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Abstract 

We initiate working with Peskin and Schroder’s quantum field theory (1995) write up of 

the Higgs boson, which has a scalar field write up for Phi , with’lower part’  of the spinor 

having h(x) as a real field, with <h(x)>=0 in spatial averaging. Our treatment is to look at 

the time component of this h(x) as a real field in Pre Planckian space-time to Planckian 

Space-time evolution, in a unitarity gauge specified potential  V= c1 h(x)^2 + C2 h(x)^3 

+ C3 h(x)^4, using a fluctuation evolution equation of the form (d (delta h)/dt)^2 + 

V(delta h)= Delta E, which is in turn using (Delta E) times (Delta t) ~ h(bar)/ g(t,t), with 

this being a modified form of the Heisenberg Uncertainty principle in Pre-Planckian 

space-time. From here, we can identify the formation of delta h(x) in the Planckian space-

time regime. Furthermore, it gets a special dependence upon the change in the metric 

tensor g(t,t)~(a(t))^2 times (inflaton). The inflaton is based upon Padmanabhan’s 

treatment of early universe models, in the case that the scale factor, a(t) ~ a(initial) times t 

^ (beta), with beta a numerical value, and t a time factor. The a(initial) is supposed to 

represent a quantum bounce, along the lines of Camara, de Garcia Maia, Carvalho, and 

Lima, (2004) as a non zero initial starting point for expansion of the universe, using the ideas 

of nonlinear electrodynamics (NLED). And from there isolating delta h(x) 
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1. Introduction 

We begin this inquiry with a Higgs Boson scalar field along the lines of [1]  
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Here, the expression we wish to find is the change in the real field h(x) in time, whereas we have spatially 

                                                                         ( ) 0h x                                                                                      (2) 

Our supposition is to change, then the evolution of this real field as having an initial popup value in a time t , 

such that 
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The potential field we will be working with, is assuming a unitary gauge for which                                
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 The above, potential energy system, is defined as a minimum by having reference made to [1] Eq. (4) as 
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And the quantum of the Higgs field, will be ascertained by [1] as having 
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Our abbreviation as to how the real valued Higgs field h(x) behaves is as follows 
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With , if (inf)  is the inflaton, as given by [2,3], part of the modified Heisenberg U.P., as in [3] with 

2

mina specified by [3,4] 
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The above eight equations will be what is used in terms of defining the change in the real Higgs field, h(x) in 

the subsequent work done in this paper. With the inflaton defined via [2] and the energy defined through [5]. 
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2. Analyzing Eq.(7) and  Eq. (8) and Eq.(9)  to ascertain h  

We will be using by [2] 
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Note that the last line of Eq. (10) is for the potential of the inflaton. We will be using, the first two lines for 

Eq.(7), Eq. (8) and Eq. (9) in order to ascertain 

Leading to  
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Using the CRC abbreviation of the expansion of the Logarithm factor [6] , we have , with H.O.T. higher order 

terms 
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If we set coefficients in the above so that  
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Then, Eq. (11) takes the form               
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To put it mildly, Eq. (11) and Eq. (14) are wildly nonlinear Equations for h . What we can do to though is 

comment upon the equation  for t  and also consider what if we consider  
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Eq. (14) and Eq. (15) lead to a different dynamic as given as to h  which is commented upon below. 

3. What if we look at a time step t  as real valued, due to h ? 

In doing this we are examining Eq. (14) as a way to isolate a  equation in t and to ascertain what 

inputs of h are effective in giving real value solutions to t  

We will re write Eq. (14) as follows, to get powers of t  
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To put it mildly, this will give cubic equation values for t and according to [6] only one of the three 

roots for this would avoid having complex time solutions for t . Accordingly, we have come up 

with an approximation to the energy, E , which would be a potential way out of this problem. 

4. Using Non linear electrodynamics, for a value of the E  

What we are doing is finding a way to avoid having cubic roots, and worse for the h and t values. 

To do this we will make the following approximation based upon [7], namely consider the energy 

density from a nonlinear Magnetic field, i.e. in this case set the E (electric) field as zero, and then  
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The scale factor 
55

min ~ 10a 
 

Here, we have that the Lagrangian defined by [7]  
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If so then the Eq. (7) above, with this input into Eq. (7) from Eq. (17) will lead to using  
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Then going to put it together 
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If the right hand side of Eq. (20) is chosen to be a constant, it fixes a value for the initial magnetic field which in 

turn fixes 
2

0B  which in turn fixes a value for t . Once this fixing of the term t  occurs, we have then 
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Eq. (21) in terms of solving for h  is tractable, in terms of numerical input, depending upon defacto finding a 

minimum value of h  which could be obtained by taking the derivative of both sides of Eq. (21) to obtain 
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It would then be a straightforward matter to take the quadratic equation for h  
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This is assuming that we find a special t  and an initial configuration of the magnetic field for which we can 

write 
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5. Conclusion: Is NLED, Really that important here for h(x)? 

 Frankly the answer is that the author does not know. I.e. the idea is that NLED would enable the 

formation of Eq.(24) which may be sufficient in the Pre Planckian to Plackian regime to form Eq. 
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(23) which may be in initial configuration a first ever creation of the real valued Higgs field from Pre 

Planckian space-time physics considerations. 

Like many simple black board experiments, the frank answer is that the author does not know the 

answer, but finds that the above presented blackboard exercise intriguing and worth sharing with an 

audience. 

The author hopes that additional extensions of this exercise may enable ties in with [8] below. 
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