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Abstract

This paper generalizes an earlier investigation of linear differential equation solutions via
Padé approximation (viXra:1509.0286), for the case of nonhomogeneous equations. Formulas
are provided for approximation orders 2, 4, 6, and 8, for both constant-coefficient and functional-
coefficient cases. The scale-and-sgquare agorithm for the constant-coefficient case is generalized
for nonhomogeneous equations. Implementation details including step size initialization and
tolerance control are discussed.

1. Introduction

An earlier study [1] investigated solutions of the linear differential equation
F'[x] = D[X] F[X] viaPadé approximation: F[h] = Q[h] ™ Q[-h] F[-h], where Q[h] isa
polynomial. (D and Q are sguare matrices; F may be a column vector or a multi-column

matrix. Square braces “[...] ” delimit function arguments, while round braces “(...) ” are
reserved for grouping.)

We consider here the more general nonhomogeneous equation,
F'[x] = D[X] F[x]+C[x] . 1)
(C isavector or matrix, size-matched to F .) For thiscase, EQ. (7) in[1] isgeneralized by
including an additional matrix polynomial R on the left,
3 (Rh] - R-h]) + Q[h] F[h] - Q[~h] F[~h] = Oh*", @)

The Q polynomia hasthe form givenin [1]; it is determined from D and has no dependence on
C. The R polynomial dependson both D and C and has alinear dependenceon C. In some
cases R[h] isan odd function of h (R—h] =—-Rh]), in which case the $ (Rh] - R—h]) termin
Eq. (2) isreplaced by Rh].

The homogeneous equation (C =0 in Eg. (1)) has solutions of the form F[x] = ®[x] F[O],
where @[ X] isthe solution of the initial value problem,

®[x] = D[] P[], ®[0]=1, (3)



where | isanidentity matrix. For the nonhomogeneous case, general solutions of Eq. (1) (with
F[X] specified at x= x,) are of theform

FIX| = 0] Bl Clt)dt+ O[] Flx,]). @

For the special case of constant D, ®[x] isan exponential matrix,
®d[x] =exp[D x] (constant D). (5)
If C isaso constant, EQ. (4) reducesto
F[X] =D (exp[D (x—%,)]-1)C+exp[D (x—x,)] F[%,] (constant D and C). (6)

This formula cannot be used when D issingular (even though the first left-hand term is well
defined by its Taylor series), and it has poor numerical precision will D isnear-singular or
X—X, isvery small. But the Padé approximation method based on Eqg. (2) does not have these
limitations. The method can be used, for example, to robustly calculate D™ (exp[D]-1) (even
for singular D) by setting F[x,]=0, C=1,and x—x,=1.

Eq. (2) isused to integrate F[X] across asmall interval, from x=-h to x=h. The
independent variable x can be scaled and shifted to convert thisto an integration from x = x, to
X=X, +Ax for asufficiently small Ax, and multiple such integrations are concatenated to
calculate F[x] over alargeintegration interval. For the homogeneous, constant-coefficient case

(D constant, C =0), the concatenation can be efficiently implemented using a “scale-and-
square” technique based on the relation

jx

exp[Dx] =(...((exp[27 D) *)*...)° . )

(For some sufficiently largeinteger j , a Padé approximant is used to calculate exp[2™' D x] , and
theresult issquared j timesto obtain exp[D x].) Thisagorithm can be generalized for the
nonhomogeneous case with constant D and C.

Section 2 lists polynomial functions Q and R in Eq. (2) for various approximation orders.
Section 3 outlines the scale-and-square algorithm, generalized for the nonhomogeneous case.
Section 4 discusses the choice of integration interval size. The Appendix provides Mathematica
code validating the results of section 2.

2. Padé-approximation formulas

The Q and R polynomialsin Eqg. (2) are listed below for approximation orders 2, 4, 6, and

8, first for the case of constant D and C and then for the non-constant case. The constant-
coefficient formulas include an estimate of the approximation error, which is useful for
determining the integration step size. For the non-constant case similar error approximations
would be too complex to be of much use, but the constant-coefficient formulas can be used for
step size initialization as described in section 4.



order-2 accuracy, constant D, C:

Qhl=1-hD

Rh] =-2hC

R[h]+Q[h] F[h] - Q[-h] F[-h] =-2h®D?(C+ DF[0]) + Oh®

order-4 accuracy, constant D, C :

Qlhl=1-hD+%h?*D?

Rh]=-2hC

R[h]+Q[h] F[h] - Q[-h] F[-h] =2 h® D*(C+ D F[0]) + Oh’

order-6 accuracy, constant D, C:

Qhl=1-hD+2W D*-1h*D?

Rlh]=-2hC-2h*D?*C

R[h]+Q[h] F[h] - Q[-h] F[-h] = —2:h" D®(C+ D F[0]) + Oh’

order-8 accuracy, constant D, C:

Qhl=1-hD+2h D?-2h’D*+:£h* D*
Rlh]=-2hC-4h’D?C

R[]+ Q[h] F[h] - Q[-h] F[-h] = &z h° D® (C + D F[0]) + O h**

(8)

9)

(10)

(11)

Eq’s. (8)-(11) are specidizations of the following general formula, in which the n subscript

isapplied to the Q and R matrices to identify the accuracy order (2n):

order-2n accuracy, constant D, C :

v _(@n=pint J-
Q=2 emin- 2"

(2n—)In!
RIN=2 2. Ji@min- D)

I<j<n

(-2hD)!™* (-2hC)

(_1)n (n!)Z (2 h)2n+l
(2nN)!1(2n+1)!
R [h]+Q,[h] F[h] - Q,[~h] F[-h] = residual [h] + O h*"**

The subscripted functionsin EQ’s. (12) can be efficiently calculated by using the following
recursion relations,

residual [h] = D" (C + D F[0])

(12)



Qo[h] =1,
Q[hl=1-hD, (13)
h? D?

Qull = QI+ o 2l

R,[h] =0,
R[h]=-2hC, (14)
h? D?

Rn+l[h] = Rn[h]+ (2n+1)(2n-1) R1—1[h]

residual [h] = 2h(C + D F[0])
—h? D? (15)

residual, ,[h] = residual ,[h]
(2n+D(2n+3)

For non-constant D and C general formulas such as Eq. (12) have not been developed, but
several special cases are listed below.

order-2 accuracy, non-constant D, C:

h] =1 -hD[O
g{h} = —2hC[[O]] (16)
REh]+Q[h] F[h] - Q[-h] F[-h] = Oh’
order-4 accuracy, non-constant D, C:
Qlh] =1 - h(~§ D[-h] +% D[0] +3 D[h]) + $h* D[h]*
REH] = -2h (- £C[-h] + 2C[0] + 1CIh) + 3h D]l 7
(R - R-h]) +Q[h] F[h] - Q[~h] F[-h] =Oh?®
order-6 accuracy, non-constant D, C:
Q,[h] =1 —h (% D[-h]+ D[0] + % D[ ]+ D[h]) +

(5 D[-hl+% D[0] + 3 D[ h])

(8h* (5 D[~ h] -3 DI0] + D[ h] +; D[h]) - h* D[h]*)

(18)

RI] = ~2h(ZC[~2h] + 2C[0] + 2C[2h] + £C[h]) +
2(& D[~4h] +4D[0] + £ D[3h))
2h? (C[~2h] - 3C[0] + C[£h] + & C[h]) & h° D[R] C[h])
1(RI] - RE=h1) + QLN F[h] - Q[-h] F[~h] = OR



order-8 accuracy, non-constant D, C:
Li[h] = 5506 DI—h] — 265 DI—$ h] + 65 DI- 3]
+ 3¢ D[0] - 555 DI hl+ 2555 DI hl + &5 DIhl
L,[h] = 125 D[-h] - 560D[—2h]+ﬁ‘28 D[-3h]-3D[0]
+ 1326 I3 hl + 55 D5 h] - 535 Dh]
L{h] =~ 555 DI-h] + & D[4 h] - £ D[~ § ] + 222 D[0]
— 3% D3] + %55 D[4 h] - &5 D[]
L[]= DI-h] - 8 D[ 3] + % D[ - 1] - % D[0]
+48 D[l h]-2- D[2 h]+Z2D[h]
L[h] =& D[-h] - % D[- 2h]+2295 D[-1h]-132D[0]
+31D[ih] L D[ h]+2£ D[h]
Le[h] = -2 D[- h]+ D[-$h] - 4% D[-3h]+% D[0]
D[+ ZD[2h] - Z5 D[N
L7[h]=%0[—h]—%0[—-h]+ 2 Cl—3 N+ 5 ClO]
~ 25 CI3h]+ 3 CL2hl + 25 Clh]
Le[h] = — &5 Cl—h] + %8s Cl— 5 h] — 262 Cl—-3 ] + 35 CIO]
— 25 Cl3hl + %55 CIZ hl - &5 CLh]
Ly[h] =8 C[-h] - £C[-2h]+ 25 C[-1h] -132C[0]
+38C[1h] - X C[2h] + 42 C[h]
Qlhl =1 -hL[h]+ L,[h] (Z&h” L[h] - h* L[h] Le[hl)
+(2h? Ly[h] + L,[h] (=& h® Ly[h] + % h* D[h]?) ) D[h]
RIh] =-2hL,[h] +2L,[h] (8 h* L[l - % h° L,[h] Ly[h])
+2(&h? Lyl + L,[h] (—4 h° Le[h] + 5 h* D[h)*) ) CLh]
3 (RIh] - R-h]) +Q[h] F[h] - Q[~h] F[~h] = Oh°
Note the commonality of subexpressionsinthe Q[h] and R[h] formulasin Eq. (19). Also, the

product factors D[h]? in Eq’s. (17)-(19) can be re-used in the next integration step as D[-h]* for
calculating Q[—h] and R—h]. The products D[h]C[h] in EQ’s. (17) and (18) can similarly be
carried over to the next step.

(19)

3. Scale-and-sgquare algorithm
For the constant-coefficient case, Eq. (6) can be formulated as
F[x +AX]=T,C+® F[x,] (20)

where



[, =D"(exp[DAX]-1), (21)
@ =exp[D AX]. (22)
The I', and @ matrices, which depend on Ax but not on X, , can be obtained from the Padée
approximation, Eqg. (2), for small Ax,
F[h] ~ Qhl™ (Q[-hl F[-h] - REh]) , (23)

(Theterm 1 (R[h] - R[-h]) in Eq. (2) has been replaced by R{h] because R[h] is an odd
function of h for the constant-coefficient case.) EQ. (23) isapplied with Ax=2h and with the
X coordinate origin shifted so that x, =—h. All of the R matricesin Eq’s. (8)-(12) have aright-
factor of C, which can be separated out to obtain I'; in Eqg. (20):

r,C=-Qh] "R, (24)
@ =Q[h " Q[-hl, (25
Eq. (20) is applied recursively to integrate F[Xx] over alarge, m-step integration interval,
FIx,+MAX] =T, C+®" F[x,] (26)
where
L =(+®+d*+.. . +d™HT,. (27)

Given T, and ®™ for any particular integer m, I, and ®*™ are obtained as
r,,=C,+®"T,, (28)

CI)Zm — ((Dm)z . (29)
Eq. (29) isthe basis of the standard scale-and-square algorithm for homogeneous linear
differential equations, and Eq. (28) generalizes the method for nonhomogeneous equations.

In implementing the Padé approximation it is advantageous to cal culate the even and odd
parts of Q[h] separately so that Q[h] and Q[—h] can both be generated with little computational

overhead,
Qxh] = Q**I[h] £ Q***I[h], (30)

For small Ax the matrix I'; (Eq. (21)) is approximately proportional to Ax, but @ is

approximately equal to | with asmall Ax-proportional increment. To avoid possible precision
lossinthe ® diagonal elements, the matrix can be calculated with | subtracted off. Eq. (25) is
modified as

@ -1 = Q[hl ™ (Q[-h] - Qfhl) = -2Q[h] " Q[ ], (31)

The | separation is preserved through the scale-and-square process by modifying Eqg’s. (28) and
(29) asfollows,



I, =2T, +(@"-1)T,, (32)

(@2 —1) = (D™ —1)2+2(d™ —1). (33)

4. Error analysis and tolerance control

Continuing with the constant-coefficient case, the inaccuracy of the Padé approximation will
result in errorsin Eq. (20). Denoting error terms by the prefix “d ”, the calculated error in
Flx, +AX] is

dF[x, +Ax] = (dI',) C + (d®) F[x,] (34)

Theerrorsin I';, and @ can be obtained from Eq. (12), in which F[h] iscalculated by ignoring
the residual term (residual [h]),

Q,[h]dF[h] = —residual [h] (35)
Forsmall h, Q,[h] iscloseto | (i.e, Q,[h]=1+Oh) and Eq. (35) simplifiesto
dF[h] = —residual [h] (36)

A comparison of Eq’s. (34) and (36), with x, =—h, Ax=2h, and with residual ,[h] defined in
Eq’s. (12), yields the following expressions for dI'; and d® (from Eq. (12))

~ (_1)n (n!)Z (AX)2n+l
2n!(2n+1)!

d® =dr, D (38)

dr, = D* (Ax=2h) (37)

The cumulative errorsin m integration steps (Eq. (26)) are represented as
dF[x+mAx] = (dl))C+(d(®™)) Fx,] (39)
The d(®™) error has the approximate form
d(P™) = (dD) D™ + D (D) D™ ? +...+ ™" (dD) (40)
@ iscloseto | (@ =1+0AXx, Eq. (22)), so Eq. (40) simplifiesto

d(@™) ~ mdd (41)
A similar relation is applied to the @ powers on the right side of Eq. (27),
dr = (dd+2d® +...+ (M=) dD) T, + (I + D+ D*+...+ O™ )dI,. (42)

Making the approximations @ ~ | and I'; ~ | Ax (from Eq. (21)), Eq. (42) simplifiesto
dr,, = +m(m-21) (d®) | Ax+mdrI,. (43)
With substitution from Eqg. (38), this further ssmplifiesto



dr,=<im(m-2)(dl’;) DAx+mdl’, = mdr;. (44)
(The D Ax issmall inrelation to unity and can therefore be neglected in EqQ. (44).)
EQ’s. (41), (44), and (38) are substituted in Eq. (39),
dF[X, + mAX] = m(dI',) (C+ D F[x,]) (45)
(To afirst-order approximation the single-step error d F[x, + AX] issimply multiplied by m in

taking m integration steps.) Eg. (45) includestwo error terms: a dimensionless relative error
factor m(dl",) D, whichisapplied to F[x,], and an absolute error term m(dI",) C , which hasthe
same dimensional unitsas F . Ax can be chosen to impose an approximate tolerance bound on
both error terms,

m|(dr,) C|| < abs_tol, mj(dr,)D|<re _tol (46)

where abs_tol and rel _tol are specified absolute and relative tolerance bounds and |.. | isthe
Frobenius norm. With dI"; substituted from Eq. (37), the following conditions are obtained from
Eq. (46),

(N)” (Kange / M)
C(2n)!(2n+Y)!

(n!)2 (Xrange / m)2n+l |

ZiGhTD) D™ <rel _tol  (47)

||D2n C|| <abs_tol, m

where x ... isthetotal integration range,

X ange = MAX (48)
Eq. (47) impliesthe following limit on m,
e . . 1(2n)
[t o] o )
“L@n)@n+! abs_tol "rel _tol

With the scale-and-square algorithm, m isapower of 2 and Eqg. (49) trandates to

' nl 2 2n+1 2n 2n+1
m=2, s> Liog,| M Kae 1D Cl D> (50)
2n (2n)!(2n+1)! abs_tol rel _tol

The above formulas are not directly applicable to the non-constant-coefficient case, but Eq.
(49) can be used to obtain an initial integration step size Ax, using values of D[x] and C[x] at
the beginning of the integration interval. Then, at each integration step, F[Xx+ AX] isdetermined
from F[x] by two estimation methods to obtain an estimated integration error via Richardson
extrapolation. A first estimate F[x+ AX] isobtained by making a single-step Pade
approximation, and a second estimate F,[x+ AX] is obtained by making two Padé approximation

steps with step size 3 Ax. The errors in these estimates are approximately

dE[x+AX] » AAX™, dF,[x+AxX] ~ 2A(3Ax)*™ (51)



where the accuracy order is 2n, A isan undetermined matrix, and the factor of 2 isincluded in

the second equality to account for the two steps. The following relation is obtained by
eliminating A between EQ’s. (51),

dF[x+AX] =~ 2°"d F,[ X+ AX] (52)
Applying the error correction to both estimates should give the same result,

F X+ AX] —dF[x+AX] = F,[ X+ AX] —d F,[ X+ AX] (53)
dF[x+Ax] iseiminated from Eq’s. (52) and (53) to obtain
F[x+AX] - F,[ X+ AX]

2" -1

The integration step Ax is decreased or increased by factors of 2 to keep this estimated error
within allowed tolerance bounds (i.e. the step is decreased if the error significantly exceeds the
tolerance, and isincreased if the error times 2*™* iswell within the tolerance). Some excursion
of the error over the tolerance limit can be allowed because the calculated F,[x+ AX] can be

decremented by dF,[x+ Ax] from Eq. (54) to improve its accuracy.

dF,[X+AX] = (54)

The F[h] value calculated from Eg. (2) can be separated into two components. an R-

dependent term F™ (which is not dependent on F[-h]), and aterm ® F[-h] (which is not
dependenton R or C),

F[h]=F'™ +® F[-h], 59

where
F® = _1Q[h] ™ (Rih] - R-hl) , (56)
@ =Q[h ™ Q[-h]. &7

Similarly, the F[x+ Ax] term in Eq. (54) can be separated as
FIx+AX]=F® +®, F[x] . (58)
The same separation is made for F,[x+ Ax] in two steps,

FIx+3AX]=FY +®,, F[X],

(59)
FIx+AX]=F5 +®,,F[x+iAX] = FY +®,, (FF + @, F[x]).
This expression is of the form
FIx+AX]=Ff+®,F[x] (WithF¥=Ff+a,,F¥, o,=0,,0,,). (60)

The estimated error dF,[x+ Ax] in Eq. (54) is correspondingly separated into F[X] -
proportionate and F[x] -independent terms,



FR—F O, - O,
—2, dq)z_ 2n
2 -1 2

The following tolerance specifications are ana ogous to the homogeneous-case conditions (EQ.
(46)), and are equivalent when D and C are constant,

Xrange Xrange
AX

dF,[x+AX]=dF/® +dd, F[x] (withdF[™ = ) (61)

dF7|| < abs_tol, " oo, | <rel _tol . (62)

These conditions can be used to control the integratlon step size.
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Appendix: Mathematica verification of EQ’s. (8)-(11) and (16)-(19)

The calculations underlying EQ’s. (8)-(11) and (16)-(19) require non-commutative symbolic
algebra. The following results are obtained using the NCAIlgebra package for Mathematica,
from the University of California, San Diego (http://math.ucsd.edu/~ncalg/). The Mathematica
code loads the NCAIgebra package, adds some additional functionality, and verifies the
eguations.

10



(» Load NCAl gebra package (http://math. ucsd. edu/~ncal g/7) =)
<< NC
<< NCAl gebra’

(» Make all variables commutative by default.
(Override the default noncommutativity of single-letter |owercase variables.) )
Renove([a, b, ¢, d, e, f, g, h,i,j, k. I, mmn o p g r,s t,uvwxy, z]

(» DO, CO, Dfn, Cfn, F, Q and Rrepresent matrices. DO and CO represent constants;
Din, Cfn, F, Q and R represent functions, and "1" represents the identity matrix. =)
Set NonCommut ati ve[DO, CO, Din, Cfn, F, Q RJ;

(» Series and O (e.g. Orh]”n) do not work with NC types
(e.g.: try Dfn[h]*xF[h]1+O[h]172 or Series[Dfn[h]*xF[h], {h,0,1}]). Define a variant that does work. =)
NCSeries[f_, {x_, xO_, n_}1:=NCExpand[Sum[ (D[f, {x, j}]1/]j ! /. x->x0) (x-x0)"j, {j, 0, n}1] +O[x - x01" (n +1);

(* substDis a substitution rule for reducing derivatives of F using the relation F [h]=Dfn[h]**F[h]1+Cfn[h].
Use "... //. substD' to eliminate all F derivatives.

(The substD definition uses ":>",

not "->" otherwi se the substitutions will not work when x or n has a preassigned value.) )
substD = Derivative[n_][F1[x_]:>Derivative[n-1][Dfn[#] =+ F[#] + Cfn[#] &] [X];

(* substDO is a substitution rule for reducing derivatives of F using the relation F [h]=
DOxxF[h]+CO. This specializes substD for the case where Dfn and Cfn are constant. =)
subst DO = Derivative[n_][F][x_]:>Derivative[n-1][D0 %% F[#] + CO &] [X];

(» EqQ 8 %)

Q[h_1:=1-hDO;

Rrh_]1:=-2hC0;

Fact or [NCExpand [Nor nal [NCSeri es[R[h] + Q[h] #% F[h] - Q[-h] »* F[-h], {h, O, 4}]]1 //. substDO]]

2
~—h3 (DO «% DO % CO + DO »x DO »x DO «« F[0])

3
(» EqQ 9 %)
1
Qrh_]:=1-hDO0+ —h? D0 #* DO;
3

R[h_]:=-2hCO;
Fact or [NCExpand [Nor nal [NCSeri es[R[h] + Q[h] #% F[h] - Q[-h] »+ F[-h], {h, O, 6}]]1 //. substDO]]

2
—h® (DO %% DO %+ DO %+ DO %% CO + DO % DO %% DO %% DO x+ DO »+ F[0])
45

(* Eq 10 #)

2 1
Q[h_]1:=1-hD0+ —h?D0 %% DO - — h® DO %% DO »« DO;
5 15

2
R[h_]:=-2hC0 - — h® D0 %% DO #* Q0;
15
Fact or [NCExpand[Nor mal [NCSeri es[R[h] + Q[h] ** F[h] - Q[-h] ** F[-h], {h, O, 8}11 //. substDO]]

2h7 (DO %% DO %% DO %% DO % DO % DO % Q0 + DO %% DO %% DO % DO % DO % DO « DO «+ F[0])

1575

(» Eq 11 «)
3 2 1

Qh_1:=1-hD0O+ —h"2D0 %*D0 - — h"3 D0 %% DO %% DO + —— h”"4 DO %% DO %% DO %+ DO;
7 21 105

4
R[h_]:=-2hC0 - — h® D0 %% DO #* C0;
21
Fact or [NCExpand [Nor mal [NCSeri es[R[h] + Q[h] *x F[h] - Q[-h] »* F[-h], {h, 0, 10}1] //. substDO]]

2h® (DO %% DO % DO %% DO «% DO %% DO «+ DO »x DO %+ CO + DO %% DO %% DO %% DO 4% DO %+ DO % DO xx DO «« DO »+ F[0])
99225



2 | Appendix_2016_10_31.nb

(» Eq 16 =)

Qrh_1:=1-hDfn[0];

Rrh_1:=-2hCfn[0];

NCExpand [Nor mal [NCSeri es[R[h] + Q[h] ** F[h] - Q[-h] %% F[-h], {h, 0, 2}1] //. substD]

0

(» Eq 17 %)
1 2 1 1
Q[h_]::l-h[-—Dfn[-h]+—Dfn[0]+—Dfn[h]]+—h2Dfn[h] % Dfn[h];
6 3 2 3
1 2 1 2
R[h_]::—zh(——o‘n[—h]+—Cfn[0]+—Cfn[h])+—h"2Dfn[h] *%x Cfn[hy;
6 3 2 3

1
NCExpand[NorrraI [NCSeri es[— (R[] - R[-h]) + Q[h] %% F[h] - Q[-h] %« F[-h], th, O, 4}]] //. subst D]
2

0

(» Eq 18 *)

Qh_1:=1- h[—Dfn[ —]+—Dfn[0] +—Dfn[ ]+—Dfn[h]]
45

[—Dfn[-— +—Dfn[0] +—Dfn ]]

1
[ h2[ Dfn[-—]-—Dfn[0]+Dfn[ ]+—Dfn[h]]-—h3Dfn[h] **Dfn[h]];
5 9 2¢ 18 15

R[h_]::—zh( Ofn[ —]+—0fn[0]+—cfn[ ]+—O‘n[h]]
45

1 11

[Em[ —]+—Dfn[0]+l—Dfn[ ]]

2 1 h, 7 1
[—h2 [—Cfn[-—] - —Cfn[o] +Cfn[—] + —Cfn[h]] - —h3Dinh] **Cfn[h]];
5 9 20 2 2¢ 18 15

1
NCExpand[Nor mal [NCSeri es[— (R[] - R[-h]) + Q[h] %# F[h] - Q[-h] %« F[-h], th, O, 6}]] //. subst D]
2

0



Appendix_2016_10_31.nb

(» Eq 19 »)

403 279 99 34 333 1719 2h 1237
Lith 1:= Dfn[—h]——Dfn[ —]+—Dfn[ —]+—Dfn[0]——Dfn[ ] + Df n{hi;

16 800 2800 5600 2800 3 16 800

57 243 2h. 1269 h 891 27 2h 41
L2[h_]:=—Dfn[-h]——Dfn[——]+ Dfn[-—]-—Dfn[0]+ Dfn[—]+ n ]——Dfn[h];

1120 560 1120 31 4 112 112 3 1120

2067 5805 h. 1863 5697 10341 727
L3[h_]:=-—Dfn[—h]+ Df [ —] n[_—] —Din [ ] Dfn [—] ——Dinh];

9680 1936 31 484 1936 4840 9680

63 1809 2295 h. 801 2133 297 233
L4[h_]:=—Dfn[—h]——Dfn[——]+ - —DIn[o] + Dfn[—]_—Dfn[—]+—Dfn[h];

16 40 3 16 4

123 135 2h. 2295 h 3861 h. 1917 149
L5[h_]:=—Dfn[-h]——Dfn[——]+ Dfn[-—]-132Dfn[O]+ Dfn[—]-—Dfn[—]

160 8 3 32 3 3 40

6 27 1053 h. 57 621 h. 729 277
L6th_]:=-—Dfn[-h] + —Dfn[_—] - —Dfn[_—] + —Dfn[o] - —Dfn[—] + —Dfn[—] - — Din{hi;

35 10 112 4 56 3 3 560

403 279 2h. 99 h. 34 333 h. 1719 2h 1237
L7{h_]:= dn[_h]_—dn[_—]+—0fn[_—]+—0fn[01_—0fn[—]+ n[—]+ cfnhl;

16 800 2800 3 3° 105 5600 2800 3 16 800

2067 6021 2h. 5805 h. 1863 5697 h. 10341 2h, 727
L8[h_]:=-——0Cin[-h] + cn[-—] - ——cin[-— + Cin —]-—Cfn[h]

9680 4840 3 1936 31 484 1936 3 4840 9680

123 135 2295 h 3861 1917 149
L9[h_]:=—O‘n[h]——Cfn[ —] -132Cfn[0] + Ofn[ ] —cfn[—]+—cfn[h1,

160 32 40

121 2
Qrh_]:=1-hL1[h] +L2[h] %= (—h2 L3[h] - — h3 L4[h] »= L5[h]]
315 315

2 4 1
[—h2 L6[h] + L2[h] *=* [-—h3 L6[h] + h* Df n[h] **Dfn[h]]] *% Dfn[h];
45 45 105

121 2
R[h_]:=-2hL7[h] +2L2[h] == [—h2 L8[h] - —— h3L4[h] =« L9[h]] +
315 315
2 4 1
2 [—h2 L6[h] + L2[h] %= [-—h3 L6[h] + — h* Dfn[h] **Dfn[h]]] *% Cfn[h];
45 45 105
1
NCExpand[Nor mal [NCSeri es[— (R[] - R[-h1) + Q[h] %% F[h] - Q[-h] %« F[-h], ¢h, O, 6)]] //. subst D]
2

0
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