
 

1 
 

Numerical Solution of Linear, Nonhomogeneous Differential Equation 
Systems via Padé Approximation 

 
Kenneth C. Johnson 

KJ Innovation 
kjinnovation@earthlink.net 

(First posted November 1, 2016, revised November 30, 2016.) 
http://vixra.org/abs/1611.0002 

 

Abstract 
This paper generalizes an earlier investigation of linear differential equation solutions via 

Padé approximation (viXra:1509.0286), for the case of nonhomogeneous equations.  Formulas 
are provided for Padé polynomial orders 1, 2, 3, and 4, for both constant-coefficient and 
functional-coefficient cases.  The scale-and-square algorithm for the constant-coefficient case is 
generalized for nonhomogeneous equations.  Implementation details including step size 
initialization and tolerance control are discussed. 
 

1. Introduction 
An earlier study [1] investigated solutions of the linear differential equation 

[ ] [ ] [ ]F x D x F x′ =  via Padé approximation: 1[ ] [ ] [ ] [ ]F h Q h Q h F h−≈ − − , where [ ]Q h  is a 
polynomial, D  and Q  are square matrices, and F  may be a column vector or a multi-column 
matrix.  (In this paper, square braces “[ ] ” delimit function arguments while round braces 
“ ( ) ” are reserved for grouping.) 

We consider here the more general nonhomogeneous equation, 

 [ ] [ ] [ ] [ ]F x D x F x C x′ = + .  (1) 

where C  is a vector or matrix, size-matched to F .  Eq. (1) can be recast in the form of a 
homogeneous equation, 

 
[ ] [ ] [ ] [ ]F x D x C x F xd

dx
    

=    
    I 0 0 I

.  (2) 

where I  is an identity matrix.  For this case, Eq’s. (7) and (8) in [1] result in relations of the 
form 

 2 1[ ] [ ] [ ] [ ] [ ] [ ]
; [0] , [0]nQ h R h F h Q h R h F h

O h Q R+− − −     
− = = =     

     
I 0

0 I I 0 I I
.  (3) 

where Q  and R  are matrix polynomials.  This simplifies to 

http://vixra.org/abs/1611.0002
http://vixra.org/abs/1509.0286


 

2 
 

 2 1[ ] [ ] [ ] [ ] [ ] [ ] nR h R h Q h F h Q h F h O h +− − + − − − = . (4) 

The Q  polynomial has the form given in [1]; it is determined from D  and has no 
dependence on C .  The R  polynomial depends on both D  and C  and has a linear dependence 
on C .  In some cases [ ]R h  is an odd function of h  (i.e., [ ] [ ]R h R h− = − ), in which case the 

[ ] [ ]R h R h− −  term in Eq. (4) is replaced by 2 [ ]R h . 

The homogeneous equation (C = 0  in Eq. (1)) has solutions of the form [ ] [ ] [0]F x x F= F , 
where [ ]xF  is the solution of the initial value problem, 

 [ ] [ ] [ ], [0]x D x x′F = F F = I . (5) 

( I  is an identity matrix.)  For the nonhomogeneous case, general solutions of Eq. (1) are of the 
form 

 ( )1

0
[ ] [ ] [ ] [ ] [0]

x
F x x t C t dt F−= F F +∫ .  (6) 

For the special case of constant D , [ ]xF  is an exponential matrix, 

 [ ] exp[ ]x D xF =   (constant D ). (7) 

If C  is also constant, Eq. (6) reduces to 1[ ] (exp[ ] ) exp[ ] [0]F x D D x C D x F−= − +I , or more 
generally, 

 1[ ] (exp[ ] ) exp[ ] [ ]F x x D D x C D x F x−+ D = D − + DI   (constant D  and C ).  (8) 

This formula cannot be used when D  is singular (even though the first left-hand term is well 
defined by its Taylor series), and it has poor numerical precision when D  is near-singular or x  
is very small.  But the Padé approximation method based on Eq. (4) does not have this limitation.  
The method can be used, for example, to robustly calculate 1 (exp[ ] )D D− − I , even for singular 
D , by setting [0]F = 0 , C = I , and 1x = . 

If [ ]C x  can be an arbitrary linear combination of basis functions within a finite basis set, then 
particular solutions of Eq. (1) can be efficiently calculated by setting [0]F = 0  and setting [ ]C x  
to a matrix containing all basis functions in its columns.  The resulting [ ]F x  columns can be 
linearly combined to obtain particular solutions for any combination of [ ]C x  basis functions.  
The result can then be added to [ ] [0]x FF  to obtain general solutions [ ]F x  for any [0]F . 

Eq. (4) is used to integrate [ ]F x  across a small interval, from x h= −  to x h= .  The 
independent variable x  can be scaled and shifted to convert this to an integration from 0x x=  to 

0x x x= + D  for a sufficiently small xD , and multiple such integrations are concatenated to 
calculate [ ]F x  over a large integration interval.  For the homogeneous, constant-coefficient case 
( D  constant, C = 0 ), the concatenation can be efficiently implemented using a “scale-and-
square” technique based on the relation 

 2 2 2exp[ ] ( ((exp[2 ]) ) )
j

jD x D x
×

−=
((

  . (9) 



 

3 
 

(For some sufficiently large integer j , a Padé approximant is used to calculate exp[2 ]j D x− , and 
the result is squared j  times to obtain exp[ ]D x .)  This algorithm can be generalized for the 
nonhomogeneous case with constant D  and C . 

Section 2 lists polynomial functions Q  and R  in Eq. (4) for various Padé polynomial orders.  
Section 3 outlines the scale-and-square algorithm, generalized for the nonhomogeneous case.  
Section 4 discusses the choice of integration interval size.  Appendix A discusses MATLAB® 
implementation details for the constant-coefficient case, and Appendix B provides Mathematica 
code validating the results of section 2. 

MATLAB® implementation code and application test cases are posted on the MathWorks 
File Exchange [2].  The algorithms and code incorporate and extend the functionality of 
MATLAB’s expm function [3-5], and provide an efficient alternative to MATLAB’s differential 
equation solvers [6] (e.g., ode45) for linear equations. 

 

2. Padé-approximation formulas 

The Q  and R  polynomials in Eq. (4) are listed below for Padé polynomial orders 1, 2, 3, and 
4, first for the case of constant D  and C , and then for the non-constant case.  For Padé order n , 
the approximation order is 2 n  (i.e., the approximation error is of order 2 1nh + .)  The constant-
coefficient formulas (Eq’s. (10)-(13)) include an estimate of the approximation error, which is 
useful for choosing the integration step size.  For the non-constant-coefficient case (Eq’s. (18)-
(21)), similar error approximations would be too complex to be of much use, but the constant-
coefficient error formulas can be used for step size initialization as described in section 4. 

 

3 2 52
3

, constant , :
[ ]
[ ]

2 [ ] [ ] [ ] [ ] [ ] ( [0

Padé order

]

 

)

1 D C
Q h h D
R h hC

R h Q h F h Q h F h h D C D F O h

= −
= −

+ − − − = − + +

I
 (10) 

 
( )2 21

3

5 4 72
45

, constant , :

[ ]
[

Padé

]
2 [ ] [ ] [ ] [ ]

 ord

[

e

] ( [0])

r 2 D C

Q h h D h D
R h hC

R h Q h F h Q h F h h D C D F O h

= + −

= −

+ − − − = + +

I
 (11) 

 
( ) ( )
( )

2 2 2 22 1
5 15

2 21
15

7 6 92
1575

, constant , :

[ ]

[

Padé order 3

]

2 [ ] [ ] [ ] [ ] [ ] ( [0])

D C

Q h h D h D h D

R h h D hC

R h Q h F h Q h F h h D C D F O h

= + − +

= − +

+ − − − = − + +

I I

I
 (12) 



 

4 
 

 
( ) ( )
( )

2 2 4 4 2 23 1 2
7 105 21

2 22
21

9 8 112
99225

, constant , :

[ ]

[ ]

2 [ ] [ ]

Padé order 4

[ ] [ ] [ ] ( [0])

D C

Q h h D h D h D h D

R h h D hC

R h Q h F h Q h F h h D C D F O h

= + + − +

= − +

+ − − − = + +

I I

I
 (13) 

Eq’s. (10)-(13) are specializations of the following general formula, in which the n  subscript 
is applied to the Q  and R  matrices to identify the Padé order: 

 

0

1

1 ,  odd

2 2 1
2

, constant , :
(2 )! ![ ] ( 2 )
!(2 )!( )!

(2 )! ![ ] ( 2 ) ( 2 )
!(2 )!( )!

( 1) ( !) (2 )[ ] ( [0])

Padé ord

(2 )!(2 1)!
2 [ ] [ ] [ ] [

er 

]

n
j

n
j

j
n

j n j

n n
n

n

n n n

D C
n j nQ h h D

j n n j
n j nR h h D hC

j n n j

n hresidual h D C D F
n n

R h Q h F h Q h

n

=

−

≤ ≤

+

−
= −

−

−
= − −

−

−
= +

+

+ − −

∑

∑

2 3[ ] [ ] n
nF h residual h O h +− = +

 (14) 

The subscripted functions in Eq’s. (14) can be efficiently calculated by using the following 
recursion relations, 

 
0

1
2 2

1 1

[ ] ,
[ ] ,

[ ] [ ] [ ]
(2 1) (2 1)n n n

Q h
Q h h D

h DQ h Q h Q h
n n+ −

=
= −

= +
+ −

I
I  (15) 

 
0

1
2 2

1 1

[ ] ,
[ ] ,

[ ] [ ] [ ]
(2 1) (2 1)n n n

R h
R h hC

h DR h R h R h
n n+ −

=
= −

= +
+ −

0
 (16) 

 
0

2 2

1

[ ] 2 ( [0])

[ ] [ ]
(2 1) (2 3)n n

residual h h C D F
h Dresidual h residual h

n n+

= +

−
=

+ +

 (17) 

For non-constant D  and C , general formulas such as Eq’s. (14) have not been developed, 
but several special cases are listed below. 



 

5 
 

 

3

, non-constant , :
[ ] [0]
[ ] [0

Padé orde

]
2 [ ] [ ] [ ] [

r 1

] [ ]

D C
Q h h D
R h hC

R h Q h F h Q h F h O h

= −
= −

+ − − − =

I
  (18) 

 
2 21 2 1 1

6 3 2 3
21 2 1 1

6 3 2 3
5

, non-constant , :
[ ] ( [ ] [0] [ ]) [ ]

[ ] ( [ ] [0] [ ]) [ ] [ ]

[ ] [ ] [ ] [ ]

Padé or

[ ] [

d

]

er 2 D C
Q h h D h D D h h D h

R h h C h C C h h D h C h

R h R h Q h F h Q h F h O h

= − − − + + +

= − − − + + +

− − + − − − =

I
 (19) 

 

72 1 2 2 1
45 2 15 3 2 45

1 1 1 11 1
15 2 5 15 2

2 3 272 1 1 1 1 1
5 9 2 2 2 18 15

72 1 2 2 1
45 2 15 3 2 45

, non-constant , :
[ ] ( [ ] [0] [ ] [ ])
(

Padé 

[ ] [0] [ ])

( ( [ ] [0] [ ] [ ])

o

[ ] )
[ ] ( [ ] [0] [ ] [

r 3

]

der D C
Q h h D h D D h D h

D h D D h

h D h D D h D h h D h
R h h C h C C h C h

= − − + + + +

− + +

− − + + −

= − − + + +

I

1 1 1 11 1
15 2 5 15 2

2 372 1 1 1 1 1
5 9 2 2 2 18 15

7

)
( [ ] [0] [ ])

( ( [ ] [0] [ ] [ ]) [ ] [ ])

[ ] [ ] [ ] [ ] [ ] [ ]

D h D D h

h C h C C h C h h D h C h

R h R h Q h F h Q h F h O h

+

− + +

− − + + −

− − + − − − =

 (20) 



 

6 
 

 

403 279 992 1
1 16800 2800 3 800 3

34 333 1719 12371 2
105 5600 3 2800 3 16800

57 243 1269 32 1
2 1120 560 3 1120 3 4

891 1
1120

, non-constant , :
[ , ] [ ] [ ] [ ]

[0] [ ] [ ] [ ]

[ , ]

Padé orde

[ ] [ ] [ ] [0]
[

r 4 D C
L h X X h X h X h

X X h X h X h

L h X X h X h X h X
X

= − − − + −

+ − + +

= − − − + − −

+ 27 2 41
3 112 3 1120

2067 6021 5805 18632 1
3 9680 4840 3 1936 3 484

103415697 7271 2
1936 3 4840 3 9680

63 1809 2295 8012 1
4 16 40 3 16 3 4

2133 1
16 3

] [ ] [ ]
[ , ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]
[ , ] [ ] [ ] [ ] [0]

[

h X h X h
L h X X h X h X h X

X h X h X h
L h X X h X h X h X

X

+ −

= − − + − − − +

− + −

= − − − + − −

+ 297 2332
8 3 80

123 135 22952 1
5 160 8 3 32 3

3861 1917 1491 2
32 3 40 3 32

6 27 1053 572 1
6 35 10 3 112 3 4

621 729 2771 2
56 3 140 3 560

] [ ] [ ]
[ , ] [ ] [ ] [ ] 132 [0]

[ ] [ ] [ ]
[ , ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]

h X h X h
L h X X h X h X h X

X h X h X h
L h X X h X h X h X

X h X h X h

− +

= − − − + − −

+ − +

= − − + − − − +

− + −

( )

2 3121 2
1 2 3 4 5315 315

2 3 4 22 4 1
6 2 645 45 105

2 3121 2
1 2 3 4 5315 315

22 4
6 245 45

[ ] [ , ] [ , ]( [ , ] [ , ] [ , ])

[ , ] [ , ]( [ , ] [ ] ) [ ]

[ ] [ , ] [ , ]( [ , ] [ , ] [ , ])

[ , ] [ , ](

Q h h L h D L h D h L h D h L h D L h D

h L h D L h D h L h D h D h D h

R h h L h C L h D h L h C h L h D L h C

h L h D L h D h

= − + −

+ + − +

= − + −

+ + −

I

( )3 4 21
6 105

9

[ , ] [ ] ) [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

L h D h D h C h

R h R h Q h F h Q h F h O h

+

− − + − − − =

 (21) 

Note the commonality of subexpressions in the [ ]Q h  and [ ]R h  formulas in Eq’s. (20) and (21).  
Also, the product factors 2[ ]D h  in Eq’s. (19)-(21) can be re-used in the subsequent integration 
step as 2[ ]D h−  for calculating [ ]Q h−  and [ ]R h− .  The products [ ] [ ]D h C h  in Eq’s. (19) and (20) 
can similarly be carried over to the next step. 
 

3. Scale-and-square algorithm 
For the constant-coefficient case, Eq. (8) can be formulated as  

 0 0[ ] [ ]F x x F x+ D = Ω+F   (22) 

where 

 1 (exp[ ] )D D x C−Ω = D − I , (23) 

 exp[ ]D xF = D . (24) 

The Ω  and F  matrices, which depend on xD  but not on 0x , can be obtained from the Padé 
approximation, Eq. (4), for small xD , 

 1[ ] [ ] ( [ ] [ ] 2 [ ])F h Q h Q h F h R h−≈ − − − . (25) 



 

7 
 

(The term [ ] [ ]R h R h− −  in Eq. (4) has been replaced by 2 [ ]R h  because [ ]R h  is an odd function 
of h  for the constant-coefficient case.)  Eq. (25) is applied with 2x hD =  and with the x  
coordinate origin shifted so that 0x h= − ; thus 0[ ]F x x+ D  is determined from 0[ ]F x .  The 
following approximations result from Eq’s. (22) and (25), 

 12 [ ] [ ]Q h R h−Ω ≈ − ,  (26) 

 1[ ] [ ]Q h Q h−F ≈ − . (27) 

Eq. (22) is applied recursively to integrate [ ]F x  over a large, m -step integration interval, 

 0 0[ ] [ ]m
mF x m x F x+ D = Ω +F   (28) 

where 

 2 1
1( ) ( )m

m
−Ω = +F+F + +F Ω Ω = ΩI  . (29) 

Given mΩ  and mF  for any particular integer m , 2mΩ  and 2mF  are obtained as 

 2
m

m m mΩ = Ω +F Ω , (30) 

 2 2( )m mF = F . (31) 

Eq. (31) is the basis of the standard scale-and-square algorithm for homogeneous linear 
differential equations, and Eq. (30) generalizes the method for nonhomogeneous equations. 

In implementing the Padé approximation it is advantageous to calculate the even and odd 
parts of [ ]Q h  separately so that [ ]Q h  and [ ]Q h−  can be calculated with minimal computational 
overhead, 

 
[even] [odd]

[even] [odd]1 1
2 2

[ ] [ ] [ ],
[ ] ( [ ] [ ]), [ ] ( [ ] [ ]).

Q h Q h Q h
Q h Q h Q h Q h Q h Q h
± = ±

= + − = − −
 (32) 

Note that the [ ]Q h  definitions in Eq’s. (10)-(13) are formatted with the even and odd 
polynomials separated.  Also note that the [ ]R h  function is similar to [odd][ ]Q h  except for 
replacement of the last D  factor by C .  These matrices have a common matrix left-factor L , 

 [odd][ ] , [ ]R h LC Q h L D= = . (33) 

Eq. (33) is applied in Eq’s. (26) and (27) to obtain 

 12 [ ]Q h LC−Ω = − . (34) 

 1 [odd] 12 [ ] [ ] 2 [ ]Q h Q h Q h L D− −F − = − = −I . (35) 

For small xD  the matrix Ω  is approximately proportional to xD  (Eq. (23)), but F  is 
approximately equal to I  with a small xD -proportionate increment (Eq. (24)).  To avoid 
possible precision loss in the F  diagonal elements, F  can be calculated with the dominant I  
component subtracted off.  The I  separation is preserved through the scale-and-square process 
by modifying Eq’s. (30) and (31) as follows, 



 

8 
 

 2 2 ( )m
m m mΩ = Ω + F − ΩI , (36) 

 2 2( ) ( ) 2( )m m mF − = F − + F −I I I . (37) 

 
4. Error analysis and tolerance control 

Continuing with the constant-coefficient case, Eq. (22) will be slightly in error due to the 
inaccuracy of the Padé approximation.  Denoting error terms (approximation minus exact value) 
by the prefix “δ ”, the calculated error in 0[ ]F x x+ D  is 

 0 0[ ] ( ) [ ]F x x F xδ δ δ+ D = Ω+ F . (38) 

The errors in Ω  and F  can be obtained from Eq’s. (14), in which [ ]F h  is calculated by ignoring 
the residual term ( [ ]nresidual h ), 

 [ ] [ ] [ ]n nQ h F h residual hδ ≈ − . (39) 

For small h , [ ]nQ h  is close to I  (i.e., [ ]nQ h O h= +I ) and Eq. (39) simplifies to 

 [ ] [ ]nF h residual hδ ≈ − . (40) 

A comparison of Eq’s. (38) and (40), with 0x h= − , 2x hD = , and with [ ]nresidual h  defined in 
Eq’s. (14), yields the following expressions for δΓ  and δF  (from Eq. (14)). 

 
2 2 1

2( 1) ( !) ( ) ( 2 )
(2 )!(2 1)!

n n
nn x D C x h

n n
δ

+− D
Ω = − D =

+
, (41) 

 
2 2 1

2 1( 1) ( !) ( )
(2 )!(2 1)!

n n
nn x D

n n
δ

+
+− D

F = −
+

. (42) 

(The [0]F  term in Eq. (14) does not differ significantly from [ ]F h−  for the purpose of error 
estimation.) 

The cumulative errors in m  integration steps (Eq. (28)) are represented as 

 0 0[ ] ( ( )) [ ]m
mF x m x F xδ δ δ+ D = Ω + F . (43) 

The ( )mδ F  error has the approximate form 

 1 2 1( ) ( ) ( ) ( )m m m mδ δ δ δ− − −F ≈ F F +F F F + +F F . (44) 

F  is close to I  ( O xF = + DI , Eq. (24)), so Eq. (44) simplifies to 

 ( )m mδ δF ≈ F . (45) 

A similar relation is applied to the F  powers on the right side of Eq. (29), 

 2 1( 2 ( 1) ) ( )m
m mδ δ δ δ δ−Ω ≈ F+ F + + − F Ω+ +F+F + +F ΩI  . (46) 

Making the approximations F ≈ I  and C xΩ ≈ D  (from Eq. (23)), Eq. (46) simplifies to 



 

9 
 

 1
2 ( 1) ( )m m m C x mδ δ δΩ ≈ − F D + Ω . (47) 

The factors δF  and δΩ  are both of order 2 1( ) nx +D  (cf. Eq’s. (41) and (42)).  The first term on 
the right side of Eq. (47) contains an extra factor of xD  relative to the second term and can hence 
be neglected, 

 m mδ δΓ ≈ Γ . (48) 

Eq’s. (45) and (48) are substituted in Eq. (43), 

 0 0[ ] ( ( ) [ ])F x m x m F xδ δ δ+ D ≈ Ω+ F .  (49) 

(To a first-order approximation the single-step error 0[ ]F x xδ + D  is simply multiplied by m  in 
taking m  integration steps.)  Eq. (49) includes two error factors: an additive factor mδΩ , and a 
multiplicative factor mδF  that is applied to 0[ ]F x .  The mδF  factor is dimensionless (cf. Eq. 
(42)) whereas mδΩ  has a linear dependence on C  and has the same dimensional units as C xD  
(Eq. (41)).  xD  can be chosen to impose an approximate tolerance bound on both error terms, 

 range ,m C x tol m tolδ δΩ ≤ F ≤   (50) 

where   is the Frobenius norm, tol  is a specified dimensionless tolerance bound, and rangex  is 
the total integration range, 

 range | |x m x= D .  (51) 

( tol  is a “relative tolerance”, which scales the 0( ) [ ]F xδF  error in proportion to 0[ ]F x , and the 
δΩ  error in proportion to C .)  With substitution from Eq’s. (41) and (42), the following 
conditions are obtained from Eq’s. (50), 

 
2 2 1 2 2 1

range range2 2 1
range

( !) ( / ) ( !) ( / )
,

(2 )!(2 1)! (2 )!(2 1)!

n n
n nn x m n x m

m D C C x tol m D tol
n n n n

+ +
+≤ ≤

+ +
.  (52) 

The first of Eq’s. (52) can be strengthened by omitting the C  factor because 
2 2n nD C D C≤ ⋅ .  The following limit on m  implies Eq’s. (52), 

 
1/(2 )2

2 2 2 1 2 1
range range

( !) max ( ) , ( )
(2 )!(2 1)!

n
n n n nnm x D x D

n n tol
+ +  ≥   + 

. (53) 

With the scale-and-square algorithm, m  is a power of 2 and Eq. (53) translates to 

 
2

2 2 2 1 2 1
2 range range

1 ( !)2 , log max ( ) , ( )
2 (2 )!(2 1)!

j n n n nnm j x D x D
n n n tol

+ +  = ≥   + 
. (54) 

The first max  argument is only applicable if C  is non-zero; if C  is zero the max[ ]  factor can 
be replaced by 2 1 2 1( ) n n

rangex D+ + .  (If D  is zero, Eq. (1) has a trivial solution for constant C  and 
no error analysis is required.) 



 

10 
 

The minimum j  satisfying Eq. (54) defines the integration step range| | 2 2 jx h x−D = = .  In 
some cases the step may not be small enough to justify the differential approximations made in 
the above derivation (e.g. the assumptions that [ ]nQ h  and F  are close to I ).  But nevertheless, 
Eq. (54) typically results in good computational accuracy. 

The above formulas are not directly applicable to the non-constant-coefficient case, but Eq. 
(53) can be used to obtain an initial integration step size | | /rangex x mD = , using values of [ ]D x  
and [ ]C x  at the beginning of the integration interval.  This initialization is inapplicable when D  
is zero or when D  or C  varies significantly over the xD  range.  (When D  is identically zero, 
the errors in Eq’s. (18)-(21) are proportional to the order- 2n  derivative of C  for Padé order n .)  
An alternative step initialization criterion may need to be used to accommodate spatial variability 
of D  and C . 

After xD  is initialized, it is dynamically varied at each integration step to limit the error, 
which can be estimated by determining 0[ ]F x x+ D  from 0[ ]F x  by two estimation methods and 
applying Richardson extrapolation to the estimates.  A first estimate 1 0[ ]F x x+ D  is obtained by 
making a single-step Padé approximation with step size xD , and a second estimate 2 0[ ]F x x+ D  
is obtained by making two Padé approximation steps with step size 1

2 xD .  The errors in these 
estimates are approximately 

 2 1 2 11
1 0 2 0 2[ ] , [ ] 2 ( )n nF x x A x F x x A xδ δ+ ++ D ≈ D + D ≈ D   (55) 

where n  is the Padé order, A  is an undetermined matrix, and the factor of 2 is included in the 
second equality to account for the two steps.  The following relation is obtained by eliminating 
A  between Eq’s. (55), 

 2
1 0 2 0[ ] 2 [ ]nF x x F x xδ δ+ D ≈ + D . (56) 

Subtracting the error from both estimates should give the same error-corrected result, 

 1 0 1 0 2 0 2 0[ ] [ ] [ ] [ ]F x x F x x F x x F x xδ δ+ D − + D = + D − + D . (57) 

1 0[ ]F x xδ + D  is eliminated from Eq’s. (56) and (57) to obtain 

 1 0 2 0
2 0 2

[ ] [ ][ ]
2 1n

F x x F x xF x xδ + D − + D
+ D =

−
. (58) 

The integration step xD  is decreased or increased by factors of 2 to keep this estimated error 
within allowed tolerance bounds (i.e. the step is halved if the error significantly exceeds the 
tolerance, and is doubled if the error times 2 12 n+  is within the tolerance).  Some excursion of the 
estimated error over the tolerance limit can be allowed because the calculated 2 0[ ]F x x+ D  can be 
decremented by the error estimate 2 0[ ]F x xδ + D  to improve its accuracy. 

The [ ]F h  value calculated from Eq. (4) can be represented as in Eq’s. (22), (26) and (27), 

 [ ] [ ]F h F h= Ω+F − ,  (59) 

where 



 

11 
 

 1[ ] ( [ ] [ ])Q h R h R h−Ω = − − − ,  (60) 

 1[ ] [ ]Q h Q h−F = − . (61) 

(In this context [ ]R h  is not generally an odd function of h .)  With 0x h= −  and 2x hD = , the 

1 0[ ]F x x+ D  term in Eq. (58) has the form 

 1 0 1 1 0[ ] [ ]F x x F x+ D = Ω +F . (62) 

The same separation is made for 2 0[ ]F x x+ D  in two steps, 

 
1

2 0 2,1 2,1 02

1
2 0 2,2 2,2 0 2,2 2,2 2,1 2,1 02

[ ] [ ],

[ ] [ ] ( [ ]).

F x x F x

F x x F x x F x

+ D = Ω +F

+ D = Ω +F + D = Ω +F Ω +F
 (63) 

This expression is of the form 

 2 0 2 2 0 2 2,2 2,2 2,1 2 2,2 2,1[ ] [ ] with , .F x x F x+ D = Ω +F Ω = Ω +F Ω F = F F  (64) 

The estimated error 2 0[ ]F x xδ + D  in Eq. (58) is correspondingly separated into Ω  and F  
components, 

 1 2 1 2
2 0 2 2 0 2 22 2[ ] ( ) [ ] with , .

2 1 2 1n nF x x F xδ δ δ δ δΩ −Ω F −F
+D = Ω + F Ω = F =

− −
 (65) 

Eq. (65) is similar to Eq. (38).  The following tolerance specifications are analogous to Eq’s. 
(50) (with m  defined by Eq. (51)), 

 range range
rms2 range 2,

x x
C x tol tol

x x
δ δΩ ≤ F ≤

D D
. (66) 

“ rmsC ” represents the root-mean-square of [ ]C x  over the [ ]C x  matrices appearing in any of 
Eq’s. (18)-(21).  (If rmsC  is zero the first limit in Eq. (66) is inapplicable.)  These conditions can 
be used to control the integration step size xD  for the non-constant coefficient case. 
 

References 
[1] K. Johnson, Numerical Solution of Linear, Homogeneous Differential Equation Systems via 
Padé Approximation (v2, posted April 22, 2016).  http://vixra.org/abs/1509.0286. 
[2] K. Johnson,  Linear differential equation solver (lde.m), posted Nov. 30, 2016. 
http://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-
solver--lde-m-. 
[3] N. J. Higham, The Scaling and Squaring Method for the Matrix Exponential Revisited, SIAM 
Review, 51 (2009), pp. 747–764. 
[4] A. H. Al-Mohy and N. J. Higham, A new scaling and squaring algorithm for the matrix 
exponential, SIAM J. Matrix Anal. Appl., 30 (2009), pp. 970–989. 

[5] MATLAB expm function, https://www.mathworks.com/help/matlab/ref/expm.html. 

http://vixra.org/abs/1509.0286
http://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-solver--lde-m-
http://www.mathworks.com/matlabcentral/fileexchange/60475-linear-differential-equation-solver--lde-m-
https://www.mathworks.com/help/matlab/ref/expm.html


 

12 
 

[6] MATLAB Ordinary Differential Equation solvers, 
https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html. 
 

Appendix A:  MATLAB Implementation notes, constant-coefficient case 

The even part of the [ ]Q h  polynomial ( [even][ ]Q h , Eq’s. (14), (32)) is of the form 

 1 2

1
; ( )

N
j

j
j

Y c X X h D−

=

= =∑ . (67) 

( X  is a square matrix; the coefficients jc  are scalar.)  The odd part ( [odd][ ]Q h ) has a similar 
form, but with an extra factor of h D .  (Omitting the D factor yields the L  matrix in Eq’s. (33), 
from which [ ]R h  is obtained.)  The polynomial coefficients jc  can be initialized by using the 
recursion relations in Eq’s. (15). 

For large N  the polynomial can be efficiently evaluated by zero-padding and reshaping the 
coefficient vector to a rectangular array and reorganizing Eq. (67) as 

 
2 1

11 1
, 1 2 1

1 1
( ) ; round[ ], ceil[ / ]

N N
Nj k

j k
k j

Y c X X N N N N N− −

= =

 
= = = 

 
∑ ∑ . (68) 

A direct implementation of Eq. (67) would require 2N −  matrix multiplies, whereas Eq. (68) 
typically requires 1 2 2N N+ − , a reduction by a factor of approximately 1

2 N .  The powers 2X  
… 1 1NX −  in the j  sum, and the outer factor 1NX  in the k  sum, are pre-computed, and the outer 
sum is implemented using Horner’s method.  The number of multiplies is reduced by 1 (to 

1 2 3N N+ − ) in two special cases: if 2 1N =  (in which case 1NX  is not needed), or if 2 1N >  and 

2, 0j Nc =  for 1j >  (in which the first step of Horner’s method multiplies 1NX  by 
21, Nc , a scalar). 

For example, an order-12 polynomial can be implemented with 5 matrix multiplies as 
follows, 

 
( )( )

12 2 3
1 2 13 1 2 3 4

2 3 2 3 4 4 4
5 6 7 8 9 10 11 12 13 .

c c X c X c c X c X c X

c c X c X c X c c X c X c X c X X X

+ + + = + + + +

+ + + + + + + +



 (69) 

(Three matrix-matrix multiplies are required for 2X , 3X , and 4X ; and two are required for the 
( ) 4X  products.) 

Eq. (54) contains additional matrix powers 2nD  and 2 1nD + , but calculation of these powers 
can be avoided by using the following bounding estimate for the norm of a matrix power, 

 1 2 1 2j j j jD D D+ + ≤ ⋅ ⋅

  (70) 

The pre-computed powers of D  used for the Q  polynomial evaluation are used on the right side 
of Eq. (70), and products of this form are substituted in Eq. (54).  The number j  of squaring 
operations may be increased by this substitution, but j  is proportional to the logarithm of the 
matrix norm so the additional squaring steps are typically not significant compared to the 

https://www.mathworks.com/help/matlab/math/choose-an-ode-solver.html


 

13 
 

runtime penalty of computing 2nD  and 2 1nD + .  Furthermore, direct computation of 2nD  and 
2 1nD +  could potentially overflow the floating-point range limit ( 10242 ) when D  and n  are 

large.  This problem can be circumvented by separating a [ ]2
2log nD  term out of Eq. (54) and 

replacing it with the following bounding estimate, 

 [ ] [ ] [ ]1 2 1 2
2 2 2 1 2log log log ( 2 )j j j jD D D j j n+ + ≤ + + + + =

   (71) 

Over-estimation of ND  can potentially lead to numeric precision loss due to overscaling 
[4], but the I -separation method (Eq’s. (35)-(37)) avoids this problem.  The following 
MATLAB test case illustrates the benefit of I  separation: 

 

a = -1e20;
b = eps;
c = 1;
A = [a,0,b;0,c,0;-b,0,a];
% Exact matrix exponential:
expA = exp(a)*( ...
    [1,0,0;0,0,0;0,0,1]*cos(b)+ ...
    [0,0,1;0,0,0;-1,0,0]*sin(b))+ ...
    [0,0,0;0,exp(c),0;0,0,0];
disp(num2str(expA))
0           0           0
0      2.7183           0
0           0           0

 (72) 

The standard MATLAB expm function completely loses numeric precision on this example: 

 
disp(num2str(expm(A)))
0  0  0
0  1  0
0  0  0

 (73) 

However, a simple code modification implementing the squaring algorithm as in Eq. (37) 
reduces the error to machine precision ( 164 10−⋅ ). 

 

Appendix B:  Mathematica verification of Eq’s. (10)-(13) and (18)-(21) 
The calculations underlying Eq’s. (10)-(13) and (18)-(21) require non-commutative symbolic 

algebra.  The following results are obtained using the NCAlgebra package for Mathematica, 
from the University of California, San Diego (http://math.ucsd.edu/~ncalg/).  The Mathematica 
code loads the NCAlgebra package, adds some functionality, and verifies the equations.  A 
Mathematica notebook containing the following code is posted at 
https://figshare.com/articles/Appendix_2016_11_29_nb/4269584. 

 
 

http://math.ucsd.edu/~ncalg/
https://figshare.com/articles/Appendix_2016_11_29_nb/4269584


(* Load NCAlgebra package (http://math.ucsd.edu/~ncalg/) *)
<< NC`
<< NCAlgebra`

(* Make all variables commutative by default.
(Override the default noncommutativity of single-letter lowercase variables.) *)

Remove[a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z]

(* D0, C0, Dfn, Cfn, F, Q, and R represent matrices. D0 and C0 represent constants;
Dfn, Cfn, F, Q, and R represent functions, and "1" represents the identity matrix. *)

SetNonCommutative[D0, C0, Dfn, Cfn, F, Q, R];

(* Series and O (e.g. O[h]^n) do not work with NC types
(e.g.: try Dfn[h]**F[h]+O[h]^2 or Series[Dfn[h]**F[h],{h,0,1}]). Define a variant that does work. *)

NCSeries[f_, {x_, x0_, n_}] := NCExpand[Sum[(D[f, {x, j}]/j! /. x → x0) (x - x0)^j, {j, 0, n}]] + O[x - x0]^(n + 1);

(* substD is a substitution rule for reducing derivatives of F using the relation F'[h]⩵Dfn[h]**F[h]+Cfn[h].
Use "... //. substD" to eliminate all F derivatives.
(The substD definition uses ":>",
not "->" otherwise the substitutions will not work when x or n has a preassigned value.) *)

substD = Derivative[n_][F][x_] :> Derivative[n - 1][Dfn[#] ** F[#] + Cfn[#] &][x];

(* substD0 is a substitution rule for reducing derivatives of F using the relation F'[h]⩵
D0**F[h]+C0. This specializes substD for the case where Dfn and Cfn are constant. *)

substD0 = Derivative[n_][F][x_] :> Derivative[n - 1][D0 ** F[#] + C0 &][x];

(* Eq 10 *)

Q[h_] := 1 - h D0;
R[h_] := -h C0;
Factor[NCExpand[Normal[NCSeries[2 R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 4}]] //. substD0]]

-

2

3
h3 (D0 ** D0 ** C0 + D0 ** D0 ** D0 ** F[0])

(* Eq 11 *)

Q[h_] := 1 +

1

3
h2 D0 ** D0 - h D0;

R[h_] := -h C0;
Factor[NCExpand[Normal[NCSeries[2 R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD0]]

2

45
h5 (D0 ** D0 ** D0 ** D0 ** C0 + D0 ** D0 ** D0 ** D0 ** D0 ** F[0])

(* Eq 12 *)

Q[h_] := 1 +

2

5
h2 D0 ** D0 - 1 +

1

15
h2 D0 ** D0 ** (h D0);

R[h_] := - 1 +

1

15
h2 D0 ** D0 ** (h C0);

Factor[NCExpand[Normal[NCSeries[2 R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 8}]] //. substD0]]

-

2 h7 (D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** C0 + D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** F[0])

1575

(* Eq 13 *)

Q[h_] := 1 +

3

7
h^2 D0 ** D0 +

1

105
h^4 D0 ** D0 ** D0 ** D0 - 1 +

2

21
h^2 D0 ** D0 ** (h D0);

R[h_] := - 1 +

2

21
h^2 D0 ** D0 ** (h C0);

Factor[NCExpand[Normal[NCSeries[2 R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 10}]] //. substD0]]

1

99225
2 h9 (D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** C0 + D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** F[0])



(* Eq 18 *)

Q[h_] := 1 - h Dfn[0];
R[h_] := -h Cfn[0];
NCExpand[Normal[NCSeries[2 R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 2}]] //. substD]

0

(* Eq 19 *)

Q[h_] := 1 - h -

1

6
Dfn[-h] +

2

3
Dfn[0] +

1

2
Dfn[h] +

1

3
h2 Dfn[h] ** Dfn[h];

R[h_] := -h -

1

6
Cfn[-h] +

2

3
Cfn[0] +

1

2
Cfn[h] +

1

3
h^2 Dfn[h] ** Cfn[h];

NCExpand[Normal[NCSeries[R[h] - R[-h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 4}]] //. substD]

0

(* Eq 20 *)

Q[h_] := 1 - h
2

45
Dfn-

h

2
 +

2

15
Dfn[0] +

2

3
Dfn

h

2
 +

7

45
Dfn[h] +

1

15
Dfn-

h

2
 +

1

5
Dfn[0] +

11

15
Dfn

h

2
 **

2

5
h2

1

9
Dfn-

h

2
 -

1

2
Dfn[0] + Dfn

h

2
 +

7

18
Dfn[h] -

1

15
h3 Dfn[h] ** Dfn[h] ;

R[h_] := -h
2

45
Cfn-

h

2
 +

2

15
Cfn[0] +

2

3
Cfn

h

2
 +

7

45
Cfn[h] +

1

15
Dfn-

h

2
 +

1

5
Dfn[0] +

11

15
Dfn

h

2
 **

2

5
h2

1

9
Cfn-

h

2
 -

1

2
Cfn[0] + Cfn

h

2
 +

7

18
Cfn[h] -

1

15
h3 Dfn[h] ** Cfn[h] ;

NCExpand[Normal[NCSeries[R[h] - R[-h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD]

0

2     Appendix_2016_11_29.nb



(* Eq 21 *)

L1[h_, X_] :=
403

16800
X[-h] -

279

2800
X-

2 h

3
 +

99

800
X-

h

3
 +

34

105
X[0] -

333

5600
X

h

3
 +

1719

2800
X

2 h

3
 +

1237

16800
X[h];

L2[h_, X_] :=
57

1120
X[-h] -

243

560
X-

2 h

3
 +

1269

1120
X-

h

3
 -

3

4
X[0] +

891

1120
X

h

3
 +

27

112
X

2 h

3
 -

41

1120
X[h];

L3[h_, X_] := -

2067

9680
X[-h] +

6021

4840
X-

2 h

3
 -

5805

1936
X-

h

3
 +

1863

484
X[0] -

5697

1936
X

h

3
 +

10341

4840
X

2 h

3
 -

727

9680
X[h];

L4[h_, X_] :=
63

16
X[-h] -

1809

40
X-

2 h

3
 +

2295

16
X-

h

3
 -

801

4
X[0] +

2133

16
X

h

3
 -

297

8
X

2 h

3
 +

233

80
X[h];

L5[h_, X_] :=
123

160
X[-h] -

135

8
X-

2 h

3
 +

2295

32
X-

h

3
 - 132 X[0] +

3861

32
X

h

3
 -

1917

40
X

2 h

3
 +

149

32
X[h];

L6[h_, X_] := -

6

35
X[-h] +

27

10
X-

2 h

3
 -

1053

112
X-

h

3
 +

57

4
X[0] -

621

56
X

h

3
 +

729

140
X

2 h

3
 -

277

560
X[h];

Q[h_] := 1 - h L1[h, Dfn] + L2[h, Dfn] **

121

315
h2 L3[h, Dfn] -

2

315
h3 L4[h, Dfn] ** L5[h, Dfn] +

2

45
h2 L6[h, Dfn] + L2[h, Dfn] ** -

4

45
h3 L6[h, Dfn] +

1

105
h4 Dfn[h] ** Dfn[h] ** Dfn[h];

R[h_] := -h L1[h, Cfn] + L2[h, Dfn] **

121

315
h2 L3[h, Cfn] -

2

315
h3 L4[h, Dfn] ** L5[h, Cfn] +

2

45
h2 L6[h, Dfn] + L2[h, Dfn] ** -

4

45
h3 L6[h, Dfn] +

1

105
h4 Dfn[h] ** Dfn[h] ** Cfn[h];

NCExpand[Normal[NCSeries[R[h] - R[-h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD]

0

Appendix_2016_11_29.nb    3


	KJohnson_2016_11_30.pdf (p.1-13)
	Appendix_2016_11_29.pdf (p.14-16)

