
1 2 3 4 5315 315

2 3 4 22 4 1
6 2 645 45 105

2 3121 2
1 2 3 4 5315 315

22 4
6 245 45

[ ] [ , ] [ , ]( [ , ] [ , ] [ , ])

[ , ] [ , ]( [ , ] [ ] ) [ ]

[ ] [ , ] [ , ]( [ , ] [ , ] [ , ])

[ , ] [ , ](

Q h h L h D L h D h L h D h L h D L h D

h L h D L h D h L h D h D h D h

R h h L h C L h D h L h C h L h D L h C

h L h D L h D h

= - + -

+ + - +

= - + -

+ + -

I

( )3 4 21
6 105

9

[ , ] [ ] ) [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

L h D h D h C h

Q h F h Q h F h R h R h O h

+

---   + --  =

 (29) 

Note the commonality of subexpressions in the [ ]Q h  and [ ]R h  formulas in Eq’s. (28) and (29).  
Also, the product factors 2[ ]D h  in Eq’s. (27)-(29) can be re-used in the subsequent integration 
step as 2[ ]D h−  for calculating [ ]Q h−  and [ ]R h− .  The products [ ] [ ]D h C h  in Eq’s. (27) and (28) 
can similarly be carried over to the next step. 
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3. Scale-and-square algorithm 
For the constant-coefficient case, Eq. (10) can be generalized as  

 1
0 0[ ] exp[ ] [ ] (exp[ ] )F x x x D F x x D D C−+ D = D + D − I . (30) 

This equation is applied with 2x h∆ =  and with the x  coordinate origin shifted so that 0x h= − , 

 [ ] [ ]F h F h C= F − +Γ , (31) 

where 

 exp[2 ]h DΦ = , (32) 

 1(exp[2 ] )h D D−Γ = − I . (33) 

The Φ  and Γ  matrices can be obtained from the Padé approximation, Eq. (6), for small x∆ , 

 1[ ] [ ] ( [ ] [ ] 2 [ ] )F h Q h Q h F h L h C−≈ − − − . (34) 

(The term [ ] [ ]L h L h− −  in Eq. (6) has been replaced by 2 [ ]L h  because [ ]L h  is an odd function 
of h  for the constant-coefficient case.)  The following approximations result from Eq’s. (31) and 
(34), 

 1[ ] [ ]Q h Q h−Φ ≈ − , (35) 

 12 [ ] [ ]Q h L h−Γ ≈ − . (36) 

Eq. (31) generalizes to 

 0 0[ ] [ ]F x x F x C+ ∆ = F +Γ , (37) 

where Φ  and Γ  are computed from Eq’s. (35) and (36) with / 2h x= ∆ .  Eq. (37) is applied 
iteratively to integrate [ ]F x  over a large, m -step integration interval, 

 0 0[ ] [ ]m
mF x m x F x C+ ∆ = F +Γ , (38) 

where 

 2 1
1( ) ( )m

m
−Γ = +Φ+Φ + +Φ Γ Γ = ΓI  . (39) 

Given mΦ  and mΓ  for any particular integer m , 2mΦ  and 2mΓ  are obtained as 

 2 2( )m mΦ = Φ , (40) 

 2
m

m m mΓ = Γ +Φ Γ . (41) 

Eq. (40) is the basis of the standard scale-and-square algorithm for homogeneous linear 
differential equations, and Eq. (41) generalizes the method for nonhomogeneous equations. 

In implementing the Padé approximation it is advantageous to calculate the even and odd 
parts of [ ]Q h  separately so that [ ]Q h  and [ ]Q h−  can be calculated with minimal computational 
overhead, 
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[even] [odd]1 1

2 2
[even] [odd]

[ ] ( [ ] [ ]), [ ] ( [ ] [ ]),

[ ] [ ] [ ].

Q h Q h Q h Q h Q h Q h

Q h Q h Q h

= + − = − −

± = ±
 (42) 

Note that the [ ]Q h  definitions in Eq’s. (12)-(15) are formatted with the even and odd 
polynomials separated.  Also note that [odd][ ]Q h  has a left factor of [ ]L h , 

 [odd][ ] [ ]Q h L h D= . (43) 

Eq. (43) is applied in Eq. (35) to obtain 

 1 [odd] 12 [ ] [ ] 2 [ ] [ ]Q h Q h Q h L h D− −Φ − = − = −I . (44) 

For small x∆  the matrix Γ  is approximately proportional to x∆  (Eq. (33)), but Φ  is 
approximately equal to I  with a small x∆ -proportionate increment (Eq. (32)).  To avoid 
possible precision loss in the Φ  diagonal elements, Φ  can be calculated with the dominant I  
component subtracted off.  The I  separation is preserved through the scale-and-square process 
by modifying Eq’s. (40) and (41) as follows, 

 2 2( ) ( ) 2( )m m mΦ − = Φ − + Φ −I I I , (45) 

 2 2 ( )m
m m mΓ = Γ + Φ − ΓI . (46) 

The above calculation procedure can be somewhat simplified by taking advantage of the 
relation 

 DΦ − = ΓI . (47) 

This is an exact equality based on Eq’s. (32) and (33).  The relation also holds exactly with Φ  
and Γ  defined by the Padé approximation, based on Eq’s. (36) and (44).  The same condition 
holds for mΦ  and mΓ , 

 m
m DΦ − = ΓI . (48) 

(This follows from Eq’s. (40) and (41), by induction.)  Thus, Eq’s. (45) and (46) can subsumed 
by the single equation, 

 2
2 2 ( )m m m DΓ = Γ + Γ . (49) 

However, Eq. (49) does not provide much efficiency advantage.  It requires two matrix 
multiplies, as do Eq’s. (45) and (46).  (For homogeneous equations, Eq. (46) is not needed and 
Eq. (45) only requires one matrix multiply.) 
 

4. Error analysis and tolerance control, constant coefficients 
Continuing with the constant-coefficient case, Eq. (38) will be slightly in error due to the 

inaccuracy of the Padé approximation.  Denoting error terms (approximation minus exact value) 
by the prefix “δ ”, the approximation error in 0[ ]F x x+ ∆  is 

 0 0[ ] ( ( )) [ ] ( ( ))m
mF x m x F x Cδ δ δ+ ∆ = F + Γ . (50) 
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It follows from Eq. (48) that 

 ( ) ( ( ))m
m Dδ δΦ = Γ . (51) 

Thus, Eq. (50) reduces to 

 0 0[ ] ( ( ))( [ ] )mF x m x D F x Cδ δ+ D = Γ + . (52) 

In section 3 the function names F , Φ , and Γ  represent exact values (solutions to Eq. (1)) in 
some contexts and Padé approximations in other contexts, but in this section the functions are 
consistently defined to be approximations.  The “δ ” notation denotes the approximation error.  
For example, Eq. (49) is an approximate relation, and the corresponding error-corrected equation 
is 

 2
2 2( ) 2( ( )) ( ( ))m m m m m m Dδ δ δΓ − Γ = Γ − Γ + Γ − Γ . (53) 

This is subtracted from Eq. (49) to obtain the error compounding formula, 

 2
2( ) 2( ( ))( ) ( ( ))m m m mD Dδ δ δΓ = Γ + Γ − ΓI . (54) 

Eq. (52) can be more usefully reformulated with the 0[ ]F x  factor on the right replaced by 

0[ ]F x m x+ ∆ , 

 [rel]
0 0[ ] ( ( ) )( [ ] )mF x m x D F x m x Cδ δ+ D = Γ + D + . (55) 

where [rel]( )mδ Γ  is a “relative error” factor, which can be derived by using Eq. (38) to eliminate 

0[ ]F x  in Eq. (52), 

 0 0[ ] ( ( ))( ( [ ] ) )m m
m mF x m x D F x m x C Cδ δ−+ D = F Γ + D − Γ + F . (56) 

The right-hand factor of mΦ  is eliminated using Eq. (48), and the equation reduces to 

 0 0[ ] ( ( ))( ( [ ]) )m
mF x m x D F x m x Cδ δ−+ D = F Γ + D + . (57) 

This equates to Eq. (55) with 

 [rel]( ) ( ( ))m
m mδ δ−Γ = Φ Γ . (58) 

Eq. (54) is reformulated in terms of the relative errors defined by Eq. (58), 

 [rel] [rel] [rel] 2
2( ) 2 ( ( ) )( ) ( ( ) )m

m m m mD Dδ δ δ−Γ = Φ Γ + Γ − ΓI . (59) 

With application of Eq. (48), this reduces to 

 [rel] [rel] [rel] 2
2( ) 2 ( ) ( ( ) )m m m Dδ δ δΓ = Γ − Γ . (60) 

The error will be controlled by limiting its norm.  Given an upper bound on [rel]
1( )δ Γ , bounds 

on [rel]
2( )δ Γ , [rel]

4( )δ Γ , … are determined from Eq. (60), 

 [rel] [rel] [rel] 2
2( ) 2 ( ) ( )m m m Dδ δ δΓ ≤ Γ + Γ ⋅ . (61) 

where   is the Frobenius norm. 
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To obtain [rel]
1( )δ Γ , we use Eq. (55) with 1m = , 0x h= − , and 2x h∆ = , 

 [rel]
1[ ] ( ( )) ( [ ] )F h D F h Cδ δ= Γ + . (62) 

[ ]F h  is defined by Eq. (6), in which the error term “ 2 1nO h + ”on the right is replaced by zero.  
The error term can be replaced by an explicit residual formula to obtain the following exact 
version of Eq. (6), 

 

[exact ]

2
2 2 [exact ]

[ ] [ ] [ ] [ ] ( [ ] [ ])

exp[( ) ]( ) ( [ ] ),
(2 )!

n h n

h

Q h F h Q h F h L h L h C

D x h D x h dx D F h C
n −

− − − + − − =

 
− − + 

 
∫

 (63) 

where [exact ]F  denotes the exact solution of Eq. (1) premised on the initial condition [ ]F h− , 

 [exact ][ ] [ ] [ ]F h F h F hδ= − . (64) 

Eq. (63) is derived from Eq. (99) in Appendix A with the following substitution (cf. Eq. (10)), 

 [exact ] [exact ] 1[0] exp[ ] [ ] (exp[ ] )F h D F h h D D C−= − + − − I . (65) 

(The F  function in Eq’s. (10) and (99) is [exact ]F .)   
Eq. (63) is subtracted from Eq. (6) (with substitution from Eq. (64)) to obtain 

 [ ] ( ( [ ] [ ]) )F h A D F h F h Cδ δ= − + , (66) 

where 

 
1 2

2 2[ ] exp[( ) ]( )
(2 )!

n h n

h

Q h DA x h D x h dx
n

−

−

−
= − −∫ . (67) 

Eq. (66) is solved for [ ]F hδ , 

 1[ ] ( ) ( [ ] )F h AD A D F h Cδ −= + +I . (68) 

Comparing Eq’s. (62) and (68), we obtain 

 [rel] 1
1( ( )) ( )AD Aδ −Γ = +I . (69) 

To bound [rel]
1( ( ))δ Γ , we first limit h  to bound the 1[ ]Q h −  factor in Eq. (67).  The 

following result is derived in Appendix C, 

 2 1exp[2 2 1 [ ] 2exp[ ]h D h D n Q h h D−≤ − → ≤ . (70) 

Under this condition, Eq. (67) has the following bound, 
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2
2 2

2
2 2

2 12 2

2exp[ ] exp[( ) ]( )
(2 )!

2exp[ ] exp[2 ]( )
(2 )!

2 ! 2
exp[3 ].

(2 )!(2 1)!

n h n

h

n h n

h

n n

DA h D x h D x h dx
n

Dh D h D h x dx
n

n h D
h D

n n

−

−

+

≤ − −

≤ −

=
+

∫

∫  (71) 

The following additional condition is imposed on the integration step, 

 1
2A D⋅ ≤ . (72) 

The following bound on [rel]
1( ( ))δ Γ  is obtained from Eq’s. (69) and (72), 

 [rel] 1
1( ( )) (1 ) 2A D A Aδ −Γ ≤ − ⋅ ≤ . (73) 

Based on this limit, [rel]
2( ( ))δ Γ , [rel]

4( ( ))δ Γ , … are bounded by Eq. (61). 

The integration step size is chosen to limit the error as follows:  [ ]F x  is integrated from 

0x x=  to 0 rangex x x= + , and the full range rangex  is divided into m  steps of size x∆ , where m  is 
a power of 2, 

 range2 / , 2 jx h x m m∆ = = = . (74) 

Initially, j  is large enough to satisfy the left-hand condition in Eq. (70), and it is further 
increased, if necessary, to satisfy Eq. (72).  Next, an upper bound on [rel]

1( )δ Γ  is calculated 

from Eq. (73), and Eq. (61) is applied to calculate a bound on [rel]( )mδ Γ .  An upper bound on 

0[ ]F x m xδ + ∆  is then obtained from Eq. (55), 

 [rel]
0 0[ ] ( ) ( [ ] )mF x m x D F x m x Cδ δ+ D ≤ Γ ⋅ + D + . (75) 

The factors [rel]( )m Dδ Γ ⋅  and [rel]( )m Cδ Γ ⋅  are both required to be within a specified 
tolerance threshold, and j  is increased until this condition is satisfied.  The condition can be 
formulated as 

 [ ][rel]( )m D C tolδ Γ ⋅ ≤ , (76) 

where tol  is the tolerance limit and [ ]D C  is the concatenation of matrices D  and C , and 

[ ] 2 2D C D C= + . 

 



 

12 
 

5. Error analysis and tolerance control, non-constant coefficients 
The above formulas are not directly applicable to the non-constant-coefficient case, but the 

same process can be used to obtain an initial integration step size x∆  using values of [ ]D x  and 
[ ]C x  at the beginning of the integration interval.  This initialization is inapplicable when D  is 

zero or when D  or C  varies significantly over the x∆  range.  (When D  is identically zero, the 
errors in Eq’s. (26)-(29) are proportional to the order- 2n  derivative of C  for Padé order n .)  An 
alternative step initialization criterion may need to be used to accommodate spatial variability of 
D  and C . 

After the integration step size x∆  is initialized, it is dynamically varied to limit the 
integration error, which can be estimated by determining 0[ ]F x x+ ∆  from 0[ ]F x  by two 
estimation methods and applying Richardson extrapolation to the estimates.  A first estimate 

1 0[ ]F x x+ ∆  is obtained by making a single-step Padé approximation with step size x∆ , and a 
second estimate 2 0[ ]F x x+ ∆  is obtained by making two Padé approximation steps with step size 
1
2 x∆ .  The errors in these estimates are approximately 

 2 1 2 11
1 0 2 0 2[ ] , [ ] 2 ( )n nF x x A x F x x A xδ δ+ ++ ∆ ≈ ∆ + ∆ ≈ ∆ , (77) 

where n  is the Padé order, A  is an undetermined matrix, and the factor of 2 is included in the 
second equality to account for the two steps.  The following relation is obtained by eliminating 
A  between Eq’s. (77), 

 2
1 0 2 0[ ] 2 [ ]nF x x F x xδ δ+ ∆ ≈ + ∆ . (78) 

Subtracting the error from both estimates should give the same error-corrected result, 

 1 0 1 0 2 0 2 0[ ] [ ] [ ] [ ]F x x F x x F x x F x xδ δ+ ∆ − + ∆ = + ∆ − + ∆ . (79) 

1 0[ ]F x xδ + ∆  is eliminated from Eq’s. (78) and (79) to obtain 

 1 0 2 0
2 0 2

[ ] [ ][ ]
2 1n

F x x F x xF x xδ + ∆ − + ∆
+ ∆ =

−
. (80) 

The integration step x∆  is decreased or increased by factors of 2 to keep this estimated error 
within allowed tolerance bounds (i.e. the step is halved if the error significantly exceeds the 
tolerance, and is doubled if the error times 2 12 n+  is within the tolerance).  Some excursion of the 
estimated error over the tolerance limit can be allowed because the calculated 2 0[ ]F x x+ ∆  can be 
decremented by the error estimate 2 0[ ]F x xδ + ∆  to improve its accuracy. 

The [ ]F h  value calculated from Eq. (4) can be represented as 

 [ ] [ ]F h F h= F − +Ω ,  (81) 

where 

 1[ ] [ ]Q h Q h−Φ = − , (82) 

 1[ ] ( [ ] [ ])Q h R h R h−Ω = − − − . (83) 
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 h  can be limited to ensure non-singularity of [ ]Q h , e.g., 

 11
2[ ] [ ] 2Q h Q h V V−− ≤ → ≤I  (84) 

for any matrix V .  (Generally the step size initialization and error control will automatically 
keep [ ]Q h − I  sufficiently bounded.) 

With 0x h= −  and 2x h∆ = , the 1 0[ ]F x x+ ∆  term in Eq. (80) has the form 

 1 0 1 0 1[ ] [ ]F x x F x+ ∆ = F +Ω . (85) 

The same separation is made for 2 0[ ]F x x+ ∆  in two steps, 

 
1

2 0 2,1 0 2,12

1
2 0 2,2 0 2,2 2,2 2,1 2,1 0 2,22

[ ] [ ] ,

[ ] [ ] ( [ ]) .

F x x F x

F x x F x x F x

+ ∆ = F +Ω

+ ∆ = F + ∆ +Ω = F Ω +F +Ω
 (86) 

This expression is of the form 

 2 0 2 0 2 2 2,2 2,1 2 2,2 2,2 2,1[ ] [ ] with , .F x x F x+ ∆ = F +Ω F = F F Ω = Ω +F Ω  (87) 

The estimated error 2 0[ ]F x xδ + ∆  in Eq. (80) is correspondingly separated into Φ  and Ω  
components, 

 1 2 1 2
2 0 2 0 2 2 22 2[ ] ( ) [ ] with , .

2 1 2 1n nF x x F xδ δ δ δ δF −F Ω −Ω
+∆ = F + Ω F = Ω =

− −
 (88) 

The integration step x∆  is chosen to keep the errors 2δΦ  and 2δΩ  within a limit of the form 

 [ ]2 2
range

xtol
x

δ δ ∆
Φ Ω ≤ , (89) 

where tol  is a specified tolerance threshold, rangex  is the full integration range, and the factor 

range/x x∆  apportions the tolerance budget between integration intervals. 
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Appendix A:  Derivation of the Padé polynomial coefficients (Eq. (21)) 

Considering the homogeneous, constant-coefficient case (constant D , zero C ), the following 
integral both defines the Q  polynomial and determines the error in Eq. (4) 

 
2 1

2 2[ ]exp[ ] [ ]exp[ ] exp[ ]( )
(2 )!

n h n

h

DQ h h D Q h h D x D x h dx
n

+

−
− − − = −∫ . (90) 

(This formula is adapted from Eq’s. (5.149) and (5.150) in [7].)  Eq. (90) is right-multiplied by 
[0]F  to obtain Eq. (4), with the “ 2 1nO h + ” term representing the above integral expression. 

The integral in Eq. (90) is integrated by parts 2 1n +  times to obtain 

 
2

2 2 1 2 2

0
exp[ ]( ) ( 1) exp[ ] ( )

x hjj nh n j j n
jh x hj

dx D x h dx D x D x h
dx

==
− −

−
=−=

− = − −∑∫ . (91) 

The derivative expression is expanded via the general Leibniz rule, 

 

( )2 2

0

0

( ) ( ) ( )

! ( ) ( )
!( )!

! ! !( ) ( ) .
!( )! ( )! ( )!

j j
n n n

j j

k j kk j
n n

k j k
k

k j
n k n j k

k

d dx h x h x h
dx dx

j d dx h x h
k j k dx dx

j n nx h x h
k j k n k n j k

−=

−
=

=
− − +

=

− = + −

  
= + −  −   

  = + −  − − − +  

∑

∑

 (92) 

http://vixra.org/abs/1509.0286
http://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-solver--lde-m-
http://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-solver--lde-m-
https://www.mathworks.com/help/matlab/ref/expm.html
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html
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At the lower integration limit, x h= − , the ( )n kx h −+  factor is zero unless n k= , and at the upper 
limit the factor ( )n j kx h − +−  is zero unless n j k= − .  Neither condition holds when j n< ; hence 
the summation terms 0, 1j n= −  vanish in Eq. (91) and the sum reduces to 

 

( )

2
1 2 2

0

2
1 2 2

( 1) exp[ ] ( )

! !( 1) (2 ) exp[ ] ( 2 ) exp[ ] .
( )!(2 )!

x hj n j
j j n

j
x hj

j n
j j n j n j

j n

dD x D x h
dx

n jD h h D h h D
j n n j

==
− −

=−=

=
− − − −

=

− − =

− − − −
− −

∑

∑
 (93) 

The summation index j  is replaced by 2n j−  in the last sum, and the result is substituted back 
into Eq. (91) and Eq. (90), 

 ( )
0

[ ]exp[ ] [ ]exp[ ]
!(2 )! ( 2 ) exp[ ] (2 ) exp[ ] .

(2 )!( )! !

j n
j j

j

Q h h D Q h h D
n n j h D h D h D h D
n n j j

=

=

− − − =

−
− − −

−∑
 (94) 

The Q  polynomial coefficients (Eq. (21)) are readily obtained from this expression. 

For the nonhomogeneous case (non-zero C ), the above process is applied using the 
formalism of Eq’s. (2) and (3).  The following substitutions are made in the above equations, 

 
[ ] [ ] [ ] [ ]

[ ] , [ ]
D x C x Q h R h

D x Q h   
→ →   

   0 0 0 I
.  (95) 

Eq. (90) is again obtained with this formalism, and the following additional condition is also 
obtained, 

 
( )

1 1

2 1
2 2 1

exp[ ]( [ ] ) exp[ ]( [ ] )

exp[ ] ( ) .
(2 )!

n h n

h

h D R h D C h D R h D C

D x D x h dx D C
n

− −

+
−

−

+ − − − + =

 
− 

 
∫

 (96) 

Eq’s. (96) and (90) are consistent if 

 1[ ] ( [ ] )R h Q h D C−= − I . (97) 

However, only the odd part of [ ]R h  is relevant to Eq. (4) so we can alternatively define 

 11
2[ ] ( [ ] [ ])R h Q h Q h D C−= − − . (98) 

(This is equivalent to Eq. (43).)  In either case, the right side of Eq. (4) is obtained from Eq’s. 
(10) and (90), 

 1

2
2 2

[ ] [ ] [ ] [ ] [ ] [ ]
( [ ]exp[ ] [ ]exp[ ])( [0] )

exp[ ]( ) ( [0] ).
(2 )!

n h n

h

Q h F h Q h F h R h R h
Q h h D Q h h D F D C

D x D x h dx D F C
n

−

−

− − − + − −

= − − − +

 
= − + 
 

∫

 (99) 
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Appendix B:  MATLAB Implementation notes, constant-coefficient case 

The even part of the [ ]Q h  polynomial ( [even][ ]Q h , Eq’s. (23), (42)) is of the form 

 1 2

1
; ( )

N
j

j
j

Y c X X h D−

=

= =∑ . (100) 

( X  is a square matrix; the coefficients jc  are scalar.)  The odd part ( [odd][ ]Q h ) has a similar 
form, but with an extra factor of h D .  (Omitting the D factor yields the [ ]L h  matrix in Eq. (43), 
from which [ ]R h  is obtained in Eq. (5).)  The polynomial coefficients jc  can be initialized by 
using the recursion relations in Eq’s. (24). 

For large N  the polynomial can be efficiently evaluated by zero-padding and reshaping the 
coefficient vector to a rectangular array and reorganizing Eq. (100) as 

 
2 1

11 1
, 1 2 1

1 1
( ) ; round[ 2 ], ceil[ / ]

N N
Nj k

j k
k j

Y c X X N N N N N− −

= =

 
= = = 

 
∑ ∑ . (101) 

A direct implementation of Eq. (100) would require 2N −  matrix multiplies; but in the context 
of the matrix exponential algorithm the sum is performed twice (once for [even]Q  and once for 

[odd]Q ), so the number of multiplies would actually be 2( 2)N − .  By contrast, Eq. (101) typically 
requires 1 22 3N N+ −  multiplies, including one-time precomputation of 2X , … 1NX  ( 1 1N −  
multiplies) and the 2 1N −  multiplies by 1NX  in the k  sum evaluation (by Horner’s method) for 
each of [even]Q  and [odd]Q .  This approach reduces the number of multiplies by approximately a 
factor of / 2N .  The number can be reduced by 1 if 2 1N =  (in which case 1NX  is not needed).  
Alternatively, if 2 1N >  the number can be reduced by 1 if 

2, 0j Nc =  for 1j >  (in which the first 

step of Horner’s method multiplies 1NX  by 
21, Nc , a scalar).  If this condition holds for both 

[even]Q  and [odd]Q  the number is reduced by 2. 

For example, an order-12 polynomial can be implemented with 5 matrix multiplies as 
follows, 

 
( )( )

12 2 3
1 2 13 1 2 3 4

2 3 2 3 4 4 4
5 6 7 8 9 10 11 12 13 .

c c X c X c c X c X c X

c c X c X c X c c X c X c X c X X X

+ + + = + + + +

+ + + + + + + +



 (102) 

Three matrix-matrix multiplies are required for 2X , 3X , and 4X ; and two are required for the 
( ) 4X  products.  Two order-12 polynomials, with the same X  and different jc  coefficients, 
can be evaluated with 7 matrix multiplies. 

Eq. (71) contains the additional matrix power 2nD , but calculation of this power can be 
avoided by using the following bounding estimate for the norm of a matrix power, 

 1 2 1 2j j j jD D D+ + ≤ ⋅ ⋅

 . (103) 
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The pre-computed powers of D  used for the Q  polynomial evaluation are used on the right side 
of Eq. (103), and a product of this form is substituted in Eq. (71).  The number j  of squaring 
operations (Eq. (11)) may be increased by this substitution, but j  is proportional to the 
logarithm of the integration step (Eq. (74)) so the additional squaring steps are typically not 
significant compared to the runtime penalty of computing 2nD . 

Possible numeric overflow in the computation of 2nD  can be avoided by pre-computing 
2( / ) nD D  and replacing the factor 2 2(2 ) n nh D  in Eq. (71) with 2 2(2 ) ( / )n nh D D D . 

Over-estimation of 2nD  can potentially lead to numeric precision loss due to overscaling 
[4], but the I -separation method (Eq’s. (45)-(46)) avoids this problem.  The following 
MATLAB test case illustrates the benefit of I  separation: 

 

a = -1e20;
b = eps;
c = 1;
A = [a,0,b;0,c,0;-b,0,a];
% Exact matrix exponential:
expA = exp(a)*( ...
    [1,0,0;0,0,0;0,0,1]*cos(b)+ ...
    [0,0,1;0,0,0;-1,0,0]*sin(b))+ ...
    [0,0,0;0,exp(c),0;0,0,0];
disp(num2str(expA))
0           0           0
0      2.7183           0
0           0           0

 (104) 

The standard MATLAB expm function (version 2016b) completely loses numeric precision on 
this example: 

 
disp(num2str(expm(A)))
0  0  0
0  1  0
0  0  0

 (105) 

However, a simple code modification implementing the squaring algorithm as in Eq. (45) 
reduces the error to machine precision ( 1510−< ). 

 

Appendix C:  Derivation of Eq. (70) 

The reciprocal matrix 1[ ]Q h −  could be bounded by requiring that [ ]Q h  be close to I .  The 
following relation bounds 1[ ]Q h V−  for any right factor V , 

 
( ) ( )

( )

11 2

2

[ ] ( [ ]) ( [ ]) ( [ ])

[ ] [ ] .
1 [ ]

Q h V Q h V Q h Q h V

VV Q h V Q h V
Q h

−− = − − = + − + − +

≤ + − ⋅ + − ⋅ + =
− −

I I I I I

I I
I





 (106) 

If 1
2h D ≤ , then [ ]Q h−I  is generally less than 2

3  (for any Padé order) and the 1[ ]Q h −  term 
introduces at most a factor of 3 in the norm, 
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 11 2
2 3[ ] , [ ] 3h D Q h Q h V V−≤ → − ≤ ≤I . (107) 

However, a more relaxed limit on 1[ ]Q h −  can be derived by taking advantage of the close fit 
between [ ]Q h  and exp[ ]h D−  (i.e., 2[ ] exp[ ]Q h h D O h− − = , whereas Eq. (107) is based on the 
looser condition [ ]Q h O h− =I ).  1[ ]Q h −  is roughly bounded by exp[ ]h D  for sufficiently 
small h D .  An exact bound can be obtained as follows: 

The difference exp[ ] [ ]h D Q h− −  is represented as a Taylor series (as a function of h D− ), 
which has all positive coefficients, 

 
1 2

1 1 !(2 )!2exp[ ] [ ] ( ) 1 ( )
! ! (2 )!( )!

jn
j j

j n j

n n jh D Q h h D h D
j j n n j

∞

= + =

 −
− − = − + − − − 

∑ ∑ . (108) 

(from Eq’s. (23)).  The series starts at 2j =  because the 0,1j =  terms cancel out.  It is evident 
from the following condition that the series coefficients are all positive, 

 
1

1

!(2 )!22 , 1 1
(2 )!( )! 2

jj

k

n n j kj n
n n j n k

−

=

−  ≤ ≤ = − < − − 
∏ . (109) 

Thus, the series can be bounded by substituting h D  for h D− , 

 
1 2

1 1 !(2 )!2exp[ ] [ ] 1
! ! (2 )!( )!

jn
j j

j n j

n n jh D Q h h D h D
j j n n j

∞

= + =

 −
− − ≤ + − − 

∑ ∑ . (110) 

The right side of Eq. (110) is approximately 2 3/ (2(2 1))h D n O h− + , and it is strictly 

bounded by ( )2 / (2(2 1)) exp[ ]h D n h D− : 

 

2

0

1 2

1 1
2(2 1) !

1 1 !(2 )!21 0.
! ! (2 )!( )!

j

j

jn
j j

j n j

h D h D
n j

n n jh D h D
j j n n j

∞

=

∞

= + =

−

  −
− + − >  −  

∑

∑ ∑
 (111) 

This can be demonstrated by showing that the above series has all positive coefficients .  (The 
positive-coefficient condition has not been proved but has been checked for n  up to 1000.)  
Thus, 

 
2 exp[ ]

exp[ ] [ ]
2(2 1)

h D h D
h D Q h

n
− − ≤

−
. (112) 

Eq. (112) is used to bound 1[ ]Q h − , 
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1 1

2

22 2

2

[ ] exp[ ]( exp[ ](exp[ ] [ ]))

exp[ ]( exp[ ](exp[ ] [ ]) exp[2 ](exp[ ] [ ]) )

exp[ ] exp[ ]
exp[ ] 1 ]

2(2 1) 2(2 1)

exp[ ]
exp[ ] 1

2(2 1)

Q h h D h D h D Q h

h D h D h D Q h h D h D Q h

h D h D h D h D
h D

n n

h D h D
h D

n

− −= − − −

= + − − + − − +

  
 ≤ + + +   − −  

 
= − −

I

I 



1

.
−




 (113) 

The premise of Eq. (70) limits the bound in Eq. (112) to 1
2 , in which case Eq. (113) is limited to 

2exp[ ]h D . 

 

Appendix D:  Mathematica verification of Eq’s. (12)-(15) and (26)-(29) 
The calculations underlying Eq’s. (12)-(15) and (26)-(29) require non-commutative symbolic 

algebra.  The following results are obtained using the NCAlgebra package for Mathematica, 
from the University of California, San Diego (http://math.ucsd.edu/~ncalg/).  The Mathematica 
code loads the NCAlgebra package, adds some functionality, and verifies the equations.  A 
Mathematica notebook containing the following code is posted at 
https://figshare.com/articles/Appendix_2016_12_13_nb/4315145. 

http://math.ucsd.edu/~ncalg/
https://figshare.com/articles/Appendix_2016_12_13_nb/4315145


(* Mathematica calculations for
"Numerical Solution of Linear,Nonhomogeneous Differential Equation Systems via Padé Approximation",

Appendix D, http://vixra.org/abs/1611.0002 [v4]
Updated 12/13/2016 *)

(* Load NCAlgebra package (http://math.ucsd.edu/~ncalg/) *)
<< NC`
<< NCAlgebra`

(* Make all variables commutative by default.
(Override the default noncommutativity of single-letter lowercase variables.) *)

Remove[a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z]

(* D0, C0, Dfn, Cfn, F, Q, and R represent matrices. D0 and C0 represent constants;
Dfn, Cfn, F, Q, and R represent functions, and "1" represents the identity matrix. *)

SetNonCommutative[D0, C0, Dfn, Cfn, F, Q, R];

(* Series and O (e.g. O[h]^n) do not work with NC types
(e.g.: try Dfn[h]**F[h]+O[h]^2 or Series[Dfn[h]**F[h],{h,0,1}]). Define a variant that does work. *)

NCSeries[f_, {x_, x0_, n_}] := SeriesData[x, x0, Table[D[f, {x, j}]/j!, {j, 0, n}] /. x → x0, 0, n + 1, 1];

(* substD is a substitution rule for reducing derivatives of F using the relation F'[h]⩵Dfn[h]**F[h]+Cfn[h].
Use "... //. substD" to eliminate all F derivatives.
(The substD definition uses ":>",
not "->" otherwise the substitutions will not work when x or n has a preassigned value.) *)

substD = Derivative[n_][F][x_] :> Derivative[n - 1][Dfn[#] ** F[#] + Cfn[#] &][x];

(* substD0 is a substitution rule for reducing derivatives of F using the relation F'[h]⩵
D0**F[h]+C0. This specializes substD for the case where Dfn and Cfn are constant. *)

substD0 = Derivative[n_][F][x_] :> Derivative[n - 1][D0 ** F[#] + C0 &][x];

(* Eq 12 *)

Q[h_] := 1 - h D0;
R[h_] := -h C0;
Factor[NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + 2 R[h], {h, 0, 2}]] //. substD0]]

0

(* Eq 13 *)

Q[h_] := 1 +

1

3
h2 D0 ** D0 - h D0;

R[h_] := -h C0;
Factor[NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + 2 R[h], {h, 0, 4}]] //. substD0]]

0

(* Eq 14 *)

Q[h_] := 1 +

2

5
h2 D0 ** D0 - 1 +

1

15
h2 D0 ** D0 ** (h D0);

R[h_] := - 1 +

1

15
h2 D0 ** D0 ** (h C0);

Factor[NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + 2 R[h], {h, 0, 6}]] //. substD0]]

0

(* Eq 15 *)

Q[h_] := 1 +

3

7
h^2 D0 ** D0 +

1

105
h^4 D0 ** D0 ** D0 ** D0 - 1 +

2

21
h^2 D0 ** D0 ** (h D0);

R[h_] := - 1 +

2

21
h^2 D0 ** D0 ** (h C0);

Factor[NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + 2 R[h], {h, 0, 8}]] //. substD0]]

0



(* Eq 26 *)

Q[h_] := 1 - h Dfn[0];
R[h_] := -h Cfn[0];
NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + 2 R[h], {h, 0, 2}]] //. substD]

0

(* Eq 27 *)

Q[h_] := 1 - h -

1

6
Dfn[-h] +

2

3
Dfn[0] +

1

2
Dfn[h] +

1

3
h2 Dfn[h] ** Dfn[h];

R[h_] := -h -

1

6
Cfn[-h] +

2

3
Cfn[0] +

1

2
Cfn[h] +

1

3
h^2 Dfn[h] ** Cfn[h];

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + R[h] - R[-h], {h, 0, 4}]] //. substD]

0

(* Eq 28 *)

Q[h_] := 1 - h
2

45
Dfn-

h

2
 +

2

15
Dfn[0] +

2

3
Dfn

h

2
 +

7

45
Dfn[h] +

1

15
Dfn-

h

2
 +

1

5
Dfn[0] +

11

15
Dfn

h

2
 **

2

5
h2

1

9
Dfn-

h

2
 -

1

2
Dfn[0] + Dfn

h

2
 +

7

18
Dfn[h] -

1

15
h3 Dfn[h] ** Dfn[h] ;

R[h_] := -h
2

45
Cfn-

h

2
 +

2

15
Cfn[0] +

2

3
Cfn

h

2
 +

7

45
Cfn[h] +

1

15
Dfn-

h

2
 +

1

5
Dfn[0] +

11

15
Dfn

h

2
 **

2

5
h2

1

9
Cfn-

h

2
 -

1

2
Cfn[0] + Cfn

h

2
 +

7

18
Cfn[h] -

1

15
h3 Dfn[h] ** Cfn[h] ;

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + R[h] - R[-h], {h, 0, 6}]] //. substD]

0

2     Appendix_2016_12_13.nb



(* Eq 29 *)

L1[h_, X_] :=
403

16800
X[-h] -

279

2800
X-

2 h

3
 +

99

800
X-

h

3
 +

34

105
X[0] -

333

5600
X

h

3
 +

1719

2800
X

2 h

3
 +

1237

16800
X[h];

L2[h_, X_] :=
57

1120
X[-h] -

243

560
X-

2 h

3
 +

1269

1120
X-

h

3
 -

3

4
X[0] +

891

1120
X

h

3
 +

27

112
X

2 h

3
 -

41

1120
X[h];

L3[h_, X_] := -

2067

9680
X[-h] +

6021

4840
X-

2 h

3
 -

5805

1936
X-

h

3
 +

1863

484
X[0] -

5697

1936
X

h

3
 +

10341

4840
X

2 h

3
 -

727

9680
X[h];

L4[h_, X_] :=
63

16
X[-h] -

1809

40
X-

2 h

3
 +

2295

16
X-

h

3
 -

801

4
X[0] +

2133

16
X

h

3
 -

297

8
X

2 h

3
 +

233

80
X[h];

L5[h_, X_] :=
123

160
X[-h] -

135

8
X-

2 h

3
 +

2295

32
X-

h

3
 - 132 X[0] +

3861

32
X

h

3
 -

1917

40
X

2 h

3
 +

149

32
X[h];

L6[h_, X_] := -

6

35
X[-h] +

27

10
X-

2 h

3
 -

1053

112
X-

h

3
 +

57

4
X[0] -

621

56
X

h

3
 +

729

140
X

2 h

3
 -

277

560
X[h];

Q[h_] := 1 - h L1[h, Dfn] + L2[h, Dfn] **

121

315
h2 L3[h, Dfn] -

2

315
h3 L4[h, Dfn] ** L5[h, Dfn] +

2

45
h2 L6[h, Dfn] + L2[h, Dfn] ** -

4

45
h3 L6[h, Dfn] +

1

105
h4 Dfn[h] ** Dfn[h] ** Dfn[h];

R[h_] := -h L1[h, Cfn] + L2[h, Dfn] **

121

315
h2 L3[h, Cfn] -

2

315
h3 L4[h, Dfn] ** L5[h, Cfn] +

2

45
h2 L6[h, Dfn] + L2[h, Dfn] ** -

4

45
h3 L6[h, Dfn] +

1

105
h4 Dfn[h] ** Dfn[h] ** Cfn[h];

NCExpand[Normal[NCSeries[Q[h] ** F[h] - Q[-h] ** F[-h] + R[h] - R[-h], {h, 0, 6}]] //. substD]

0
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