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Abstract

This paper generalizes an earlier investigation of linear differential equation solutions via
Padé approximation (viXra:1509.0286), for the case of nonhomogeneous equations.  Formulas
are provided for approximation orders 2, 4, 6, and 8, for both constant-coefficient and functional-
coefficient cases. The scale-and-square algorithm for the constant-coefficient case is generalized
for nonhomogeneous equations.  Implementation details including step size initialization and
tolerance control are discussed.

1. Introduction

An earlier study [1] investigated solutions of the linear differential equation
[ ] [ ] [ ]F x D x F x  via Padé approximation: 1[ ] [ ] [ ] [ ]F h Q h Q h F h   , where [ ]Q h is a

polynomial.  ( D and Q are square matrices; F may be a column vector or a multi-column
matrix.  Square braces “[ ] ” delimit function arguments, while round braces “ ( ) ” are
reserved for grouping.)

We consider here the more general nonhomogeneous equation,

[ ] [ ] [ ] [ ]F x D x F x C x   . (1)

(C is a vector or matrix, size-matched to F .) For this case, Eq. (7) in [1] is generalized by
including an additional matrix polynomial R on the left,

2 11
2 ( [ ] [ ]) [ ] [ ] [ ] [ ] nR h R h Q h F h Q h F h O h        , (2)

The Q polynomial has the form given in [1]; it is determined from D and has no dependence on
C . The R polynomial depends on both D and C and has a linear dependence on C . In some
cases [ ]R h is an odd function of h ( [ ] [ ]R h R h   ), in which case the 1

2 ( [ ] [ ])R h R h  term in

Eq. (2) is replaced by [ ]R h .

The homogeneous equation ( C  0 in Eq. (1)) has solutions of the form [ ] [ ] [0]F x x F  ,
where [ ]x is the solution of the initial value problem,

[ ] [ ] [ ], [0]x D x x     I , (3)
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where I is an identity matrix.  For the nonhomogeneous case, general solutions of Eq. (1) (with
[ ]F x specified at 0x x ) are of the form

 
0

1 1
0 0[ ] [ ] [ ] [ ] [ ] [ ]

x

x
F x x t C t dt x F x     . (4)

For the special case of constant D , [ ]x is an exponential matrix,

[ ] exp[ ]x D x  (constant D ). (5)

If C is also constant, Eq. (4) reduces to
1

0 0 0[ ] (exp[ ( )] ) exp[ ( )] [ ]F x D D x x C D x x F x    I (constant D and C ). (6)

This formula cannot be used when D is singular (even though the first left-hand term is well
defined by its Taylor series), and it has poor numerical precision will D is near-singular or

0x x is very small. But the Padé approximation method based on Eq. (2) does not have these

limitations. The method can be used, for example, to robustly calculate 1 (exp[ ] )D D  I (even

for singular D ) by setting 0[ ]F x  0 , C  I , and 0 1x x  .

Eq. (2) is used to integrate [ ]F x across a small interval, from x h  to x h .  The

independent variable x can be scaled and shifted to convert this to an integration from 0x x to

0x x x   for a sufficiently small x , and multiple such integrations are concatenated to

calculate [ ]F x over a large integration interval. For the homogeneous, constant-coefficient case
( D constant, C  0 ), the concatenation can be efficiently implemented using a “scale-and-
square” technique based on the relation

2 2 2exp[ ] ( ((exp[2 ]) ) )

j

jD x D x






  . (7)

(For some sufficiently large integer j , a Padé approximant is used to calculate exp[2 ]j D x , and
the result is squared j times to obtain exp[ ]D x .)  This algorithm can be generalized for the
nonhomogeneous case with constant D and C .

Section 2 lists polynomial functions Q and R in Eq. (2) for various approximation orders.
Section 3 outlines the scale-and-square algorithm, generalized for the nonhomogeneous case.
Section 4 discusses the choice of integration interval size. The Appendix provides Mathematica
code validating the results of section 2.

2. Padé-approximation formulas

The Q and R polynomials in Eq. (2) are listed below for approximation orders 2, 4, 6, and
8, first for the case of constant D and C and then for the non-constant case.  The constant-
coefficient formulas include an estimate of the approximation error, which is useful for
determining the integration step size.  For the non-constant case similar error approximations
would be too complex to be of much use, but the constant-coefficient formulas can be used for
step size initialization as described in section 4.
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3

order-2 accuracy, constant , :

[ ]

[ ] 2

[ ] [ ] [ ] [ ] [ ] ( [0])

D C

Q h h D

R h hC

R h Q h F h Q h F h h D C D F O h

 
 

       

I
(8)

2 21
3

5 4 72
45

order-4 accuracy, constant , :

[ ]

[ ] 2

[ ] [ ] [ ] [ ] [ ] ( [0])

D C

Q h h D h D

R h hC

R h Q h F h Q h F h h D C D F O h

  

 

      

I
(9)

2 2 3 32 1
5 15

3 22
15

7 6 92
1575

order-6 accuracy, constant , :

[ ]

[ ] 2

[ ] [ ] [ ] [ ] [ ] ( [0])

D C

Q h h D h D h D

R h hC h D C

R h Q h F h Q h F h h D C D F O h

   

  

       

I
(10)

2 2 3 3 4 43 2 1
7 21 105

3 24
21

9 8 112
99225

order-8 accuracy, constant , :

[ ]

[ ] 2

[ ] [ ] [ ] [ ] [ ] ( [0])

D C

Q h h D h D h D h D

R h hC h D C

R h Q h F h Q h F h h D C D F O h

    

  

      

I
(11)

Eq’s. (8)-(11) are specializations of the following general formula, in which the n subscript
is applied to the Q and R matrices to identify the accuracy order ( 2 n ):

0

1

 odd,
1

2 2 1
2

order-2  accuracy, constant , :

(2 )! !
[ ] ( 2 )

!(2 )!( )!

(2 )! !
[ ] 2 ( 2 ) ( 2 )

!(2 )!( )!

( 1) ( !) (2 )
[ ] ( [0])

(2 )!(2 1)!

[ ] [ ] [ ]

n
j

n
j

j
n

j
j n

n n
n

n

n n

n D C

n j n
Q h h D

j n n j

n j n
R h h D hC

j n n j

n h
residual h D C D F

n n

R h Q h F h Q





 




 




  




 



 





2 3[ ] [ ] [ ] n
n nh F h residual h O h    

(12)

The subscripted functions in Eq’s. (12) can be efficiently calculated by using the following
recursion relations,
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0

1

2 2

1 1

[ ] ,

[ ] ,

[ ] [ ] [ ]
(2 1) (2 1)n n n

Q h

Q h h D

h D
Q h Q h Q h

n n 



 

 
 

I

I (13)

0

1

2 2

1 1

[ ] ,

[ ] 2 ,

[ ] [ ] [ ]
(2 1) (2 1)n n n

R h

R h hC

h D
R h R h R h

n n 



 

 
 

0

(14)

0

2 2

1

[ ] 2 ( [0])

[ ] [ ]
(2 1) (2 3)n n

residual h h C D F

h D
residual h residual h

n n

 




 

(15)

For non-constant D and C general formulas such as Eq. (12) have not been developed, but
several special cases are listed below.

3

order-2 accuracy, non-constant , :

[ ] [0]

[ ] 2 [0]

[ ] [ ] [ ] [ ] [ ]

D C

Q h h D

R h hC

R h Q h F h Q h F h O h

 
 

    

I
(16)

2 21 2 1 1
6 3 2 3

21 2 1 2
6 3 2 3

51
2

order-4 accuracy, non-constant , :

[ ] ( [ ] [0] [ ]) [ ]

[ ] 2 ( [ ] [0] [ ]) [ ] [ ]

( [ ] [ ]) [ ] [ ] [ ] [ ]

D C

Q h h D h D D h h D h

R h h C h C C h h D h C h

R h R h Q h F h Q h F h O h

      

      

      

I
(17)

72 1 2 2 1
3 45 2 15 3 2 45

1 1 1 11 1
15 2 5 15 2

2 3 272 1 1 1 1 1
5 9 2 2 2 18 15

72 1 2 2 1
45 2 15 3 2

order-6 accuracy, non-constant , :

[ ] ( [ ] [0] [ ] [ ])

( [ ] [0] [ ])

( ( [ ] [0] [ ] [ ]) [ ] )

[ ] 2 ( [ ] [0] [ ]

D C

Q h h D h D D h D h

D h D D h

h D h D D h D h h D h

R h h C h C C h

      

  

    

     

I

45

1 1 1 11 1
15 2 5 15 2

2 372 1 1 1 1 1
5 9 2 2 2 18 15

71
2

[ ])

2( [ ] [0] [ ])

( ( [ ] [0] [ ] [ ]) [ ] [ ])

( [ ] [ ]) [ ] [ ] [ ] [ ]

C h

D h D D h

h C h C C h C h h D h C h

R h R h Q h F h Q h F h O h



  

    

      

(18)
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403 279 992 1
1 16800 2800 3 800 3

34 333 1719 12371 2
105 5600 3 2800 3 16800

57 243 1269 32 1
2 1120 560 3 1120 3 4

891 1
1120

order-8 accuracy, non-constant , :

[ ] [ ] [ ] [ ]

[0] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [0]

[

D C

L h D h D h D h

D D h D h D h

L h D h D h D h D

D

     

   

      

 27 2 41
3 112 3 1120

2067 6021 5805 18632 1
3 9680 4840 3 1936 3 484

103415697 7271 2
1936 3 4840 3 9680

63 1809 2295 8012 1
4 16 40 3 16 3 4

2133 21
16 3

] [ ] [ ]

[ ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [0]

[ ]

h D h D h

L h D h D h D h D

D h D h D h

L h D h D h D h D

D h

 

       

  

      

  97 2332
8 3 80

123 135 22952 1
5 160 8 3 32 3

3861 1917 1491 2
32 3 40 3 32

6 27 1053 572 1
6 35 10 3 112 3 4

621 729 2771 2
56 3 140 3 560

40
7

[ ] [ ]

[ ] [ ] [ ] [ ] 132 [0]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]

[ ]

D h D h

L h D h D h D h D

D h D h D h

L h D h D h D h D

D h D h D h

L h



      

  

       

  

 3 279 99 342 1
16800 2800 3 800 3 105

333 1719 12371 2
5600 3 2800 3 16800

2067 6021 5805 18632 1
8 9680 4840 3 1936 3 484

103415697 7271 2
1936 3 4840 3 9680

[ ] [ ] [ ] [0]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ] [0]

[ ] [ ] [ ]

C h C h C h C

C h C h C h

L h C h C h C h C

C h C h C h

L

     

  

       

  

 

123 135 22952 1
9 160 8 3 32 3

3861 1917 1491 2
32 3 40 3 32

2 3121 2
1 2 3 4 5315 315

2 3 4 22 4 1
6 2 645 45 105

7 2

[ ] [ ] [ ] [ ] 132 [0]

[ ] [ ] [ ]

[ ] [ ] [ ]( [ ] [ ] [ ])

[ ] [ ]( [ ] [ ] ) [ ]

[ ] 2 [ ] 2

h C h C h C h C

C h C h C h

Q h h L h L h h L h h L h L h

h L h L h h L h h D h D h

R h h L h L

      

  

   

   

  

I

 

2 3121 2
8 4 9315 315

2 3 4 22 4 1
6 2 645 45 105

91
2

[ ]( [ ] [ ] [ ])

2 [ ] [ ]( [ ] [ ] ) [ ]

( [ ] [ ]) [ ] [ ] [ ] [ ]

h h L h h L h L h

h L h L h h L h h D h C h

R h R h Q h F h Q h F h O h



   

      

(19)

Note the commonality of subexpressions in the [ ]Q h and [ ]R h formulas in Eq. (19).  Also, the

product factors 2[ ]D h in Eq’s. (17)-(19) can be re-used in the next integration step as 2[ ]D h for
calculating [ ]Q h and [ ]R h .  The products [ ] [ ]D h C h in Eq’s. (17) and (18) can similarly be
carried over to the next step.

3. Scale-and-square algorithm

For the constant-coefficient case, Eq. (6) can be formulated as

0 1 0[ ] [ ]F x x C F x     (20)

where
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1
1 (exp[ ] )D D x    I , (21)

exp[ ]D x   . (22)

The 1 and  matrices, which depend on x but not on 0x , can be obtained from the Padé

approximation, Eq. (2), for small x ,

1[ ] [ ] ( [ ] [ ] [ ])F h Q h Q h F h R h    , (23)

(The term 1
2 ( [ ] [ ])R h R h  in Eq. (2) has been replaced by [ ]R h because [ ]R h is an odd

function of h for the constant-coefficient case.)  Eq. (23) is applied with 2x h  and with the

x coordinate origin shifted so that 0x h  .  All of the R matrices in Eq’s. (8)-(12) have a right-

factor of C , which can be separated out to obtain 1 in Eq. (20):

1
1 [ ] [ ]C Q h R h   , (24)

1[ ] [ ]Q h Q h   , (25)

Eq. (20) is applied recursively to integrate [ ]F x over a large, m -step integration interval,

0 0[ ] [ ]m
mF x m x C F x     (26)

where
2 1

1( )m
m

     I  . (27)

Given m and m for any particular integer m , 2m and 2m are obtained as

2
m

m m m     , (28)

2 2( )m m   . (29)

Eq. (29) is the basis of the standard scale-and-square algorithm for homogeneous linear
differential equations, and Eq. (28) generalizes the method for nonhomogeneous equations.

In implementing the Padé approximation it is advantageous to calculate the even and odd
parts of [ ]Q h separately so that [ ]Q h and [ ]Q h can both be generated with little computational
overhead,

[even] [odd][ ] [ ] [ ]Q h Q h Q h   , (30)

For small x the matrix 1 (Eq. (21)) is approximately proportional to x , but  is

approximately equal to I with a small x -proportional increment. To avoid possible precision
loss in the  diagonal elements, the matrix can be calculated with I subtracted off.  Eq. (25) is
modified as

1 1 [odd][ ] ( [ ] [ ]) 2 [ ] [ ]Q h Q h Q h Q h Q h      I , (31)

The I separation is preserved through the scale-and-square process by modifying Eq’s. (28) and
(29) as follows,
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2 2 ( )m
m m m      I , (32)

2 2( ) ( ) 2( )m m m       I I I . (33)

4. Error analysis and tolerance control

Continuing with the constant-coefficient case, the inaccuracy of the Padé approximation will
result in errors in Eq. (20).  Denoting error terms by the prefix “ ”, the calculated error in

0[ ]F x x  is

0 1 0[ ] ( ) ( ) [ ]F x x C F x        (34)

The errors in 1 and  can be obtained from Eq. (12), in which [ ]F h is calculated by ignoring

the residual term ( [ ]nresidual h ),

[ ] [ ] [ ]n nQ h F h residual h   (35)

For small h , [ ]nQ h is close to I (i.e., [ ]nQ h O h I ) and Eq. (35) simplifies to

[ ] [ ]nF h residual h   (36)

A comparison of Eq’s. (34) and (36), with 0x h  , 2x h  , and with [ ]nresidual h defined in

Eq’s. (12), yields the following expressions for 1 and  (from Eq. (12))

2 2 1
2

1

( 1) ( !) ( )
( 2 )

(2 )!(2 1)!

n n
nn x

D x h
n n


 

    


(37)

1 D    (38)

The cumulative errors in m integration steps (Eq. (26)) are represented as

0 0[ ] ( ) ( ( )) [ ]m
mF x m x C F x        (39)

The ( )m  error has the approximate form

1 2 1( ) ( ) ( ) ( )m m m m               (40)

 is close to I ( O x   I , Eq. (22)), so Eq. (40) simplifies to

( )m m    (41)

A similar relation is applied to the  powers on the right side of Eq. (27),
2 1

1 1( 2 ( 1) ) ( )m
m m                 I  . (42)

Making the approximations   I and 1 x  I (from Eq. (21)), Eq. (42) simplifies to

1
12 ( 1) ( )m m m x m        I . (43)

With substitution from Eq. (38), this further simplifies to
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1
1 1 12 ( 1) ( )m m m D x m m            . (44)

(The D x is small in relation to unity and can therefore be neglected in Eq. (44).)

Eq’s. (41), (44), and (38) are substituted in Eq. (39),

0 1 0[ ] ( ) ( [ ])F x m x m C D F x      (45)

(To a first-order approximation the single-step error 0[ ]F x x   is simply multiplied by m in

taking m integration steps.) Eq. (45) includes two error terms: a dimensionless relative error
factor 1( )m D , which is applied to 0[ ]F x , and an absolute error term 1( )m C , which has the

same dimensional units as F . x can be chosen to impose an approximate tolerance bound on
both error terms,

1 1( ) _ , ( ) _m C abs tol m D rel tol     (46)

where _abs tol and _rel tol are specified absolute and relative tolerance bounds and  is the

Frobenius norm.  With 1 substituted from Eq. (37), the following conditions are obtained from

Eq. (46),
2 2 1 2 2 1

2 2 1( !) ( / ) ( !) ( / )
_ , _

(2 )!(2 1)! (2 )!(2 1)!

n n
range rangen nn x m n x m

m D C abs tol m D rel tol
n n n n

 
 

 
(47)

where rangex is the total integration range,

rangex m x  (48)

Eq. (47) implies the following limit on m ,

1/(2 )
2 2 1 2 2 1( !)

max ,
(2 )!(2 1)! _ _

n
n n n

rangen x D C D
m

n n abs tol rel tol

   
       

(49)

With the scale-and-square algorithm, m is a power of 2 and Eq. (49) translates to

2 2 1 2 2 1

2

( !)1
2 , log max ,

2 (2 )!(2 1)! _ _

n n n
rangej n x D C D

m j
n n n abs tol rel tol

   
    

   
(50)

The above formulas are not directly applicable to the non-constant-coefficient case, but Eq.
(49) can be used to obtain an initial integration step size x , using values of [ ]D x and [ ]C x at
the beginning of the integration interval.  Then, at each integration step, [ ]F x x  is determined
from [ ]F x by two estimation methods to obtain an estimated integration error via Richardson

extrapolation.  A first estimate 1[ ]F x x  is obtained by making a single-step Padé

approximation, and a second estimate 2[ ]F x x  is obtained by making two Padé approximation

steps with step size 1
2 x .  The errors in these estimates are approximately

2 1 2 11
1 2 2[ ] , [ ] 2 ( )n nF x x A x F x x A x          (51)
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where the accuracy order is 2 n , A is an undetermined matrix, and the factor of 2 is included in
the second equality to account for the two steps.  The following relation is obtained by
eliminating A between Eq’s. (51),

2
1 2[ ] 2 [ ]nF x x F x x      (52)

Applying the error correction to both estimates should give the same result,

1 1 2 2[ ] [ ] [ ] [ ]F x x F x x F x x F x x            (53)

1[ ]F x x   is eliminated from Eq’s. (52) and (53) to obtain

1 2
2 2

[ ] [ ]
[ ]

2 1n

F x x F x x
F x x

    
  


(54)

The integration step x is decreased or increased by factors of 2 to keep this estimated error
within allowed tolerance bounds (i.e. the step is decreased if the error significantly exceeds the
tolerance, and is increased if the error times 2 12 n is well within the tolerance). Some excursion
of the error over the tolerance limit can be allowed because the calculated 2[ ]F x x  can be

decremented by 2[ ]F x x   from Eq. (54) to improve its accuracy.

The [ ]F h value calculated from Eq. (2) can be separated into two components: an R -

dependent term [ ]RF (which is not dependent on [ ]F h ), and a term [ ]F h  (which is not
dependent on R or C ),

[ ][ ] [ ]RF h F F h   , (55)

where
[ ] 11

2 [ ] ( [ ] [ ])RF Q h R h R h    , (56)

1[ ] [ ]Q h Q h   . (57)

Similarly, the 1[ ]F x x  term in Eq. (54) can be separated as

[ ]
1 1 1[ ] [ ]RF x x F F x    . (58)

The same separation is made for 2[ ]F x x  in two steps,

[ ]1
2 2,1 2,12

[ ] [ ] [ ]1
2 2,2 2,2 2,2 2,2 2,1 2,12

[ ] [ ],

[ ] [ ] ( [ ]).

R

R R R

F x x F F x

F x x F F x x F F F x

   

        
(59)

This expression is of the form
[ ] [ ] [ ] [ ]

2 2 2 2 2,2 2,2 2,1 2 2,2 2,1[ ] [ ] (with , )R R R RF x x F F x F F F          . (60)

The estimated error 2[ ]F x x   in Eq. (54) is correspondingly separated into [ ]F x -

proportionate and [ ]F x -independent terms,
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[ ] [ ]
[ ] [ ] 1 2 1 2

2 2 2 2 22 2
[ ] [ ] (with , )

2 1 2 1

R R
R R

n n

F F
F x x F F x F    

  
       

 
. (61)

The following tolerance specifications are analogous to the homogeneous-case conditions (Eq.
(46)), and are equivalent when D and C are constant,

range range[ ]
2 2_ , _Rx x

F abs tol rel tol
x x

   
 

. (62)

These conditions can be used to control the integration step size.
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Appendix: Mathematica verification of Eq’s. (8)-(11) and (16)-(19)

The calculations underlying Eq’s. (8)-(11) and (16)-(19) require non-commutative symbolic
algebra.  The following results are obtained using the NCAlgebra package for Mathematica,
from the University of California, San Diego (http://math.ucsd.edu/~ncalg/).  The Mathematica
code loads the NCAlgebra package, adds some additional functionality, and verifies the
equations.



(* Load NCAlgebra package (http://math.ucsd.edu/~ncalg/) *)<< NC`<< NCAlgebra`
(* Make all variables commutative by default.(Override the default noncommutativity of single-letter lowercase variables.) *)
Remove[a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z]
(* D0, C0, Dfn, Cfn, F, Q, and R represent matrices. D0 and C0 represent constants;
Dfn, Cfn, F, Q, and R represent functions, and "1" represents the identity matrix. *)
SetNonCommutative[D0, C0, Dfn, Cfn, F, Q, R];
(* Series and O (e.g. O[h]^n) do not work with NC types(e.g.: try Dfn[h]**F[h]+O[h]^2 or Series[Dfn[h]**F[h],{h,0,1}]). Define a variant that does work. *)
NCSeries[f_, {x_, x0_, n_}] := NCExpand[Sum[(D[f, {x, j}]/j! /. x  x0) (x - x0)^j, {j, 0, n}]] + O[x - x0]^(n + 1);
(* substD is a substitution rule for reducing derivatives of F using the relation F'[h]Dfn[h]**F[h]+Cfn[h].

Use "... //. substD" to eliminate all F derivatives.(The substD definition uses ":>",
not "->" otherwise the substitutions will not work when x or n has a preassigned value.) *)

substD = Derivative[n_][F][x_] :> Derivative[n - 1][Dfn[#] ** F[#] + Cfn[#] &][x];
(* substD0 is a substitution rule for reducing derivatives of F using the relation F'[h]
D0**F[h]+C0. This specializes substD for the case where Dfn and Cfn are constant. *)

substD0 = Derivative[n_][F][x_] :> Derivative[n - 1][D0 ** F[#] + C0 &][x];
(* Eq 8 *)
Q[h_] := 1 - h D0;
R[h_] := -2 h C0;
Factor[NCExpand[Normal[NCSeries[R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 4}]] //. substD0]]
-2

3
h3 (D0 ** D0 ** C0 + D0 ** D0 ** D0 ** F[0])

(* Eq 9 *)
Q[h_] := 1 - h D0 + 1

3
h2 D0 ** D0;

R[h_] := -2 h C0;
Factor[NCExpand[Normal[NCSeries[R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6}]] //. substD0]]
2

45
h5 (D0 ** D0 ** D0 ** D0 ** C0 + D0 ** D0 ** D0 ** D0 ** D0 ** F[0])

(* Eq 10 *)
Q[h_] := 1 - h D0 + 2

5
h2 D0 ** D0 - 1

15
h3 D0 ** D0 ** D0;

R[h_] := -2 h C0 - 2
15

h3 D0 ** D0 ** C0;
Factor[NCExpand[Normal[NCSeries[R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 8}]] //. substD0]]
-2 h7 (D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** C0 + D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** F[0])

1575

(* Eq 11 *)
Q[h_] := 1 - h D0 + 3

7
h^2 D0 ** D0 - 2

21
h^3 D0 ** D0 ** D0 + 1

105
h^4 D0 ** D0 ** D0 ** D0;

R[h_] := -2 h C0 - 4
21

h3 D0 ** D0 ** C0;
Factor[NCExpand[Normal[NCSeries[R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 10}]] //. substD0]]

1

99 225
2 h9 (D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** C0 + D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** D0 ** F[0])



(* Eq 16 *)
Q[h_] := 1 - h Dfn[0];
R[h_] := -2 h Cfn[0];
NCExpand[Normal[NCSeries[R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 2}]] //. substD]
0

(* Eq 17 *)
Q[h_] := 1 - h -1

6
Dfn[-h] + 2

3
Dfn[0] + 1

2
Dfn[h] + 1

3
h2 Dfn[h] ** Dfn[h];

R[h_] := -2 h -1
6
Cfn[-h] + 2

3
Cfn[0] + 1

2
Cfn[h] + 2

3
h^2 Dfn[h] ** Cfn[h];

NCExpandNormalNCSeries1
2
(R[h] - R[-h]) + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 4} //. substD

0

(* Eq 18 *)
Q[h_] := 1 - h 2

45
Dfn-h

2
 + 2

15
Dfn[0] + 2

3
Dfnh

2
 + 7

45
Dfn[h] +

1
15

Dfn-h
2
 + 1

5
Dfn[0] + 11

15
Dfnh

2
 **

2
5
h2

1
9
Dfn-h

2
 - 1

2
Dfn[0] + Dfnh

2
 + 7

18
Dfn[h] - 1

15
h3 Dfn[h] ** Dfn[h] ;

R[h_] := -2 h 2
45

Cfn-h
2
 + 2

15
Cfn[0] + 2

3
Cfnh

2
 + 7

45
Cfn[h] +

2
1
15

Dfn-h
2
 + 1

5
Dfn[0] + 11

15
Dfnh

2
 **

2
5
h2

1
9
Cfn-h

2
 - 1

2
Cfn[0] + Cfnh

2
 + 7

18
Cfn[h] - 1

15
h3 Dfn[h] ** Cfn[h] ;

NCExpandNormalNCSeries1
2
(R[h] - R[-h]) + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6} //. substD

0
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(* Eq 19 *)
L1[h_] := 403

16800
Dfn[-h] - 279

2800
Dfn-2 h

3
 + 99

800
Dfn-h

3
 + 34

105
Dfn[0] - 333

5600
Dfnh

3
 + 1719

2800
Dfn2 h

3
 + 1237

16800
Dfn[h];

L2[h_] := 57
1120

Dfn[-h] - 243
560

Dfn-2 h
3
 + 1269

1120
Dfn-h

3
 - 3

4
Dfn[0] + 891

1120
Dfnh

3
 + 27

112
Dfn2 h

3
 - 41

1120
Dfn[h];

L3[h_] := -2067
9680

Dfn[-h] + 6021
4840

Dfn-2 h
3
 - 5805

1936
Dfn-h

3
 + 1863

484
Dfn[0] - 5697

1936
Dfnh

3
 + 10341

4840
Dfn2 h

3
 - 727

9680
Dfn[h];

L4[h_] := 63
16

Dfn[-h] - 1809
40

Dfn-2 h
3
 + 2295

16
Dfn-h

3
 - 801

4
Dfn[0] + 2133

16
Dfnh

3
 - 297

8
Dfn2 h

3
 + 233

80
Dfn[h];

L5[h_] := 123
160

Dfn[-h] - 135
8

Dfn-2 h
3
 + 2295

32
Dfn-h

3
 - 132 Dfn[0] + 3861

32
Dfnh

3
 - 1917

40
Dfn2 h

3
 + 149

32
Dfn[h];

L6[h_] := - 6
35

Dfn[-h] + 27
10

Dfn-2 h
3
 - 1053

112
Dfn-h

3
 + 57

4
Dfn[0] - 621

56
Dfnh

3
 + 729

140
Dfn2 h

3
 - 277

560
Dfn[h];

L7[h_] := 403
16800

Cfn[-h] - 279
2800

Cfn-2 h
3
 + 99

800
Cfn-h

3
 + 34

105
Cfn[0] - 333

5600
Cfnh

3
 + 1719

2800
Cfn2 h

3
 + 1237

16800
Cfn[h];

L8[h_] := -2067
9680

Cfn[-h] + 6021
4840

Cfn-2 h
3
 - 5805

1936
Cfn-h

3
 + 1863

484
Cfn[0] - 5697

1936
Cfnh

3
 + 10341

4840
Cfn2 h

3
 - 727

9680
Cfn[h];

L9[h_] := 123
160

Cfn[-h] - 135
8

Cfn-2 h
3
 + 2295

32
Cfn-h

3
 - 132 Cfn[0] + 3861

32
Cfnh

3
 - 1917

40
Cfn2 h

3
 + 149

32
Cfn[h];

Q[h_] := 1 - h L1[h] + L2[h] ** 121
315

h2 L3[h] - 2
315

h3 L4[h] ** L5[h] +
2
45

h2 L6[h] + L2[h] ** - 4
45

h3 L6[h] + 1
105

h4 Dfn[h] ** Dfn[h] ** Dfn[h];
R[h_] := -2 h L7[h] + 2 L2[h] ** 121

315
h2 L8[h] - 2

315
h3 L4[h] ** L9[h] +

2
2
45

h2 L6[h] + L2[h] ** - 4
45

h3 L6[h] + 1
105

h4 Dfn[h] ** Dfn[h] ** Cfn[h];
NCExpandNormalNCSeries1

2
(R[h] - R[-h]) + Q[h] ** F[h] - Q[-h] ** F[-h], {h, 0, 6} //. substD

0
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