
R. Z. LIAN: EMP-BASED CMT FOR MATERIAL BODIES 
 

1

Abstract—In this paper, an ElectroMagnetic-Power-based 
Characteristic Mode Theory (CMT) for Material bodies 
(Mat-EMP-CMT) is provided. The Mat-EMP-CMT is valid for 
the inhomogeneous and lossy material bodies, and it is applicable 
to the bodies which are placed in complex electromagnetic 
environments. 

Under the Mat-EMP-CMT framework, a series of power-based 
Characteristic Mode (CM) sets are constructed, and they have 
abilities to depict the inherent power characteristics of material 
bodies from different aspects. All power-based CM sets are 
independent of the external electromagnetic environment and 
excitation. 

Among the various power-based CM sets constructed in 
Mat-EMP-CMT, only the Input power CM (InpCM) set has the 
same physical essence as the CM set constructed in 
Mat-VIE-CMT (the Volume Integral Equation based CMT for 
Material bodies), and the other CM sets are completely new. 
However, the power characteristic of the InpCM set is more 
physically reasonable than the CM set derived from 
Mat-VIE-CMT. 

In addition, not only radiative CMs and real characteristic 
currents but also non-radiative CMs and complex characteristic 
currents can be constructed under the Mat-EMP-CMT 
framework; the traditional characteristic quantity, Modal 
Significance (MS), is generalized, and some new characteristic 
and non-characteristic quantities are introduced to depict the 
modal characteristics from different aspects; a variational 
formulation for the scattering problem of material scatterer is 
established based on the conservation law of energy. 
 
 

Index Terms—Characteristic Mode (CM), Electromagnetic 
Power, Input Power, Material Body, Modal Expansion, Modal 
Significance (MS), Output Power. 
 
  

I. INTRODUCTION 

HE Theory of Characteristic Mode (TCM), or equivalently 
called as Characteristic Mode Theory (CMT), was firstly 

introduced by R. J. Garbacz [1], and subsequently refined by R. 
F. Harrington and J. R. Mautz under the MoM framework. In 
1971, Harrington and Mautz built their CMT for PEC systems 
based on the Surface EFIE-based MoM (PEC-SEFIE-CMT) [2]. 
Afterwards, some variants for the PEC-SEFIE-CMT were 
introduced one after another under the MoM framework, such 
as the Volume Integral Equation-based CMT for Material 
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bodies (Mat-VIE-CMT) [3] and the Surface Integral 
Equation-based CMT for Material bodies (Mat-SIE-CMT) [4] 
etc. Recently, the PEC-SEFIE-CMT is re-derived from 
complex Poynting’s theorem in [5], and an alternative surface 
formulation for the Mat-SIE-CMT is provided in [6]. In [5]-[6], 
the power characteristics of the Characteristic Mode (CM) sets 
derived from the PEC-SEFIE-CMT and Mat-SIE-CMT are 
analyzed, such that the physical pictures of the 
PEC-SEFIE-CMT and Mat-SIE-CMT become clearer. In fact, 
to analyze the power characteristic of the CM set derived from 
Mat-VIE-CMT is also valuable for both theoretical research 
and engineering application, and it is done in this paper. 

In this paper, an ElectroMagnetic-Power-based CMT for 
Material bodies (Mat-EMP-CMT) is built. The Mat-EMP-CMT 
is valid for the inhomogeneous and lossy material bodies, and it 
is applicable to the bodies which are placed in complex 
electromagnetic environments. Under the Mat-EMP-CMT 
framework, a series of power-based CM sets are constructed, 
and the various CM sets have abilities to depict the inherent 
power characteristics of the objective material body from 
different aspects. All power-based CM sets are independent of 
the external electromagnetic environment and excitation. 

Except the Input power CM (InpCM) set, all power-based 
CM sets constructed in this paper are completely new. The 
InpCM set has the same physical essence as the CM set 
constructed in Mat-VIE-CMT, but the former is more 
advantageous than the latter in the following aspects. 

1) The InpCM set has a more reasonable power 
characteristic. 

2) The applicable range of the InpCM set is wider. For 
example, the InpCM set not only includes the real characteristic 
currents and radiative CMs, but also includes the complex 
characteristic currents and non-radiative CMs. In fact, both the 
complex characteristic currents and non-radiative CMs are 
valuable for electromagnetic engineering, because: 

(2.1) although the real characteristic currents are more 
suitable for depicting the resonant material antennas [7], the 
complex characteristic currents are more suitable for depicting 
the travelling wave material antennas [7]; 

(2.2) although the radiative CMs are more suitable for 
characterizing the material antennas [8], the non-radiative CMs 
are more suitable for characterizing the material resonators [9]. 

In addition, based on a new normalization way for various 
electromagnetic quantities, the traditional characteristic 
quantity Modal Significance (MS) is generalized, and some 
new characteristic and non-characteristic quantities are 

Electromagnetic-Power-based Characteristic 
Mode Theory for Material Bodies 

Renzun Lian

T



R. Z. LIAN: EMP-BASED CMT FOR MATERIAL BODIES 
 

2

introduced in this paper. Various characteristic and 
non-characteristic quantities have abilities to depict the modal 
characteristics from different aspects. A functional variation 
formulation for the scattering problem of material scatterer is 
established in this paper, based on the conservation law of 
energy [10]. 

This paper is organized as follows. Sections II-VII give the 
principles and formulations of Mat-EMP-CMT, and then some 
necessary discussions related to the Mat-EMP-CMT are 
provided in Sec. VIII. Section IX concludes this paper. In what 
follows, the j te ω  convention is used throughout. 
 
 

II. SOURCE-FIELD RELATIONSHIPS AND NORMALIZATION 

The material body, which is treated as a whole object, can be 
placed either in vacuum or in an arbitrary time-harmonic 
environment, and the material body is simply called as scatterer. 
When an external source is impressed, there exist three kinds of 
fields in whole space 3 , that are the imF  generated by 
impressed source, the enF  generated by external environment, 
and the scaF  generated by the scattering sources on scatterer V , 
here ,F E H= . The term “time-harmonic environment” means 
that the enF  operates at the same frequency as imF . Various 
sources and fields are illustrated in Fig. 1. Based on the linear 
superposition principle [10], the scaF  is considered as the 
scattering field excited by incident field inc im enF F F+ , 
because the scatterer is regarded as a whole object in this paper. 
The summation of incF  and scaF  is the total field, and it is 
denoted as totF , i.e., tot inc scaF F F= + . 

A. Source-field relationships. 

When the conductivity of scatterer is not infinity, the 
scattering sources include the volume ohmic electric current 

voJ  and the related electric charges { },vo soρ ρ  due to the 
conduction phenomenon, the volume polarized electric current 

vpJ  and the related electric charges { },vp spρ ρ  due to the 
polarization phenomenon, and the volume magnetic current 

vmM  and the related magnetic charges { },vm sm
m mρ ρ  due to the 

magnetization phenomenon [11]-[13]. The { }, ,vo vp vm
mρ ρ ρ  are 

the volume charges, and the { }, ,so sp sm
mρ ρ ρ  are the surface 

charges on the boundary of scatterer. The various charges are 
related to the corresponding currents by current continuity 
equations, so it is sufficient to only use the scattering currents to 
determine the scattering field [11]-[13]. In this paper, the 
various scattering currents are expressed as the linear functions 
about the total field totF  in scatterer as below, and the reason 
will be explained in Sec. VIII-D. 

The Maxwell’s equations for the scattering fields { },sca scaE H  
are as follows [11]-[12] 
 
 ( ) ( ) ( )3

0 ,sca vop scaH r J j E r rωε∇ × = + ∈  (1.1) 

 ( ) ( ) ( )3
0 ,sca vm scaE r M j H r rωμ∇ × = − − ∈  (1.2) 

 
here 
 

 ( ) ( ) ( ) ( ),vop vo vpJ r J r J r r V= + ∈  (2.1) 

 ( ) ( ) ( ),vm totM r j H r r Vω μ= Δ ∈  (2.2) 

 
in which ( ) ( )vo totJ r E rσ= , and ( ) ( )vp totJ r j E rω ε= Δ , so 

( ) ( )vop tot
cJ r j E rω ε= Δ . In (1) and (2), 0μ μ μΔ = − , 0ε ε εΔ = − , 

and 0c cε ε εΔ = − ; the c jε ε σ ω= +  is complex permittivity; 
the ε  and 0ε  are the permitivities in scatterer and vacuum; the 
μ  and 0μ  are the permeabilities in scatterer and vacuum; the 
σ  is the electric conductivity in scatterer, and its vacuum 
version is zero. All these material parameters can be the 
functions about spatial position, except the 0ε  and 0μ . The 

2 fω π=  is angle frequency, and the f  is frequency. 
If the source of incF  doesn’t distribute on scatterer, the totF  

on scatterer V  satisfies following Maxwell’s equations [13]. 
 

 
( ) ( )
( ) ( )

( ),
tot tot

c

tot tot

H r j E r
r V

E r j H r

ωε

ωμ

∇ × =
∈

∇ × = −
 (3) 

 
so the totE  and totH  on V  can be expressed by each other as 
 

 
( ) ( ) ( )
( ) ( ) ( )

( )
1

,
1

tot tot
c

tot tot

E r j H r
r V

H r j E r

ωε

ωμ

= ∇ ×
∈

= − ∇ ×
 (4) 

 
Based on the (2) and (4) and that the scattering field is the 

one generated by scattering sources in vacuum [11]-[13], the 
fields { },inc incE H  and { },tot totE H  on scatterer V , the scattering 
fields { },sca scaE H  on whole space 3 , and the various scattering 
currents { }, , ,vo vp vop vmJ J J M  on scatterer V  can be related to the 
any one of the totE  and totH  on scatterer V , and they can be 
simply expressed as the following linear operator forms. 
 

 
( ) ( )
( ) ( ) ( )

;
,

;

X X tot
F

X X tot
F

E r E F r
r V

H r H F r

=
∈

=
 (5) 

 
( ) ( )
( ) ( ) ( )3

;
,

;

sca sca tot
F

sca sca tot
F

E r E F r
r

H r H F r

=
∈

=
  (6) 

 
( ) ( )

( ) ( ) ( )
;

,
;

Y Y tot
F

vm vm tot
F

J r J F r
r V

M r M F r

=
∈

=
 (7) 

 
here ,X inc tot= , and , ,Y vo vp vop= . In this paper, the totF  in 
(5)-(7) is called as basic variable. 

The subscripts “ F ” in the left-hand sides of (5)-(7) are to 
emphasize that the basic variable is totF ; that the subscript “ F ” 
doesn’t appear in the right-hand sides of (5)-(7) is due to that 
the basic variable totF  has appeared in brackets. In the (5)-(7), 
F E=  or H , and it depends on that various currents and fields 

Environment

Impressed 
Source

enF

imFMaterial Body
(Objective Scatterer)

vopJ
vmM

scaF

  
Fig. 1. Various fields generated by various sources. 
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are expressed as the functions of whom. For example: 
1) The incE  on scatterer V  can be expressed as 

( ) ( ) ( ) ( ); , ;inc inc tot tot vop vm
EE r E E r E r E J M r= = − , here the ( ), ;vop vmE J M r  

is the electric field generated by vopJ  and vmM  in vacuum, and 
its mathematical expression can be found in [11]-[12], and the 

vopJ  is expressed as (2.1), and ( )vm totM Eμ μ= − Δ ∇× . 
2) The incE  on scatterer V  can also be expressed as 

( ) ( ) ( ) ( ) ( ); 1 , ;inc inc tot tot vop vm
H cE r E H r j H r E J M rωε= = ∇ × − , here the 

vmM  is expressed as (2.2), and ( )vop tot
c cJ Hε ε= Δ ∇× . 

To simplify the symbolic system of this paper, the subscripts 
“ F ” in the left-hand sides of (5)-(7) are omitted in the 
following sections, and it will not lead to any difficulty for 
understanding the Mat-EMP-CMT. 

B. Normalization. 

Following the normalization way introduced in [14], the 
basic variable totF  is normalized as follows 
 

 ( ) ( )
( ) ( )1 2 ,
1 2 ,

tot
tot

tot tot

V

F r
F r r V

F F
∈   (8) 

 
and then the incident fields { },inc incE H  on V , the scattering 
fields { },sca scaE H  on 3 , and the various currents 
{ }, , ,vo vp vop vmJ J J M  on V  are automatically normalized as 
follows 
 

 
( ) ( ) ( )
( ) ( ) ( )

( )
1 2

1 2

1 2 ,
,

1 2 ,

inc inc tot tot

V

inc inc tot tot

V

E r E r F F
r V

H r H r F F

=
∈

=




 (9) 

 
and 
 

 
( ) ( ) ( )
( ) ( ) ( )

( )
1 2

3

1 2

1 2 ,
,

1 2 ,

sca sca tot tot

V

sca sca tot tot

V

E r E r F F
r

H r H r F F

=
∈

=





 (10) 

 
and 
 

 
( ) ( ) ( )

( ) ( ) ( )
( )

1 2

1 2

1 2 ,
,

1 2 ,

Y Y tot tot

V

vm vm tot tot

V

J r J r F F
r V

M r M r F F

=
∈

=




 (11) 

 
here , ,Y vo vp vop= ; the superscript “ 1 2 ” represents square 
root. The inner products in (8)-(11) are defined as 

,g h g h d∗

Ω Ω
⋅ Ω , here the symbol “ ∗ ” denotes the complex 

conjugate of relevant quantity, and the symbol “ ⋅ ” is the scalar 
product for field vectors. 
 
 

III. VARIOUS ELECTROMAGNETIC POWERS 

The destination of Mat-EMP-CMT is to optimize the various 
electromagnetic powers related to the objective material 
scatterer, and the various powers and their normalized versions 
are discussed in this section. 

The power done by { },inc incE H  on { },vop vmJ M  is the input 
power inpP  from external sources to scatterer, and it is 
expressed as follows 
 

 

( ) ( )
( ) ( )
( ) ( )

1 2 , 1 2 ,

1 2 , 1 2 ,

1 2 , 1 2 ,

inp vop inc inc vm

V V

vop tot tot vm

V V

vop sca sca vm

V V

P J E H M

J E H M

J E H M

= +

= +

− −

 (12) 

 
The reason why the ( )1 2 ,inc vm

V
H M  instead of the 

( )1 2 ,vm inc

V
M H  appears in the first equality of (12) will be 

explained in Sec. VIII. The second equality in (12) is due to that 
inc tot scaF F F= − . 
Multiplying the complex conjugate of (1.1) with scaE  and 

doing some necessary simplifications, the following Poynting’s 
theorem for the scattering field is obtained [12]. 
 

 ( )
, , , ,

, , ,2

sca vac sca rad sca react vac

sca rad sca vac sca vac
m e

P P j P

P j W Wω
= +

= + −
 (13) 

 
here the superscripts “ sca ” represent that the relevant 
quantities only correspond to the scattering field instead of the 
total field or incident field; the ,sca radP  is the radiated power 
carried by scattering field, and the ,sca vac

mW  and ,sca vac
eW  are 

respectively the magnetically and electrically stored energies in 
scattering field, and their mathematical expressions are as 
follows [12] 
 
 ( ) ( ), 1 2 , 1 2 ,sca vac vop sca sca vm

V V
P J E H M= − −  (14.1) 

 ( ) ( ), 1 2sca rad sca sca

S
P E H dS

∞

∗ = × ⋅    (14.2) 

 ( ) 3

,
01 4 ,sca vac sca sca

mW H Hμ=


 (14.3) 

 ( ) 3

,
01 4 ,sca vac sca sca

eW E Eε=


 (14.4) 

 
here the S∞  is a closed spherical surface at infinity. 

Considering of (2) and (13)-(14), the inpP  in (12) can be 
rewritten as 
 

( )
( )

, ,

, , , , , ,

, , , , , ,2

inp inp act inp react

sca rad tot loss sca react vac tot react mat

sca rad tot loss sca react vac tot mat tot mat
m e

P P j P

P P j P P

P P j P W Wω

= +

= + + +

 = + + + − 

 (15) 

 
here the ,tot lossP  is the total ohmic loss due to the interaction 
between the total electric field totE  and scatterer, and the 

,tot mat
mW  and ,tot mat

eW  are respectively the total magnetized and 
polarized energies stored in matter due to the interaction 
between the total fields { },tot totE H  and scatterer, and [15] 
 
 ( ), 1 2 ,tot loss tot tot

V
P E Eσ=  (16.1) 

 ( ), 1 4 ,tot mat tot tot
m V

W H Hμ= Δ  (16.2) 

 ( ), 1 4 ,tot mat tot tot
e V

W E Eε= Δ  (16.3) 
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Besides the above-mentioned powers inpP  and ,sca vacP , there 
also exist many other kinds of powers which can be selected as 
the objective powers to be optimized by Mat-EMP-CMT, such 
as the following , ,inp part radP , scaP , and , ,sca part radP . 
 

, , , ,inp part rad sca rad inp reactP P j P+  (17) 

( )

( )

, ,

, , , , , ,

, ,

, , , ,2

sca sca act sca react

sca rad sca loss sca react vac sca react mat

sca rad sca loss

sca react vac sca mat sca mat
m e

P P j P

P P j P P

P P

j P W Wω

= +

= + + +

= +

 + + − 

 (18) 

, , , ,sca part rad sca rad sca reactP P j P+  (19) 

 
The mathematical expressions for the ,sca lossP , ,sca mat

mW , and 
,sca mat

eW  in (18) are as follows 
 
 ( ), 1 2 ,sca loss sca sca

V
P E Eσ=  (20.1) 

 ( ), 1 4 ,sca mat sca sca
m V

W H Hμ= Δ  (20.2) 

 ( ), 1 4 ,sca mat sca sca
e V

W E Eε= Δ  (20.3) 

 
The superscript “ part ” on , ,inp part radP  is to emphasize that the 

, ,inp part radP  is a part of inpP , and the superscript “ rad ” on 
, ,inp part radP  is to emphasize that the CMs constructed by 

orthogonalizing , ,inp part radP  have the orthogonal radiation 
patterns as illustrated in Sec. V-C. The superscripts on 

, ,sca part radP  can be similarly explained. Obviously, when the 
scatterer is lossless, the , ,inp part radP  and , ,sca part radP  are 
respectively the same as the inpP  and scaP . The symbols “  ” in 
(17) and (19) represent that these powers are artificially defined 
for various practical destinations, and the practical value to 
introduce , ,inp part radP  is specifically discussed in Sec. VIII-B. 
The reason why the symbol “  ” doesn’t appear in the (18) will 
be explained in Sec. VIII-C. 

For the convenience of following discussions, the relations 
among various powers are specifically given in (21), in which 

( ), 1 2 ,inc loss inc inc

V
P E Eσ= , and ( ) ( ), 1 2 , 1 2 ,coup loss sca inc inc sca

V V
P E E E Eσ σ= + , 

and ( ), , , ,2inc react mat inc mat inc mat
m eP W Wω= −  (here ( ), 1 4 ,inc mat inc inc

m V
W H Hμ= Δ  

and ( ), 1 4 ,inc mat inc inc
e V

W E Eε= Δ ), and ( ), , , ,2coup react mat coup mat coup mat
m eP W Wω= −  

(here ( ) ( ), 1 4 , 1 4 ,coup mat sca inc inc sca
m V V

W H H H Hμ μ= Δ + Δ  and 
( ) ( ), 1 4 , 1 4 ,coup mat sca inc inc sca

e V V
W E E E Eε ε= Δ + Δ ). 

The normalized versions of various powers appearing in (21) 
are as follows 
 

 ( ) ( ) ( )
( )1 2 ,

tot

tot tot

tot tot

V

P F
P F P F

F F
= =  (22) 

 
here the totF  is the basic variable, and the symbol ( )totP F  is the 
operator form of related power. 
 
 

IV. THE MATRIX FORMS FOR VARIOUS POWERS 

In this section, the matrix forms for various powers are 
provided. The basic variable totF  is expanded in terms of the 
basis function set ( ){ }

1
b rξ ξ

Ξ

=
 as follows 

 

 ( ) ( ) ( )
1

,totF r a b r B a r Vξ ξξ

Ξ

=
= = ⋅ ∈  (23) 

 
here ( ) ( ) ( )1 2, , ,B b r b r b rΞ =   , and [ ]1 2, , ,

T
a a a aΞ=  , and the 

superscript “ T ” represents matrix transposition. The symbol 
“ ⋅ ” in (23) represents matrix multiplication. 

Inserting the (5), (6), and (23) into the powers ,inc lossP , 
,sca lossP , ,tot lossP , , ,inc react matP , , ,sca react matP , and , ,tot react matP , their 

matrix forms and normalized versions can be written as follows 
 

 ( ), ,Z loss H Z lossP a a P a= ⋅ ⋅  (24.1) 

 ( ), , , ,Z react mat H Z react matP a a P a= ⋅ ⋅  (24.2) 

 
and 
 

 ( ), ,Z loss H Z loss H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (25.1) 

 ( ), , , ,Z react mat H Z react mat H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (25.2) 

 
in which , ,Z inc sca tot= , and the superscript “ H ” represents 
the transpose conjugate of matrix. , ,Z loss Z lossP pξζ Ξ×Ξ

 =   , 
, , , ,Z react mat Z react matP pξζ Ξ×Ξ

 =   , and tot totF fξζ Ξ×Ξ
 =   , here 

 

( ) ( ), 1
,

2
Z loss Z Z

V
p E b E bξζ ξ ζσ=   (26.1) 

( ) ( ) ( ) ( ), , 1 1
2 , ,

4 4
Z react mat Z Z Z Z

V V
p H b H b E b E bξζ ξ ζ ξ ζω μ ε = Δ − Δ  

 (26.2) 

1
,

2
tot

V
f b bξζ ξ ζ=   (26.3) 

 
Obviously, the matrices ,Z lossP , , ,Z react matP , and totF  are 
Hermitian. The matrix ,Z lossP  is positive definite, if 0σ ≠ ; the 

,Z lossP  is zero, if 0σ = . 
Inserting (6), (7), and (23) into (14.1), the ,sca vacP  can be 

written as the following matrix form. 
 

 ( ), ,sca vac H sca vacP a a P a= ⋅ ⋅  (27.1) 

 
here , ,sca vac sca vacP pξζ Ξ×Ξ

 =   , and 
 

( ) ( ) ( ) ( ), 1 1
, ,

2 2
sca vac vop sca sca vm

V V
p J b E b H b M bξζ ξ ζ ξ ζ= − −  (27.2) 

 
The matrix ,sca vacP  can be decomposed as follows 

 

 , , , ,sca vac sca rad sca react vacP P j P= +  (28.1) 

 
 

( )
,, ,

, , , , , , , , , , , , , , ,

inp reactinp act tot loPP P

inp inc loss coup loss sca loss sca rad sca react vac sca react mat coup react mat inc react mat inc loss coup loss sca lossP P P P P j P P P P P P P= + + + + + + + = + +


( )
, ,,

,

, , , , , , , , ,

, , , , ,

tot react matss sac vac

sca act

PP

sca rad sca react vac sca react mat coup react mat inc react mat

P

inc loss coup loss sca loss sca rad sca react

P j P j P P P

P P P P j P

+ + + + +

= + + + +

 


( ) ( ) ( )

, , ,

, , , , , , , , , , , , , , ,

sca react sac part rad

sac

P P

vac sca react mat coup react mat inc react mat inc loss coup loss sca loss sca rad sca react vac sca react mat cou

P

P j P P P P P P j P P j P+ + + = + + + + + +
 

 ( )
, ,

, , , ,

inp part rad

p react mat inc react mat

P

P+


 (21)
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here 
 

 
( )
( )

, , ,

, , , ,

1

2

1

2

H
sca rad sca vac sca vac

H
sca react vac sca vac sca vac

P P P

P P P
j

 = +  
 = −  

 (28.2) 

 
Obviously, the matrices ,sca radP  and , ,sca react vacP  are Hermitian, 
so the ,H sca rada P a⋅ ⋅  and , ,H sca react vaca P a⋅ ⋅  are always real 
numbers for any vector a  [16], and then 
 

 ( ), ,sca rad H sca radP a a P a= ⋅ ⋅  (29.1) 

 ( ), , , ,sca react vac H sca react vacP a a P a= ⋅ ⋅  (29.2) 

 
and 
 

 ( ), ,sca rad H sca rad H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (30.1) 

 ( ), , , ,sca react vac H sca react vac H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (30.2) 

 
Based on the above discussions, the following relations are 

derived. 
 

 ( ), ,inp act H inp actP a a P a= ⋅ ⋅  (31.1) 

 ( ), ,inp react H inp reactP a a P a= ⋅ ⋅  (31.2) 

 ( ), ,sca act H sca actP a a P a= ⋅ ⋅  (31.3) 

 ( ), ,sca react H sca reactP a a P a= ⋅ ⋅  (31.4) 

 
and 
 

 ( ), ,inp act H inp act H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (32.1) 

 ( ), ,inp react H inp react H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (32.2) 

 ( ), ,sca act H sca act H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (32.3) 

 ( ), ,sca react H sca react H totP a a P a a F a= ⋅ ⋅ ⋅ ⋅  (32.4) 

 
and 
 

 
( )

( ), ,

inp H inp

H inp act inp react

P a a P a

a P j P a

= ⋅ ⋅

= ⋅ + ⋅
 (33.1) 

 
( )

( )
, , , ,

, ,

inp part rad H inp part rad

H sca rad inp react

P a a P a

a P j P a

= ⋅ ⋅

= ⋅ + ⋅
 (33.2) 

 
( )

( ), ,

sca H sca

H sca act sca react

P a a P a

a P j P a

= ⋅ ⋅

= ⋅ + ⋅
 (33.3) 

 
( )

( )
, , , ,

, ,

sca part rad H sca part rad

H sca rad sca react

P a a P a

a P j P a

= ⋅ ⋅

= ⋅ + ⋅
 (33.4) 

 
here 

 , ,inp inp act inp reactP P j P= +  (34.1) 

 , , , ,inp part rad sca rad inp reactP P j P= +  (34.2) 

 , ,sca sca act sca reactP P j P= +  (34.3) 

 , , , ,sca part rad sca rad sca reactP P j P= +  (34.4) 
 
and 
 

 , , ,inp act sca rad tot lossP P P= +  (35.1) 

 , , , , ,inp react sca react vac tot react matP P P= +  (35.2) 

 , , ,sca act sca rad sca lossP P P= +  (35.3) 

 , , , , ,sca react sca react vac sca react matP P P= +  (35.4) 

 
Because the powers inpP , , ,inp part radP , scaP , and , ,sca part radP  are 

complex numbers, the Mat-EMP-CMT developed in this paper 
doesn’t want to maximize and minimize them, so their 
normalized versions are not specifically listed here. 
 
 

V. MAT-EMP-CMT 

The main destination of Mat-EMP-CMT is to optimize the 
interesting powers discussed in Secs. III and IV. As the typical 
examples, the ,sca radP , inpP , and , ,inp part radP  are respectively 
optimized in this section, and the procedures to optimize other 
powers are not provided, because their procedures are similar. 
Only some important formulations and conclusions are simply 
provided here, but the detailed procedures are not given, 
because a similar and detailed procedure can be found in [14]. 

A. To maximize and minimize ,sca radP . 

The matrices ,sca radP  and totF  are Hermitian, and the totF  is 
positive definite, so the necessary condition to maximize and 
minimize power ,sca radP  is the following generalized 
characteristic equation [16]. 
 

 ,sca rad totP a F aξ ξ ξλ⋅ = ⋅  (36) 

 
here 1,2, ,ξ = Ξ , and the characteristic value ξλ  is real [16]. 

The modal incident and total fields on scatterer, the modal 
scattering field on whole space, and the modal scattering 
currents on scatterer are respectively as follows 
 

 
( ) ( )
( ) ( ) ( )

;
,

;

X X tot

X X tot

E r E F r
r V

H r H F r

ξ ξ

ξ ξ

=
∈

=
 (37.1) 

 
( ) ( )
( ) ( ) ( )3

;
,

;

sca sca tot

sca sca tot

E r E F r
r

H r H F r

ξ ξ

ξ ξ

=
∈

=
  (37.2) 

 
( ) ( )

( ) ( ) ( )
;

,
;

Y Y tot

vm vm tot

J r J F r
r V

M r M F r

ξ ξ

ξ ξ

=
∈

=
 (37.3) 

 
here ,X inc tot= , and , ,Y vo vp vop= , and totF B aξ ξ= ⋅ . The 
relevant operators in (37) are defined in (5)-(7). 
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By doing some necessary orthogonalizations for the 
characteristic vectors corresponding to the same characteristic 
values (i.e., the degenerate modes) [16], the coupling modal 
powers satisfy following orthogonality for any , 1,2, ,ξ ζ = Ξ . 
 

 ( ), , 1

2
sca rad H sca rad sca sca

S
P a P a E H dSξ ξζ ξ ζ ζ ξδ

∞

∗ = ⋅ ⋅ = × ⋅    (38) 

 
here ξζδ  is the Kronecker delta symbol. In particular, when 
ξ ζ= , the modal powers and their normalized versions are as 
follows 
 

 ( ) ( ), 1 2sca rad sca sca

S
P E H dSξ ξ ξ

∞

∗ = × ⋅    (39) 

 
and 
 

 
( )

,
,

1 2 ,

sca rad
sca rad

tot tot

V

P
P

F F
ξ

ξ
ξ ξ

=  (40) 

 
The proof for the orthogonality relation in (38) is similar to 
[14]. 

The modal currents and the modal fields in (37) can be 
normalized by using the method in (8)-(11). The CMs derived 
above are collectively referred to as Radiated power CMs 
(RaCMs) due to their ability to optimize system radiation [14]. 

B. To orthogonalize the power inpP . 

In this subsection, the lossless and lossy cases are separately 
discussed, because the matrix ,inp actP  can be either positive 
definite or positive semi-definite for lossless case, however the 
matrix ,inp actP  must be positive definite for lossy case. 

1) Lossless Case 
When the scatterer is lossless, , 0tot lossP = , and then 

, ,inp act sca radP P= . When the ,sca radP  is positive definite at 
frequency f , the CM set which orthogonalizes ( )inpP a  can be 
obtained by solving the following generalized characteristic 
equation [16]. 
 

 ( ) ( ) ( ) ( ) ( ), ,inp react sca radP f a f f P f a fξ ξ ξλ⋅ = ⋅  (41) 

 
here 1,2, ,ξ = Ξ , and all ( )fξλ  are real [16]. When the ,sca radP  
is positive semi-definite at frequency 0f , the frequency 0f  can 
be determined by using the method given in [14]. Once the 
frequency 0f  is determined, the characteristic vector set 

( ){ }0 1
a fξ ξ

Ξ

=
 can be obtained by using the following limitation as 

explained in [14]. 
 
 ( ) ( )

00 lim f fa f a fξ ξ→=  (42) 

 
At any frequency, the modal currents and modal fields can be 

similarly obtained as (37), and they satisfy the following 
orthogonalities. 
 

 
1 1

, ,
2 2

inp vp inc inc vm

V V
P J E H Mξ ξζ ξ ζ ξ ζδ = +  (43.1) 

 
{ }

( )
; ; ,Re

1

2

inp inp inp
act sca rad

sca sca

S

P P P

E H dS

ξ ξζ ξ ξζ ξ ξζ

ζ ξ

δ δ δ

∞

∗

= =

 = × ⋅  
 (43.2) 

 

{ }

3 3

,

0 0

Im

1 1
2 , ,

4 4

1 1
2 , ,

4 4

inp inp
react

sca sca sca sca

tot tot tot tot

V V

P P

H H E E

H H E E

ξ ξζ ξ ξζ

ξ ζ ξ ζ

ξ ζ ξ ζ

δ δ

ω μ ε

ω μ ε

=

 = −  
 + Δ − Δ  

 
 (43.3) 

 
and the modal input power inpPξ  is as follows 
 

 

( )
( )

( )
( )

; ; 1 2

; 1 2

; , ; 1 2

; 1 2

, , , ,

, , , ,

, , , ,

, , , ,

inp inp
act react Rinp

inp
react N

inp inp
sca rad react R

inp
react N

P j P r r r
P

j P n n n

P j P r r r

j P n n n

ξ ξ
ξ

ξ

ξ ξ

ξ

ξ
ξ

ξ
ξ

 + ==  =
 + ==  =







 (44) 

 
here { } { }1 2 1 2, , , , , ,R Nr r r n n n =∅   , and { } { }1 2 1 2, , , , , ,R Nr r r n n n  

{ }1,2, ,= Ξ ; the subscript “ act ” in ;
inp

actPξ  represents that the 
power ;

inp
actPξ  is the active part of modal input power inpPξ ; the 

subscript “ ,sca rad ” in ; ,
inp

sca radPξ  represents that the power 

; ,
inp

sca radPξ  is the radiated power carried by modal scattering field 
scaFξ ; the other subscripts can be similarly explained. The 

proofs for the orthogonality relations in (43) are similar to [14]. 
The modes corresponding to 1 2, , , Rr r rξ =   and 

1 2, , , Nn n nξ =   are respectively the radiative and non-radiative 
modes. The modes corresponding to ; 0inp

reactPξ < , ; 0inp
reactPξ = , and 

; 0inp
reactPξ >  are respectively the capacitive, resonant, and 

inductive modes. All these modes are collectively referred to as 
Input power CMs (InpCMs) to be distinguished from the CMs 
constructed in Secs. V-A and V-C. In fact, the InpCM set has 
the same physical essence as the Output power CM (OutCM) 
set constructed in [14]. To emphasize the equivalence between 
the OutCM set and InpCM set, the terms “OutCM” and 
“InpCM” are respectively used in [14] and this paper. 

In addition, for the radiative modes, their characteristic 
values ξλ  satisfy the following relation. 
 
 ; ; ,

inp inp
react sca radP Pξ ξ ξλ =  (45) 

 
2) Lossy Case 
When 0σ ≠ , the matrix ,tot lossP  is positive definite, so the 

matrix , , ,inp act sca rad tot lossP P P= +  must be positive definite [16]. 
The CM set which orthogonalizes ( )inpP a  can be obtained by 
solving the following generalized characteristic equation for 
any 1,2, ,ξ = Ξ  [16]. 
 

 , ,inp react inp actP a P aξ ξ ξλ⋅ = ⋅  (46) 

 
The modal currents and modal fields can be similarly 

obtained as the formulations in (37), and they satisfy the 
following orthogonalities. 
 

 1 1
, ,

2 2
inp vop inc inc vm

V V
P J E H Mξ ξζ ξ ζ ξ ζδ = +  (47.1) 
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{ }
( )

( )

;

; , ; ,

Re

1 1
,

2 2

inp inp
act

inp inp
sca rad tot loss

sca sca tot tot

VS

P P

P P

E H dS E E

ξ ξζ ξ ξζ

ξ ξ ξζ

ζ ξ ξ ζ

δ δ

δ

σ
∞

∗

=

= +

 = × ⋅ +  

 (47.2) 

 

{ }
( )

3 3

;

; , , ; , ,

0 0

Im

1 1
2 , ,

4 4

1 1
2 , ,

4 4

inp inp
react

inp inp
sca react vac tot react mat

sca sca sca sca

tot tot tot tot

V V

P P

P P

H H E E

H H E E

ξ ξζ ξ ξζ

ξ ξ ξζ

ξ ζ ξ ζ

ξ ζ ξ ζ

δ δ

δ

ω μ ε

ω μ ε

=

= +

 = −  
 + Δ − Δ  

 

 (47.3) 

 
and the modal power is as follows 
 

 

{ } { }

( )
; ;

; , ; , ; , , ; , ,

Re Iminp inp inp

inp inp
act react

inp inp inp inp
sca rad tot loss sca react vac tot react mat

P P j P

P j P

P P j P P

ξ ξ ξ

ξ ξ

ξ ξ ξ ξ

= +

= +

= + + +

 (48) 

 
The proofs for the orthogonality relations in (47) are similar to 
[14]. In addition, the characteristic values ξλ  derived from (46) 
satisfy the following relation for any 1,2, ,ξ = Ξ . 
 
 ; ;

inp inp
react actP Pξ ξ ξλ =  (49) 

 
It must be clearly pointed out here that the radiated power 

orthogonality like (38) and (43.2) cannot be guaranteed in this 
case. In fact, this is just the main reason to introduce the CM set 
given in the following Sec. V-C. 

C. To orthogonalize the , ,inp part radP  for lossy material bodies. 

Because , ,inp part rad inpP P=  for lossless material body case, 
only the lossy case is discussed in this subsection. 

When the ,sca radP  is positive definite at frequency f , the CM 
set which orthogonalizes ( ), ,inp part radP a  can be obtained by 
solving the following equation for any 1,2, ,ξ = Ξ  [16]. 
 

 ( ) ( ) ( ) ( ) ( ), ,inp react sca radP f a f f P f a fξ ξ ξλ⋅ = ⋅  (50) 

 
When the ,sca radP  is positive semi-definite at frequency 0f , the 
frequency 0f  can be determined by using the method provided 
in [14], and then the ( )0a f  at frequency 0f  can be obtained as 
the following (51) for any 1,2, ,ξ = Ξ  [14]. 
 
 ( ) ( )

00 lim f fa f a fξ ξ→=  (51) 

 
The modal currents and modal fields can be similarly 

obtained as (37), and they satisfy the following orthogonalities. 
 

, , 1 1
, ,

2 2
1

,
2

inp part rad vop inc inc vm

V V

tot tot

V

P J E H M

E E

ξ ξζ ξ ζ ξ ζ

ξ ζ

δ

σ

= +

−
 (52.1) 

{ } ( ), , , ,
; ,

1
Re

2
inp part rad inp part rad sca sca

sca rad S
P P E H dSξ ξζ ξ ξζ ζ ξδ δ

∞

∗ = = × ⋅    (52.2) 

{ } ( )
3 3

, , , , , ,
; , , ; , ,

0 0

Im

1 1
2 , ,

4 4

1 1
2 , ,

4 4

inp part rad inp part rad inp part rad
sca react vac tot react mat

sca sca sca sca

tot tot tot tot

V V

P P P

H H E E

H H E E

ξ ξζ ξ ξ ξζ

ξ ζ ξ ζ

ξ ζ ξ ζ

δ δ

ω μ ε

ω μ ε

= +

 = −  
 + Δ − Δ  

 
 (52.3) 

 
The modal power is as follows 
 

{ } { } ( )
{ } ( )

( ) ( )

, , , ,
1, ,

, ,
1

, , , , , ,
; , ; , , ; , , 1

; , ,

Re Im , , ,

Im , , ,

, , ,

inp part rad inp part rad
Rinp part rad

inp part rad
N

inp part rad inp part rad inp part rad
sca rad sca react vac tot react mat R

sca react vac

P j P r r
P

j P n n

P j P P r r

j P

ξ ξ
ξ

ξ

ξ ξ ξ

ξ

ξ

ξ

ξ

 + == 
=

+ + =
=







( ) ( ), , , ,
; , , 1, , ,inp part rad inp part rad

tot react mat NP n nξ ξ




+ = 

(53) 

 
The proofs for the orthogonality relations in (52) are similar to 
[14]. In addition, for the radiative modes, their characteristic 
values ξλ  satisfy the following relation (54). 
 
 { } { }, , , ,Im Reinp part rad inp part radP Pξ ξ ξλ =  (54) 

 
It must be clearly pointed out that the orthogonality for the 

total active power like (47.2) cannot be guaranteed in this case, 
though the radiation pattern orthogonality (52.2) exists. 

D. To optimize the other powers. 

The fundamental principles and procedures to optimize the 
normalized powers ,inc lossP , ,sca lossP , ,tot lossP , , ,inc react matP , 

, ,sca react matP , , ,tot react matP , ,sca actP , , ,sca react vacP , ,sca reactP , ,inp actP , and 
,inp reactP  are completely similar to the ,sca radP  provided in Sec. 

V-A; the fundamental principles and procedures to 
orthogonalize scaP  and ,sca vacP  are completely similar to the 

inpP  provided in Sec. V-B; the fundamental principles and 
procedures to orthogonalize , ,sca part radP  are completely similar 
to the , ,inp part radP  provided in Sec. V-C. 

Various CM sets can be efficiently distinguished from each 
other based on their different superscripts, as illustrated in the 
following Sec. VI. 
 
 

VI. MODAL EXPANSION 

In this section, the method to expand the fields, currents, and 
powers in terms of various CM sets is provided, and it is 
particularly called as the CM-based modal expansion method to 
be distinguished from the other kinds of expansion methods, 
such as the eigen-mode-based expansion method [17]-[18] and 
the special function-based expansion method [19]. 

A. The modal expansions for fields and currents. 

Due to the completeness of any kind of CM set, the 
expansion vector a , the field XF  on scatterer, the field scaF  
on whole space, and the various currents { }, , ,vp vo vop vmJ J J M  can 
be expanded in terms of the any kind of CM set as follows 
 

 
1

a c aξ ξξ

Ξ

=
=   (55) 
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and 
 

 
( ) ( )
( ) ( )

( )1

1

,

X X

X X

E r c E r
r V

H r c H r

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

=
∈

=




 (56.1) 

 
( ) ( )
( ) ( )

( )1 3

1

,

sca sca

sca sca

E r c E r
r

H r c H r

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

=
∈

=




  (56.2) 

 
( ) ( )

( ) ( )
( )1

1

,

Y Y

vm vm

J r c J r
r V

M r c M r

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

=
∈

=




 (56.3) 

 
here ,X inc tot= , and , ,Y vo vp vop= . 

B. The modal expansions for various powers. 

Based on the power orthogonalities of the CM sets derived in 
Sec. V, various system powers can be expanded as follows 
 

 
2

1

inp inp inpP c Pξ ξξ

Ξ

=
=   (57.1) 

 
2, , , , , ,

1

inp part rad inp part rad inp part radP c Pξ ξξ

Ξ

=
=   (57.2) 

 
2

1

sca sca scaP c Pξ ξξ

Ξ

=
=   (57.3) 

 
2, , ,

1

sca vac sca vac sca vacP c Pξ ξξ

Ξ

=
=   (57.4) 

 
2, , , , , ,

1

sca part rad sca part rad sca part radP c Pξ ξξ

Ξ

=
=   (57.5) 

 
and 
 

 

{ }
{ }

{ }

2, , , , ,

1

2, , , ,

1

2, ,

1

2, ,

1

Re

Re

Re

sca rad inp part rad inp part rad

sca part rad sca part rad

sca vac sca vac

sca rad sca rad

P c P

c P

c P

c P

ξ ξξ

ξ ξξ

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

Ξ

=

Ξ

=

=

=

=

=






 (58.1) 

 
{ }2,

1

2, ,

1

Resca act sca sca

sca act sca act

P c P

c P

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

=

=




 (58.2) 

 
{ }2, , , ,

1

2, , , ,

1

Imsca react vac sca vac sca vac

sca react vac sca react vac

P c P

c P

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

=

=




 (58.3)  

 

{ }
{ }

2, , , , ,

1

2

1

2, ,

1

Im

Im

sca react sca part rad sca part rad

sca sca

sca react sca react

P c P

c P

c P

ξ ξξ

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

Ξ

=

=

=

=





 (58.4)  

 
{ }2,

1

2, ,

1

Reinp act inp inp

inp act inp act

P c P

c P

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

=

=




 (58.5) 

 

{ }
{ }

2, , , , ,

1

2

1

2, ,

1

Im

Im

inp react inp part rad inp part rad

inp inp

inp react inp react

P c P

c P

c P

ξ ξξ

ξ ξξ

ξ ξξ

Ξ

=

Ξ

=

Ξ

=

=

=

=





 (58.6) 

 

here the superscripts in expansion coefficients are to emphasize 
that different CM-based expansions have different coefficients. 

C. The variational formulation to determine the expansion 
coefficients. 

When the scatterer is excited by external field incF , the one 
and only one total field totF  on scatterer is resulted, here totF  is 
the basic variable. Based on the discussions in Sec. III, the 
system input power inpP  can be equivalently determined as the 
following two ways. 
 

( ) ( )1 1
, ,

2 2
inp vop tot inc inc vm tot

V V
P J F E H M F= +  (59.1) 

( ) ( ) ( ) ( )1 1
, ,

2 2
inp vop tot inc tot inc tot vm tot

V V
P J F E F H F M F= +  (59.2) 

 
The incE  and incH  in (59.1) are known. However, the ( )inc totE F  
and ( )inc totH F  in (59.2) are expressed as the functions of totF  
as (5) regardless of whether incE  and incH  are known or not. 

The real totF  on scatterer will make the following functional 
be zero and stationary. 
 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1
, ,

2 2
1 1

, ,
2 2

tot vop tot inc inc vm tot

V V

vop tot inc tot inc tot vm tot

V V

F F J F E H M F

J F E F H F M F

= +

− −
 (60) 

 
Inserting (56) into (60) and employing the Ritz’s procedure 

[20], the following simultaneous equations for the expansion 
coefficients { }

1
cξ ξ

Ξ

=
 are derived for any 1,2, ,ζ = Ξ . 

 

1 1

1 1

1 1
, ,

2 2
1 1

, ,
2 2

1 1
, ,

2 2

vop inc inc vm

V V

vop inc inc vm

V V

vop inc inc vm

V V

J E H M

J c E H c M

c J E c H M

ζ ζ

ζ ξ ξ ζ ξ ξξ ξ

ξ ξ ζ ξ ξ ζξ ξ

Ξ Ξ

= =

Ξ Ξ

= =

+

= +

+ +

 

 

(61.1) 

 
and 
 

1 1

1 1

1 1
, ,

2 2
1 1

, ,
2 2

1 1
, ,

2 2

vop inc inc vm

V V

vop inc inc vm

V V

vop inc inc vm

V V

J E H M

J c E H c M

c J E c H M

ζ ζ

ζ ξ ξ ζ ξ ξξ ξ

ξ ξ ζ ξ ξ ζξ ξ

Ξ Ξ

= =

Ξ Ξ

= =

− +

= − −

+ +

 

 

(61.2) 

 
By solving the above (61), the { }

1
cξ ξ

Ξ

=
 can be determined. 

D. The expansion coefficients of the InpCM-based expansion. 

If the CM set is derived by orthogonalizing inpP , the 
coefficients { }

1

inpcξ ξ

Ξ

=
 in (61) can be easily solved and concisely 

expressed as following (62) based on the orthogonality (47). 
 

( )

( )

( )

( )

1 1
, , 0, 0

2

1 1
, , 0, 0

2

1 1 1 1
, , , , 0

2 2

0 , , 0

vop inc
cinp V

inc vm
cinp V

inp

vop inc inc vm
cinp inpV V

c

J E
P

H M
Pc

J E H M
P P

ξ
ξ

ξ
ξ

ξ

ξ ξ
ξ ξ

μ ε

μ ε

μ ε

μ ε

∗

∗

 ⋅ Δ = Δ ≠

  

⋅ Δ ≠ Δ =     = 
 

⋅ = ⋅ Δ Δ ≠ 
   


 Δ Δ =

(62) 
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However, it must be pointed out that the (62) is not valid for the 
non-radiative resonant InpCMs corresponding to 0inpPξ = . 
 
 

VII. THE MODAL QUANTITIES FOR INPCMS 

In (55)-(58), the system electromagnetic quantities (such as 
vopJ , scaF , and outP ) are expanded in terms of series of modal 

components (such as vopc Jξ ξ , scac Fξ ξ , and 
2 outc Pξ ξ ), and to 

consider of the weight of every modal component in whole 
expansion formulation is important. However, the components 
are either the complex vectors (such as vopc Jξ ξ  and scac Fξ ξ ) or 
the complex scalars (such as 

2 outc Pξ ξ ), so the modal weights 
cannot be directly derived from the modal components 
themselves, and then to establish an appropriate mapping from 
the modal index set { } 1ξξ Ξ

=
 to a real number set is necessary. 

In this section, the InpCM-based expansion method is 
considered, and it is assumed that 0cεΔ ≠ , and then the 

( )1 2 ,inp inp vop inc

V
c P J Eξ ξ ξ=  in (62) is used throughout. In fact, the 
case ( )0, 0cμ εΔ ≠ Δ =  can be similarly discussed, and it will not 
be repeated in this paper. 

A. An illuminating example. 

Let us consider the following example at first. 
 
 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ20 20 1 10 10 10 1 1x y x y x y+ =  ⋅ +  +  ⋅ +      (63) 

 
Obviously, using the following mapping (64.1) to depict the 
weights of term ( )ˆ ˆ1 10 10x y⋅ +  and term ( )ˆ ˆ10 1 1x y⋅ +  is 
unreasonable. 
 
 ( ) ( ){ } { }ˆ ˆ ˆ ˆ1 10 10 , 10 1 1 1 , 10x y x y⋅ + ⋅ + ↔  (64.1) 

 
here the symbol { },a b  represents the ordered array of numbers 
a  and b . In fact, a reasonable mapping is as follows 
 

( ) ( ){ } { }2 2 2 2ˆ ˆ ˆ ˆ1 10 10 , 10 1 1 1 10 10 , 10 1 1x y x y⋅ + ⋅ + ↔ ⋅ + ⋅ +  (64.2) 

 
because the (63) can be equivalently rewritten as follows 
 

( ) ( )2 2 2 2

2 2 2 2

ˆ ˆ ˆ ˆ10 10 1 1
ˆ ˆ20 20 1 10 10 10 1 1

10 10 1 1

x y x y
x y

   + +
+ = ⋅ + ⋅ + ⋅ + ⋅   

+ +   
 (65) 

 
By comparing the (63) with (65), it is easy to find out that the 

essential reason to lead to the inappropriate mapping (64.1) is 
that the terms ˆ ˆ10 10x y+  and ˆ ˆ1 1x y+  in (63) are not well 
normalized. 

B. Modal normalization. 

Based on the same reason explained above, to normalize the 
CMs is necessary for establishing the appropriate mapping 
from the { } 1ξξ Ξ

=
 to the real number set whose elements 

quantitively depict the modal weights in whole modal 
expansion formulation. Based on (8), the modal total field totFξ  
on V  is normalized as follows 
 

 ( ) ( )
( ) ( )1 2 ,
1 2 ,

tot
tot

tot tot

V

F r
F r r V

F F

ξ
ξ

ξ ξ

∈   (66) 

 
here F E=  or H , and it depends on that the basic variable is 
selected as whom.  

Based on the (5)-(7) and (66), the CMs are automatically 
normalized as follows 
 

 
( ) ( ) ( )
( ) ( ) ( )

( )
1 2

1 2

1 2 ,
,

1 2 ,

X X tot tot

V

X X tot tot

V

E r E r F F
r V

H r H r F F

ξ ξ ξ ξ

ξ ξ ξ ξ

=
∈

=




 (67.1) 

 
( ) ( ) ( )
( ) ( ) ( )

( )
1 2

3

1 2

1 2 ,
,

1 2 ,

sca sca tot tot

V

sca sca tot tot

V

E r E r F F
r

H r H r F F

ξ ξ ξ ξ

ξ ξ ξ ξ

=
∈

=





 (67.2) 

 
( ) ( ) ( )

( ) ( ) ( )
( )

1 2

1 2

1 2 ,
,

1 2 ,

Y Y tot tot

V

vm vm tot tot

V

J r J r F F
r V

M r M r F F

ξ ξ ξ ξ

ξ ξ ξ ξ

=
∈

=




 (67.3) 

 
and 
 

 
( )1 2 ,

inp
inp

tot tot

V

P
P

F F
ξ

ξ
ξ ξ

=  (68) 

 
here ,X inc tot= , and , ,Y vo vp vop= . 

Obviously, when the CMs are normalized as (67)-(68), the 
expansion coefficient (62) automatically becomes the 
following version. 
 

( )

( )

( )

( )

1 1
, , 0, 0

2

1 1
, , 0, 0

2

1 1 1 1
, , , , 0

2 2

0 , , 0

vop inc
cinp

V

inc vm
cinp

Vinp

vop inc inc vm
cinp inp

V V

c

J E
P

H M
P

c

J E H M
P P

ξ
ξ

ξ
ξ

ξ

ξ ξ
ξ ξ

μ ε

μ ε

μ ε

μ ε

∗

∗

 ⋅ Δ = Δ ≠

  

⋅ Δ ≠ Δ =  
   = 

 
⋅ = ⋅ Δ Δ ≠ 

   

 Δ Δ =








 

 

 (69) 

 

C. The generalized Modal Significance (MS) for system total 
power. 

Based on the (68) and (69), the input power expansion 
formulation (57.1) can be equivalently rewritten as follows 
 

 

2

1
2

1

1 1
,

2

inp inp inp

inp
vop inc

inp inp
V

P c P

P
J E

P P

ξ ξξ

ξ
ξξ

ξ ξ

Ξ

=

Ξ

=

=

= ⋅ ⋅







 
 (70) 

 
Obviously, the magnitude of term inp inpP Pξ ξ

   is unit just like 
the terms ( ) 2 2ˆ ˆ10 10 10 10x y+ +  and ( ) 2 2ˆ ˆ1 1 1 1x y+ +  in (65), 
and then two mappings can be established as the following (71) 
just like the (64.2). 
 

 { } { },

1 1
SMSsys tot

ξξ ξ
ξ

ΞΞ

= =
↔  (71.1) 

 { } { },

1 1
GMSsys tot

ξξ ξ
ξ

ΞΞ

= =
↔  (71.2) 
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here 
 

 
2

, 1 1
SMS ,

2
sys tot vop inc

inp
V

J E
P

ξ ξ
ξ

⋅    (72.1) 

 , 1
GMSsys tot

inpP
ξ

ξ

   (72.2) 

 
Based on the (70)-(72), it is easily found out that: 
(1) When a specific field incF  incidents on scatterer, only the 

first several terms, whose ,SMSsys tot
ξ  are relatively large, are 

necessary to be included in the truncated modal expansion 
formulation. 

(2) Generally speaking, when the sufficient terms, which 
have relatively large ,GMSsys tot

ξ , are included in the modal 
expansion formulation, the truncated expansion formulation 
can basically coincide with the full-wave solution for any 
external excitation. However, it must be clearly pointed out that 
this conclusion is not always right. For example, when the 
expansion formulation only includes N  terms, and the external 
incident field satisfies that inc inc

N MF F +=  on V  (here 0M > ), the 
truncated expansion formulation cannot coincide with the 
full-wave solution, because only the (N+M)-th modal 
component is excited, whereas this component is not included 
in the truncated expansion formulation. 

Based on the above discussions, it is obvious that the 
,SMSsys tot

ξ  and ,GMSsys tot
ξ  quantitively depict the modal weight in 

whole modal expansion formulation, so the ,SMSsys tot
ξ  is called 

as “the Modal Significance (MS) corresponding to the specific 
excitation” or simply called as “Special MS (SMS)”, and the 

,GMSsys tot
ξ  is called as “the MS corresponding to general 

excitation” or simply called as “General MS (GMS)”. The SMS 
and GMS are collectively referred to as “the generalized MS for 
system total power”, and this is the reason why the superscripts 
“ ,sys tot ” are used in them. 

D. The generalized Modal Significance (MS) for system active 
and reactive powers. 

The real and imaginary parts of power inpP  is the active 
power { }, Reinp act inpP P=  and the reactive power { }, Iminp react inpP P= . 
Because the 

2inpcξ  in (70) is always real, the following 
expansions can be derived. 
 

 

{ }
{ }

2,

1

2

1

Re

Re1 1
,

2

inp act inp inp

inp

vop inc

inp inp
V

P c P

P
J E

P P

ξ ξξ

ξ
ξξ

ξ ξ

Ξ

=

Ξ

=

=

= ⋅ ⋅








 

 (73.1) 

 

{ }
{ }

2,

1

2

1

Im

Im1 1
,

2

inp react inp inp

inp

vop inc

inp inp
V

P c P

P
J E

P P

ξ ξξ

ξ
ξξ

ξ ξ

Ξ

=

Ξ

=

=

= ⋅ ⋅








 

 (73.2) 

 
Similarly to the generalized MS for system total power, the 

following “generalized MS for system active and reactive 
powers” are introduced to quantitively depict the modal 
weights in whole system active and reactive powers. 

{ } { }
2

, ,
2

Re 1 1
SMS SMS , Re

2

inp

sys act sys tot vop inc inp

inp inp V

P
J E P

P P

ξ
ξ ξ ξ ξ

ξ ξ

⋅ = ⋅ ⋅


   
(74.1) 

{ } { }, ,
2

Re 1
GMS GMS Re

inp

sys act sys tot inp

inp inp

P
P

P P

ξ
ξ ξ ξ

ξ ξ

⋅ = ⋅


  
 (74.2) 

 
for the active power, and 
 

{ } { }
2

, ,
2

Im 1 1
SMS SMS , Im

2

inp

sys react sys tot vop inc inp

inp inp V

P
J E P

P P

ξ
ξ ξ ξ ξ

ξ ξ

⋅ = ⋅ ⋅


   
(75.1) 

{ } { }, ,
2

Im 1
GMS GMS Im

inp

sys react sys tot inp

inp inp

P
P

P P

ξ
ξ ξ ξ

ξ ξ

⋅ = ⋅


  
 (75.2) 

 
for the reactive power. The reason to use the superscript “ sys ” 
in the , /SMSsys act react

ξ  and , /GMSsys act react
ξ  is the same as the 

,SMSsys tot
ξ  and ,GMSsys tot

ξ  in Sec. VII-C, and the reason to use the 
superscripts “ act ” and “ react ” is evident. 

E. The modal characteristic to allocate active and reactive 
powers and the modal ability to couple energy from external 
excitation. 

From the above discussions, it is obvious that the modal 
ability to transform the energy provided by external excitation 
to a part of the system active and reactive powers depends on 
the following three aspects: 

(1) The modal ability to contribute system total power is 
quantitively depicted by the ,GMSsys tot

ξ  defined in (72.2). 
(2) The modal characteristic to allocate the total modal 

output power to its active and reactive parts is quantitively 
depicted by “the Modal characteristic to Allocate modal Output 
Power (MAOP)” defined as the following (76). 
 
 { },MAOP Remod act inp inpP Pξ ξ ξ

   (76.1) 

 { },MAOP Immod react inp inpP Pξ ξ ξ
   (76.2) 

 
Here, the relation inp outP Pξ ξ=   has been considered, and it will be 
further discussed in Sec. VIII-A. 

(3) The modal ability to couple energy from external 
excitation is quantitively depicted by “the Modal Ability to 
Couple Excitation (MACE)” defined as the following (77). 
 

 ( )
2

MACE 1 2 ,mod vop inc

V
J Eξ ξ
  (77) 

 
The superscript “ mod ” in (76) and (77) is to emphasize that 

to introduce the MAOP and MACE is to depict the 
characteristic of the mode itself, but not to depict the modal 
weight in whole system power. 

F. The characteristic quantities and non-characteristic 
quantities. 

Obviously, the ,GMSsys tot
ξ , ,GMSsys act react

ξ , and ,MAOPmod act react
ξ  

are independent of the specific external excitation, so they are 
collectively referred to as the modal characteristic quantities 
(or simply called as characteristic quantities). However, the 

,SMSsys tot
ξ , ,SMSsys act react

ξ , and MACEmod
ξ  depend on the specific 
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external excitation, so they are collectively referred to as the 
modal non-characteristic quantities (or simply called as 
non-characteristic quantities). The characteristic quantities and 
non-characteristic quantities are collectively referred to as 
modal quantities. 
 
 

VIII. DISCUSSIONS 

Some necessary discussions related to the theory developed 
in this paper are provided in this section. 

A. The discussions for the powers related to material bodies. 

Various electromagnetic powers can be divided into the 
following four categories: the lossy powers, the radiated 
powers carried by radiative fields, the reactive powers due to 
the energies stored in non-radiative fields (simply called as 
reactively stored powers in fields), and the reactive powers due 
to the energies stored in matter (simply called as reactively 
stored powers in matter) [15], [21]. The former two kinds are 
collectively referred to as active powers, and the latter two 
kinds are collectively referred to as reactive powers. 

If the material scatterer is regarded as a whole object, there 
exist only two kinds of fields in 3 , that are the scaF  generated 
by scatterer and the incF  generated by external excitation and 
environment. The scaF  and incF  respectively contribute all 
kinds of powers mentioned above, and they are detailedly listed 
as follows. 

1) The active powers 
(1.1) The radiated powers include the ,sca radP  carried by scaF , 

the ,inc radP  carried by incF , and the ,coup radP  corresponding to 
the coupling between scaF  and incF  on surface S∞ . The 
mathematical expression for the power ,sca radP  has been given 
in (14.2), and the mathematical expressions for the power 

,inc radP  and the power ,coup radP  are expressed as the following 
(78) and (79) respectively. 
 

 ( ), 1

2
inc rad inc inc

S
P E H dS

∞

∗ = × ⋅    (78) 

 ( ) ( ), 1 1

2 2
coup rad sca inc inc sca

S S
P E H dS E H dS

∞ ∞

∗ ∗   = × ⋅ + × ⋅          (79) 

 
(1.2) The lossy powers include the ,sca lossP  dissipated by scaF , 

the ,inc lossP  dissipated by incF , and the ,coup lossP  corresponding to 
the coupling between scaF  and incF . Their mathematical 
expressions are given in (20.1) and (21) respectively. In fact, it 
is obvious that 
 
 , , , ,tot loss sca loss inc loss coup lossP P P P= + +  (80) 

 

2) The reactive powers 
(2.1) The reactively stored powers in fields include the 

, ,sca react vacP  in (13), the , ,inc react vacP , and the , ,coup react vacP  
corresponding to the coupling between scaF  and incF  in 3 . 
The mathematical expressions for , ,inc react vacP  and , ,coup react vacP  
are as follows 

 
3 3

, ,
0 0

1 1
2 , ,

4 4
inc react vac inc inc inc incP H H E Eω μ ε = −   

 (81) 

 
3 3

3 3

, ,
0 0

0 0

1 1
2 , ,

4 4

1 1
, ,

4 4

coup react vac sca inc sca inc

inc sca inc sca

P H H E E

H H E E

ω μ ε

μ ε

= −
+ − 

 

 

 (82) 

 
(2.2) The reactively stored powers in matter include the 

, ,sca react matP , , ,inc react matP , and , ,coup react matP , and their mathematical 
expressions are given in (18) and (21) respectively. In fact, it is 
obvious that 
 
 , , , , , , , ,tot react mat sca react mat inc react mat coup react matP P P P= + +  (83) 

 
Obviously, the ,sca radP , ,sca lossP , ,inc lossP , ,coup lossP , , ,sca react vacP , 

, ,sca react matP , , ,inc react matP , and , ,coup react matP  are intrinsically related 
to the material scatterer; however, the ,inc radP , ,coup radP , 

, ,inc react vacP , and , ,coup react vacP  are not intrinsically related to the 
scatterer. The reasons are listed as below: 

(a) Only the totF  and incF  in V  have the one-to-one 
correspondences with the scattering sources as illustrated in (7) 
and (86), whereas the incF  in 3 \V  and the incF  on S∞  have 
not this kind of one-to-one correspondence, here the 3 \V  is 
the space exterior to V . Specifically, there exist some different 

incF , such that they equal to each other in whole V , but don’t 
equal to each other exterior to V  and on S∞ . 

(b) The ,sca radP  and , ,sca react vacP  are generated by the 
scattering sources, and the , , , ,tot loss sca loss inc loss coup lossP P P P= + +  and 

, , , , , , , ,tot react mat sca react mat inc react mat coup react matP P P P= + +  are inherently 
related to the material parameters. 

In addition, based on the above discussions, the system 
output power outP  can be expressed as the following (84). 
 

 

( )
( ) ( )

( ) ( )

, , , , , ,

1 2 , 1 2 ,

1 2 , 1 2 ,

out sca rad tot loss sca react vac tot react mat

vop tot tot vm

V V

vop sca sca vm

V V

P P P j P P

J E H M

J E H M

= + + +

= +

− −

 (84) 

 
In fact, the physical essence of the second equality in (12) is the 
following conservation law of energy [10]. 
 
 out inpP P=  (85) 
 

B. The discussions for various CM sets. 

Besides the objective powers discussed in Secs. III and IV, 
some other kinds of powers can also be selected as the objects 
to be optimized by Mat-EMP-CMT. The CM sets derived from 
different objective powers depict the inherent characteristics of 
electromagnetic system from different aspects, and various CM 
sets have their own merits. In this section, the features of three 
typical power-based CM sets are discussed. 

1) The RaCM set constructed by orthogonalizing sca, radP  
The elements in RaCM set are the necessary conditions for 

optimizing the system radiation as explained in [14], and then 
they are valuable in the antenna engineering community. 
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2) The InpCM set constructed by orthogonalizing inpP  
Among all powers discussed in Secs. III, IV, and VIII-A, the 

input power inpP  is the only one which includes all energies 
and powers intrinsically related to material body, and at the 
same time doesn’t include any energy and power which is 
independent of material body, so the InpCM set is the most 
integrated description for the inherent characteristics of 
material body to utilize various electromagnetic energies. 

3) The CM set constructed by orthogonalizing inp, part, radP  
When the scatterer is lossy, the active power related to 

scatterer includes two parts, the radiated power and the lossy 
power. At this time, the InpCM set doesn’t satisfy the radiated 
power orthogonality, but the CM set derived from 
orthogonalizing , ,inp part radP  satisfies the radiated power 
orthogonality in (52.2). 

In antenna engineering society, the radiation characteristic of 
antenna is more concerned than lossy power and total active 
power, so the CM set derived from , ,inp part radP  is much more 
valuable than the InpCM set for analyzing and designing the 
material antennas with loss, but it comes at the cost of 
abandoning to descript the lossy characteristic of scatterer. 

C. The discussions about the Poynting’s theorem-based CMT. 

The PEC-SEFIE-CMT [2] is rebuilt based on Poynting’s 
theorem in [5], and a Poynting’s theorem-based interpretation 
for the power characteristic of Mat-SIE-CMT [4] is given in [6]. 
In fact, to carefully analyze the power characteristics of various 
CM sets are indeed very important for both theoretical research 
and engineering application, so the power characteristics of 
various CMTs for material bodies are discussed in this 
subsection and the following Sec. VIII-D. 

1) What is the reason why the symbol “  ” in (17) and (19) 
doesn’t appear in (18)? 

It is well known that the Poynting’s theorem is derived from 
Maxwell’s equations. At the same time, it is obvious that the 
CMT for material bodies cannot be established based on the 
Poynting’s theorems derived from the Maxwell’s equations for 
incident fields { },inc incE H  and total fields { },tot totE H , because 
they will include some powers which are not inherently related 
to scatterer as discussed in Sec. VIII-A. However, the 
Maxwell’s equations related to scattering fields { },sca scaE H  
have only two different forms. The one has been illustrated in 
(1), and the other is as follows 
 

 
sca inc sca

c

sca inc sca

H J j E

E M j H

ωε
ωμ

∇ × = +

∇ × = − −
 (86.1) 

 
here 
 

 ( ),
inc inc

c

inc inc

J j E
r V

M j M

ω ε
ω μ

= Δ
∈

= Δ
 (86.2) 

 
The Poynting’s theorem derived from (1) has been illustrated 

in (13), and the Poynting’s theorem derived from the above (86) 
is as follows 
 

 ( ), , 2sca sca rad sca loss sca sca
m eP P P j W Wω= + + −  (87) 

 
here the ,sca radP  and ,sca lossP  are given in (14.2) and (20.1), and 
 
 ( ) ( )1 2 , 1 2 ,sca inc sca sca inc

V V
P J E H M= − −  (88.1) 

 , ,sca sca vac sca mat
m m mW W W= +  (88.2) 

 , ,sca sca vac sca mat
e e eW W W= +  (88.3) 

 
in which the ,sca vac

mW  and ,sca vac
eW  are given in (14.3) and (14.4), 

and the ,sca mat
mW  and ,sca mat

eW  are given in (20.2) and (20.3). 
The reason why the symbol “  ” is not used in (18) is that the 

power scaP  is directly derived from Maxwell’s equations as 
illustrated above, instead of artificially defined as (17) and (19) 
for practical destinations. 

2) In addition, what is the reason why the ( )1 2 ,inc vm

V
H M  is 

used in (12) instead of the ( )1 2 ,vm inc

V
M H ? 

It is obvious to find out that the (12) is consistent with the 
Poynting’s theorem, which is derived from Maxwell’s 
equations. When the ( )1 2 ,inc vm

V
H M  is replaced by 

( )1 2 ,vm inc

V
M H , the consistence will disappear. The author of 

this paper thinks that the mathematical expression which is 
consistent with the fundamental physical law is more credible. 

D. The discussions for Mat-VIE-CMT [3]. 

In this subsection, the core principle of Mat-VIE-CMT [3] is 
summarized at first, and then some necessary discussions for 
Mat-VIE-CMT are provided. 

The core principle of Mat-VIE-CMT 
1) The main destination of Mat-VIE-CMT is to construct a 

transformation from any mathematically complete basis 
function set { }

1
bξ ξ

Ξ

=
 to the CM set { }

1
aξ ξ

Ξ

=
 which satisfies the 

power orthogonality given by the formulations (14) and (15) in 
paper [3]. 

2) The Mat-VIE-CMT achieves above destination by 
decomposing the impedance matrix Z  in terms of its real part 
R  and imaginary part X , and then solving the generalized 
characteristic equation X a R aλ⋅ = ⋅ . 

3) In fact, realizing the destination in 1) by using the method 
in 2) relies on the following necessary conditions. 

(3.1) ( )inp HP a a Z a= ⋅ ⋅ ; 
(3.2) The R  and X  must be symmetric matrices to 

guarantee that ( ){ }Re inp HP a a R a= ⋅ ⋅  and ( ){ }Im inp HP a a X a= ⋅ ⋅ ; 
(3.3) The R  must be positive definite [16]. 
4) To guarantee the conditions listed in 3), the 

Mat-VIE-CMT is realized as follows. 
(4.1) To guarantee the condition (3.1), the Z  must be 

constructed by using inner product, and the basis function set 
and the testing function set must be the same, and a coefficient 
“1 2 ” should be contained; 

(4.2) To guarantee the condition (3.2), the Z  must be 
constructed by using symmetric product, and the basis function 
set and the testing function set must be the same; 

(4.3) To guarantee the condition (3.3), the material scatterer 
is required to radiate some electromagnetic energy. 

To simultaneously achieve the above (4.1) and (4.2), it is 
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necessary for the Mat-VIE-CMT to expand currents in terms of 
the real basis function set, and then the Mat-VIE-CMT can only 
construct the real characteristic currents, because in the vector 
space Ξ  only the real characteristic vectors can be derived 
from the equation X a R aλ⋅ = ⋅ . 

The discussions for Mat-VIE-CMT and Mat-EMP-CMT 
1) The Mat-VIE-CMT has not ability to provide the complex 

characteristic currents, but it is more suitable for some 
electrically large structures, such as travelling wave material 
antennas, to depict their inherent characteristics by using the 
complex characteristic currents [7]. 

In Mat-EMP-CMT, the matrix inpP  is decomposed in terms 
of two Hermitian matrices, the ,inp actP  and the ,inp reactP , as 
illustrated in (34.1), and they respectively correspond to the 
active power and reactive power as illustrated in (31.1) and 
(31.2). The theoretical foundation of decomposition (34.1) is 
the decomposition (28), and the (28) can always be realized, 
and doesn’t need to restrict the basis function set { }

1
bξ ξ

Ξ

=
 to be 

real. Based on this, the characteristic currents are not restricted 
to be real under the Mat-EMP-CMT framework, and then this 
paper provides a possible way for constructing the complex 
characteristic currents. 

2) The Mat-VIE-CMT doesn’t provide any efficient method 
to research the non-radiative CMs, but it is more suitable for 
some material components, such as the material body filters, to 
depict their inherent characteristics by using the non-radiative 
CMs. 

In Mat-EMP-CMT, for lossless material bodies, when the 
,inp actP  is positive definite, the CM set is obtained by solving the 

generalized characteristic equation , ,inp react inp actP a P aλ⋅ = ⋅  in 
(41), and this equation is the necessary condition to 
orthogonalize the modal powers as (43). When the ,inp actP  is 
positive semi-definite at frequency 0f , the frequency 0f  is 
efficiently recognized by employing the method given in [14], 
and then the CM set at 0f  is obtained by using a “limiting 
method” given in (42). 

3) When the sub-domain basis functions, such as the SWG 
[22], are employed, the symmetry of Z  given in 
Mat-VIE-CMT cannot be guaranteed, because of the existence 
of the matrix elements which correspond to the couplings 
between the interior basis functions and the boundary basis 
functions (which include the surface charges on the boundary 
of scatterer). 

In fact, the theoretical foundation to prove the symmetry of 
Z  is so-called reciprocity theorem [23], but the theorem 
requires that the source distribution has enough continuity. 
However, the scattering currents are not continuous on the 
boundary of material scatterers [11]-[13]. 

In Mat-EMP-CMT, it is obvious that the decomposition (28) 
and then the decomposition (34.1) is valid for any kind of basis 
function set. 

4) The integral equation used in Mat-VIE-CMT contains two 
parts, a volume EFIE and a volume MFIE. The physical nature 
of the MFIE part is as follows [3] 
 

( ) ( ) ( )1 2 , 1 2 , 1 2 ,vm inc vm tot vm sca

V V V
M H M H M H= −  (89.1) 

instead of the following 
 

( ) ( ) ( )1 2 , 1 2 , 1 2 ,inc vm tot vm sca vm

V V V
H M H M H M= −  (89.2) 

 
However, only the ( )1 2 ,inc vm

V
H M  is the power done by incH  

on vmM  as explained in Sec. VIII-C, and the ( )1 2 ,vm inc

V
M H  is 

the complex conjugate of this power, and then 
(4.1) when the scatterer is only magnetic, the reactive power 

given in Mat-VIE-CMT is the opposite of the correct one; 
(4.2) when the scatterer is both dielectric and magnetic, the 

reactive power given in Mat-VIE-CMT is not the correct one. 
In fact, it was clearly claimed in [3] that: ‘the imaginary part 

of ,f Tf∗  is not simply related to reactive power.’ Here, 
,f Tf∗  is the inner product defined in [3]. 

5) For the lossy cases, the complex matrix V MX jZ−  in [3] is 
not Hermitian, so the CMs derived from the characteristic 
equation ( )V M VX jZ a R aλ− ⋅ = ⋅  in [3] cannot guarantee the 
power orthogonality (60) given in [3]. 

In the Mat-EMP-CMT, the CM set which has ability to 
orthogonalize the radiation patterns of lossy material bodies is 
constructed by introducing the power , ,inp part radP  in (19). 

6) When at least two of polarization, magnetization, and 
conduction phenomena exist, the different scattering currents 
should be expanded in terms of related basis functions. For 
example, when the vpJ  is expanded as 
 

 ( ) ( ) ( )
1

,
vp vpvp J JJ r a b r r Vξ ξξ

Ξ

=
= ∈  (90.1) 

 
this implies that the other kinds of scattering currents must have 
the following expansion formulations. 
 

 ( ) ( ) ( )
1

,
vp vovo J JJ r a b r r Vξ ξξ

Ξ

=
= ∈  (90.2) 

 ( ) ( ) ( )
1

,
vp vmvm J MM r a b r r Vξ ξξ

Ξ

=
= ∈  (90.3) 

 
here 
 

 ( ) ( ) ( )1 ; ,
vo vpJ vo J

vpb r J J b r r Vξ ξ
− = ∈

 
 (91.1) 

 ( ) ( ) ( )1 ; ,
vm vpM vm J

vpb r M J b r r Vξ ξ
− = ∈

 
 (91.2) 

 
In (91), the 1

vpJ −  is the inverse of the operator ( );vp totJ F r  in (7). 
In fact, doing like this is very boring. This is the one of causes 
why this paper expands the basic variable totF  instead of any 
kind of scattering currents. 

In addition, if different scattering currents are expanded in 
terms of some unrelated basis function sets like Mat-VIE-CMT 
did for the bodies both dielectric and magnetic [3], neither 
positive definite { }Re Z  nor positive semi-definite { }Re Z  can be 
guaranteed, because the unrelated expansion formulations for 
different scattering currents will lead to non-physical fields. 

E. The discussions for modal quantities and normalizations. 

Obviously, the various modal quantities discussed in the Sec. 
VII and the modal component 

2inp inpc Pξ ξ
  in the expansion 

formulation (70) satisfy the relation (92). 
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In fact, the ,MAOPmod act
ξ  in (76.1) is equivalent to the 

traditional MS as illustrated in the following (93). 
 

 

{ } { }( )
{ }

{ } { }
{ }

,

1
Traditional MS

1

1

1 Im Re

Re

Re Im

Re

MAOP

inp inp

inp

inp inp

inp

inp

mod act

j

j P P

P

P j P

P

P

ξ
ξ

ξ ξ

ξ

ξ ξ

ξ

ξ

ξ

λ+

=
+

=
+

=

=



 



 





 (93) 

 
In (93), the second equality is due to the relation (49), and the 
third equality originates from that { }Re 0inpPξ > . 

It is easily found out from the (92) and (93) that the physical 
essence of the traditional MS is to quantitively depict the modal 
ability to allocate the total modal output power to its active part, 
instead of a quantitive depiction for the modal weight in whole 
modal expansion formulation. 

The essential reason leading to the above problem of the 
traditional MS is carefully analyzed as below. 

When the CM M  is normalized by using the normalization 
way given in [2], i.e., the modal active power is normalized to 
be unit, the normalized CM is denoted as the symbol M


 to be 

distinguished from the normalized version M  used in this 
paper. The M


 version for (70) is the following (70'). 

 

 

2

1

2

1

1 1
,

2

inp inp inp

inp
vop inc

inp inp
V

P c P

P
J E

P P

ξ ξξ

ξ
ξξ

ξ ξ

Ξ

=

Ξ

=

=

= ⋅ ⋅








 

 (70') 

 
here [2] 
 
 { }Re 1inpPξ =


 (94.1) 

 { }Im inpPξ ξλ=


 (94.2) 

 
and 
 

 
1

Traditional MS
inpP

ξ
ξ

=   (95) 

 
Obviously, the magnitude of the term inp inpP Pξ ξ

 
 in (70') is 

unit just like the term inp inpP Pξ ξ
   in (70). 

However the vopJξ


 in term ( )

2

1 2 ,vop inc

V
J Eξ


 is not well 

normalized. For example, the following case may be existed. 

( ) ( )1 2 , 1 2 ,vop vop vop vop

V V
J J J Jξ ξ ζ ζ

   
 , though { } { }Re 1 Reinp inpP Pξ ξ= =

 
. In 

fact, this problem will not exist for the normalization way used 
in this paper, because the modal total field totFξ  is normalized as 
(66), and the modal current vopJξ  is linearly related to the totFξ  
as follows 
 

( )
( ) ( )

, if  basic variable is

, if  basic variable is

tot tot tot
cvop

tot tot tot
c c

j E F E
J

H F H

ξ
ξ

ξ

ω ε

ε ε

 Δ == 
Δ ∇ × =

 (96) 

 
In particular, when the material scatterer is homogeneous and 
the basic variable totF  is selected as the totE , it is obvious that 
 

( )
( )
( )

( )
( ) ( )

2

1 2 ,
1 2 ,

1 2 ,

1 2 ,
1 2 ,

1 2 ,

vop vop

vop vop V
tot tot

V
V

c

vop vop

vop vopV
tot tot

V
V

J J
J J

E E

j

J J
J J

E E

ξ ξ
ξ ξ

ξ ξ

ζ ζ
ζ ζ

ζ ζ

ω ε

=

= Δ

= =

 

 

 (97) 

 
for any , 1,2, ,ξ ζ = Ξ . 

In fact, the most essential reason to lead to the above problem 
in the traditional MS is that the normalization way used in [2] 
only focuses on the modal active power, but ignores the modal 
currents and the modal fields. However, the normalization way 
used in (66) focuses on the modal basic variable totFξ , and it is 
obvious that 
 

 ( )
( )
( )
1 2 ,

1 2 , 1
1 2 ,

tot tot

tot tot V
tot tot

V
V

F F
F F

F F

ξ ξ
ξ ξ

ξ ξ

= =   (98) 

 
for any 1,2, ,ξ = Ξ . The (98) implies that the basic variable 

totFξ  is well normalized, so the modal currents, the modal fields, 
and the modal powers are automatically well normalized as 
(67)-(68). 
 
 

IX. CONCLUSIONS 

An electromagnetic-power-based CMT for material bodies, 
Mat-EMP-CMT, is established in this paper, and then some 
different kinds of power-based CM sets are constructed. 
Various CM sets have their own merits to reveal material 
bodies’ inherent power characteristics from different aspects. 

Among various CM sets, the InpCM set has the same 
physical essence as the CM set derived from Mat-VIE-CMT, 
but the former is more advantageous than the latter in some 
aspects, for example, the former has a more physically 
reasonable power characteristic than the latter. The CM set 
constructed by orthogonalizing the power , ,inp part radP  satisfies 

 

 

, ,

,

SMS SMS

2 , , , , , ,

, ,

GMS

SMS SMS MACE GMS MAOP MACE GMS MAOP

MACE GMS MAOP

sys tot sys tot

sys act

inp inp sys act sys react mod sys tot mod act mod sys tot mod react

mod sys tot mod act

c P j j

ξ ξ

ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ

= + = ⋅ ⋅ + ⋅ ⋅

= ⋅ ⋅

 


 
,

, ,

GMS

MACE GMS MAOP
sys react

mod sys tot mod reactj

ξ

ξ ξ ξ+ ⋅ ⋅
  

 (92)
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the radiation pattern orthogonality for both lossless and lossy 
material scatterers, and then it is valuable for designing the 
material antennas with loss. 

Under the Mat-EMP-CMT framework, the complex 
characteristic currents and the non-radiative CMs can be 
constructed, and they are valuable for engineering applications. 

Based on the new normalization way introduced in this paper, 
the traditional characteristic quantity, MS, is generalized, and 
some new modal quantities are introduced to depict the modal 
characteristics from different aspects. In addition, a variational 
formulation for the scattering problem of material scatterer is 
established based on the conservation law of energy. 
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