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A co-field to Newton’s gravitational field is derived and its properties defined. It is applied
to explain ”Spacecraft-Earth Flyby Anomalies” discovered during deep space missions launched
between 1990 and 2006. The flyby anomaly has been considered a major unresolved problem in
astrophysics.
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I. INTRODUCTION

While the general theory of relativity is the accepted theory of gravitation, it is not inconsistent that in the limiting
case of low velocities, a co-field to Newton’s gravitational equation could be described in a classical form. Such is
certainly the case for special relativity and is assumed in this analysis. Historically, there have been numerous efforts
to develop a set of gravity related equations analogous to those of Maxwell for electromagnetism. The first of these
efforts was by Heaviside in 1893 [1]. A number of more recent papers, categorized as “Gravitoelectromagnetism”,
extended the analogy to Maxwell’s equations to include inputs from general relativity [2]. Basically the quest is for a
co-field to Newton’s gravitational equation analogous to the magnetic co-field to Coulomb’s equation. A difficulty in
analysis by analogy is that there has been no recognized body of experimental data to support the results and identify
important differences. The effects of the gravitational co-field are either too small to have been observed or have not
been recognized. Maxwell and Heaviside interpreted the experimental data involving electricity and magnetism in
terms of divergences and curls. A theorem by Helmholtz states that a field can be broken down into an irrotational
component and a solenoidal/rotational component. The electromagnetic field exists and the Helmholtz theorem is
therefore applicable. It is assumed in this paper that a gravitational, solenoidal co-field also exists. The approach here
is to add a purely rotational term to Newton’s equation and to apply curls to the resulting equation and its result.
This approach is the inverse to that employed by Maxwell. The divergence is non-zero only for the Newtonian term
and does not contribute to the co-field development. The resulting analysis is parallel to rather than an analogy to
electromagnetism. A similar analysis was done for electromagnetism, where the results are known, to show that the
application of the curl and divergence to the modified field equation yields the correct experimental results such as
Faraday’s induction equation and Ampere’s law.

Dimensional analysis or considerations are part of the analysis. For example, the magnetic field which has dimensions
M/QT is defined in terms of its dimensional physical quantities multiplied by a constant. The permittivity and
permeability in electromagnetism are regarded as constants even though they have physically identifiable dimensions.
They are constants only because the electron is the primary interacting object. In gravitation, they are a function of
the source mass and its radius.

During the course of the analysis, when the equation for the gravitational co-field was derived, there appeared no
criteria to establish its validity until the author discovered the Anderson et al [3] paper on the anomalous velocity
changes observed during spacecraft flybys of the earth. It appeared that the proposed theory explained the flyby
anomalies. Despite numerous attempts to solve the problem [4], the anomaly had remained the puzzle described by
Turyshev and Toth [5].

II. GRAVITATIONAL AND ELECTRICAL FORCE FIELDS

The fundamental basis of this study is that the general total force acting on a moving mass is given by Newton’s
inverse square force plus a rotational force maθ = βmrθ̈θ̂. While the term mrθ̈ is dimensionally correct, a constant
multiplier, β, may be required for agreement with experimental results. The proposed total force is thus,

Fg = mag = G
mM

r2
r̂ + βmrθ̈θ̂ (1)
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The generalized field F /m used to develop the field equations of gravitation, with the traditional gravitational
constant, G, replaced by G = 1/(4πεog), is

Γ =
Fg
m

=
M

4πεogr2
r̂ + βrθ̈θ̂ (2)

This re-definition of G in equation (2) is done to put the gravitational equation into the same format as for electrical
force. The field equation for Electricity and Magnetism, similar to equation (2), is

E =
Q

4πεor2
r̂ + β′

m

q
rθ̈θ̂ (3)

The divergence and curl of equation (3) and of its resulting co-field B results in Maxwell’s equations. The objective
of this paper is to define a co-field to Newton’s gravitational equation. In equation (2), the curl of the first term is
zero, the second term is non-zero. Conversely, the divergence of the first term is non-zero and the second term is zero.
Thus only the curl of equation (2) is applicable to the objective of this paper.

III. PERMITIVITIES AND PERMEABILITIES

In the case of electromagnetism, these quantities are constants, but only because a single primary particle is involved,
the electron. For gravitation, one deals with a multiplicity of primary masses and corresponding radii. The objective
of this section is to determine the gravitational permeability, µog. We know that the gravitational permittivity, εog
is a constant which must also be confirmed by the analysis. Dimensional analysis, seldom used in physics but key
in fluid mechanics, is used here to define the gravitational permeability and confirm the value of its permittivity.
Bolster et al state that ”dimensional analysis comes in many forms” [6]. One approach begins by identifying the basic
variables in a problem such as force, velocity, density, pressure, and their primary dimensions such as length, mass,
time, and charge and converting them to their constituent dimensions of L, M, T, Q. Then from experimental data,
and semi-empirical analysis, specific functional values are assigned or fitted to the primary dimensions until agreement
with experimental results is achieved.

For example, starting with Coulombs law for the interaction of two electrons and defining the force between then
dimensionally

F =
q2

4πεoR2
= k′M

L

T 2
(4)

where k′ is a constant. Let k′L = r0, the Thompson electron radius. Re-arranging and setting R/T = v = c and
solving for εo

εo =

[
q2

4πmro

] [
T 2

R2

]
=

1

µoc2
(5)

µo =

[
4πmro
q2

]
(6)

Inserting the values for the electron in the parenthesis above yields µo = 4πx10−7.
Similarly for the gravitational case,

F =
mM

4πεogR2
= km

L

T 2
(dimensionally) (7)

Rearranging and assigning L = Ro, where Ro is the effective radius of M , and R/T = v

εog =

[
M

k4πRo

] [
T 2

R2

]
=

1

µogv2
(8)

µog =

[
k4πRo
M

]
(9)

In this formulation µog is dependent on the major mass in the system and its effective radius. The constant k is
retained for subsequent evaluation.

In equation (7), for Newton’s equation, L = R = Ro, and εog is proportional to M
[
T 2

Ro
3

]
, a constant recognized as

Kepler’s third law. This results in a constant εog as required.
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IV. CALCULATION OF CURL Γ

A. Differential Form

The curl of Γ for equation (2) applies only to the second term since the curl of the first term is zero. Because the
curl is normal to radial or circular motions, the cylindrical coordinate system is used. ∇×Γ in cylindrical coordinates
is

∇× Γ =

(
1

r

∂az
∂θ
− ∂aθ

∂z

)
r̂ +

(
∂ar
∂z
− ∂az

∂r

)
θ̂ +

1

r

(
∂raθ
∂r
− ∂ar

∂θ

)
ẑ (10)

If ∇ × Γ is constrained to be normal to the r-θ plane, then only the z component of equation (10) needs to be

considered. In equation (10), assuming ar is not a function of θ and that aθ = βrθ̈,

∇× Γ =

(
1

r

∂raθ
∂r

)
ẑ =

β

r

∂
(
r2θ̈
)

∂r
ẑ (11)

Carrying through the differentiation of equation (11) yields:

∇× Γ =
β

r

[
2rθ̈ + r2

∂θ̈

∂r

]
ẑ (12)

If θ̈ is not a function of r, the second term of equation (12) vanishes. Then

∇× Γ = 2βθ̈ẑ =
∂

∂t

(
2βθ̇

)
ẑ =

∂Ω

∂t
(13)

Thus, ∇× Γ produces an induced time dependent angular velocity field 2βθ̇ẑ = 2βωẑ.

Ω = 2βω (14)

The corresponding result for E&M obtained starting with the second term of equation (3) is

∇×E = 2β′
m

q
θ̈ẑ = β′

∂

∂t

(
2
m

q
θ̇

)
ẑ = −∂B

∂t
(15)

Experimental data requires that β′ = − 1
2 .

B =
m

q
θ̇ =

m

q
ω (16)

B. Integral Form

Given the integral form of the curl of Γ:
∮

aθ · dl = d
dt (ΩA), and incorporating equation (14) yields:

∮
aθ · dl =

d

dt
(2βωA) (17)

Assuming an acceleration in a circular orbit, of radius r and area A, normal to the Ω field of 2ω:

aθ (2πr) =
d

dt

(
2βωπr2

)
(18)

aθ = β (2ωṙ + ω̇r) (19)
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Since ω̇ and ω are both normal to r and ṙ, equation (19) stated in vector form, is

aθ = β [2ω × ṙ + ω̇ × r] (20)

The first term in equation (20) is interpreted as the acceleration of an object moving with velocity v = ṙ in an angular
velocity field Ω = 2βω. The second term is the acceleration due to a time dependent angular velocity. Both terms
in Equation (20) also appear in classical solid mechanics for the acceleration of an object moving in a rotating frame.
The first term in the equation is recognized as the Coriolis acceleration. Both terms of equation (20) are designated as
“fictitious”accelerations in classical mechanics. They are, in this formulation, terms of mechanical/inertial induction.
Since equation (20) yields results found in classical mechanics, but multiplied by a constant β. It is concluded that
β = 1. Thus,

aθ = 2ω × ṙ + ω̇ × r (21)

Noting that the first term of equation (21) is the equivalent of the v ×B acceleration in Electricity & Magnetism:

2ω × ṙ = Ω× v (22)

Ω = 2ω (23)

V. CALCULATION OF ∇×Ω

In cylindrical coordinates Ω = Ωr r̂ + Ωθθ̂ + Ωz ẑ.

∇×Ω =

(
1

r

∂Ωz
∂θ
− ∂Ωθ

∂z

)
r̂ +

(
∂Ωr
∂z
− ∂Ωz

∂r

)
θ̂ +

1

r

(
∂rΩθ
∂r
− ∂Ωr

∂θ

)
ẑ (24)

Constraining the curl to the z direction yields:

∇×Ω =

[(
Ωθ
r

)
+

(
∂Ωθ
∂t

)
∂t

∂r

]
ẑ (25)

The corresponding equation in E&M for the curl of B is

∇×B =

[(
Bθ
r

)
+

(
∂Bθ
∂t

)
∂t

∂r

]
ẑ (26)

Dimensionally, the terms in parenthesis in equation (26) are those of µoJ ;
Bθ
r is designated as µoJ .

Starting with E =
m
q rθ̈ and B =

m
q θ̇,

∂E
∂t =

m
q ṙθ̈+

m
q r

...
θ . Neglecting the second term, letting ṙ = c and dividing

both sides by c2 yields
1
c2
∂E
∂t = 1

c
∂B
∂t . Thus The second term of equation (26) emerges directly as the displacement

current and

∇×B =

(
µoJ +

1

c2
∂E

∂t

)
ẑ (27)

The gravitational equivalent is

∇×Ω =

(
µogJm +

1

v2
∂Γ

∂t

)
ẑ (28)
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VI. INERTIAL DIPOLES

The first term of equation (28) is the basis for an inertial version of the Biot-Savart equation for magnetism :

dΩ =
µogidl sin θ

4πR2
(29)

Assuming a mass in a circular orbit, whose current is M/T , and integrating to obtain the value of Ω along the axis
yields

Ω =
µogiR

2

2(R2 + Z2)3/2
(30)

where R is the distance from a point on the circular orbit to a point on the axis and Z is the distance from the center
of the orbit to the point on the axis. If Z = 0, the value of Ω at the orbit center must be 2ω. Equation (30) with
i = M/T = Mω/2π reduces to

Ω =
µogM

4πRo
ω (31)

where Ro is the orbit radius. Since µog =
[
k4πRo
M

]
, equation (31) requires that k = 2 to obtain Ω = 2ω at the the

center of the orbit. Thus

µog =

[
8πRo
M

]
(32)

Equation (30), for Z >> R yields the value of Ω along the axis of the dipole created by the mass in a circular orbit

Ω =
µogµg
2πZ3

(33)

The radial value of Ω from the axis for the dipole in the equatorial plane is 1/2 the axial value:

Ω =
µogµg
4πR3

(34)

The inertial moment µg is defined as µg = iA, where for a circular orbit, i is the mass current M/T . The period of
the orbit is T and A is the area of the orbit. More generally, it can be shown that

µg =
Iω

2
(35)

where I is the moment of inertia about the axis and ω = 2π/T = angular velocity. The moment of inertia is
I = γMRObs

2, where γ is a constant based on geometry and density distribution. For a uniform sphere it is 2/5,
for the earth, the NASA fact sheet lists it as 0.3309 [7]. M is the object mass, R0bs is its observed radius. Setting
γR0bs

2 = Ro
2 so that I = MRo

2 allows one to treat any rotating object as a point mass in an orbit of effective radius
Ro. As an example, consider a rotating sphere and its Ω along its axis from equation (33). For a rotating mass having
a value of Ωo = 2ω, the Ω field, at a distance Z from the origin along the axis is

Ω =

[
8π
Ro
M

]
MRo

2ω

4πZ3
=

[
Ro
Z

]3
2ω (36)

Ω =

[
Ro
Z

]3
Ωo (37)

Similarly the value of a dipole, Ω radially from the origin in the equatorial plane is

Ω =
1

2

[
Ro
R

]3
Ωo (38)
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VII. EARTH SPACECRAFT FLYBY ANOMALIES

A small, anomalous change in orbital velocity occurred in a number of spacecraft flybys of the earth. The
“flyby”experimental data are the first which provide a direct confirmation of the gravitation co-field. The data
from all the flybys were analyzed by Anderson et al [3]. Figure (1) is a schematic of the NEAR flyby which produced
the largest measured deflection.

Fig. 1 Schematic of the NEAR spacecraft earth flyby

Anderson, et al. found that the velocity change for the spacecraft flybys of the earth can be described as:

∆v = 2ωEv∞
RE
c

(cos δi − cos δo) (39)

where ∆v is the anomalous velocity change, ωE is the angular velocity of the earth, RE is the mean radius of the
earth and c is the speed of light. The asymptotic velocity vectors and their declinations are designated as V∞ and
δ, respectively. The sub scripts i and o refer to the incoming and outgoing asymptotic velocities and angles. For
both the incoming and outgoing asymptotic velocities, v∞ cos δ is normal to the earth’s angular velocity axis. Thus
equation (39) can be written as

∆v = (2ωE × v∞i − 2ωE × v∞o)
RE
c

(40)

The terms in parenthesis can be interpreted as the difference between the accelerations of the spacecraft between the
incoming and outgoing asymptotes. Given that the terms in the parenthesis represent accelerations, the RE

c term

represents an interaction time ∆t = 2.124x10−2 sec. This implies a short effective interaction region to produce the
observed velocity change. This change presumably occurs in the vicinity of closest approach. From the Anderson et
al description of the data, it is possible to present an interpretation of the data from the perspective of the theory
presented in this paper. The starting point is:

∆v = (Ω× v∞i −Ω× v∞o)
RHΘ

VH
(41)

The term RHΘ/VH is the interaction time during which the observed velocity change occurred. RH is the sum of
the earth radius and distance of closest approach, Θ is the subtended arc in radians, and VH is the velocity at closest
approach. Considering the rotating earth as an angular velocity dipole, where along the axis,

Ω =

[
Ro
RH

]3
2ωE (42)
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Incorporating equation (42) into equation (41) yields

∆v = aθ∆t =

[
Ro
RH

]3
(2ωE × v∞i − 2ωE × v∞o)

[
RHΘ

VH

]
(43)

Re-writing

∆v = 2ωEv∞(cos δi − cos δo)

{[
Ro
RH

]3
RHΘ

VH

}
(44)

All of the terms of equation (44) are defined except Θ. Parameters for the NEAR flyby include ∆v = 1.346x10−2m/s,
RH = 6.910x106m, V∞ = 6.851x103m/s, VH = 12.39x103m/s, δi = −20.76deg, δo = −71.96deg. The angular velocity
of the earth, ωE = 7.292x10−5rad/s, Ro = 2.108x106m, as defined by the narrative following equation (35).

The terms in equation (44) are identical to those of equation (39) except for the final parenthesis. Anderson et al
found that for all the flybys the approximate effective time of deflection was RE/c = 2.12x10−2sec. The terms in the
parenthesis of equation (44) define the RE/c of equation (39). Thus:

RE
c

=

[
Ro
RH

]3
RHΘ

VH
= 2.12x10−2sec (45)

Equation (45) provides the value Θ of for all the flybys; For the NEAR Flyby, equation (45) yields Θ = 7.27x10−4

radians and RHΘ = 5020 meters.
The theory developed in this paper thus provides an explanation of the flyby anomaly, which is consistent with the

semi empirical equation developed by Anderson et al. Detailed trajectory data including velocity and earth dipole
co-field, ΩE , data along the trajectory are required for an exact calculation of ∆v. The integral

∫
ΩE × vdt for the

interval v∞i to v∞o along the trajectory should yield the measured value of ∆v.

VIII. POSSIBLE EXPERIMENTS AND APPLICATIONS OF THE THEORY

The above analysis which explains the flyby anomaly is applicable to any problem in celestial mechanics where an
object is moving in the co-field of another. However, the effects are small and in many cases fields involve multiple
objects and uncertainties in effective radii and even in the effective angular velocities such as for gaseous rotating
objects. One experiment whose data might exhibit effects in the analysis described here is the Gravity Probe B
experiment [8]. While this experiment was designed to test several general relativity predictions, the earth orbital
environment and satellite velocities involved are all non relativistic.

From the results of the flyby anomaly analysis, it would appear that careful laboratory experiments could addi-
tionally confirm the theory. Angular velocities of at least 100,000 rpm are currently state of the art technology. At
least two kinds of experiments appear feasible. Both would involve a rotating object such as a sphere or cylinder
that would rotate at 100,000 rpm or higher to produce an inertial dipole field. High rotational velocities are required
because the [Ro/R]3 attenuation of the Ω field limits the extent of the field and therefore the resulting deflection of
objects moving in the dipole field. In the first experiment case, a projectile would be launched across the poles and
in the equatorial plane at several distances from the origin. Deflections would be recorded as a function of axial and
radial coordinates and projectile velocities. A number of projectile shots would be required for each location and
velocity due to random shot dispersion to get an average. In the second type of experiment, the projectile would be
replaced by a mono-energetic neutral atom beam. Both sets of experiments would need to be enclosed within high
vacuum systems.

IX. SUMMARY AND CONCLUSIONS

The proposed theory defines a classical co-field to Newton’s gravitational equation. This is not a contradiction to
the general relativity theory of gravity, but should be regarded as a lower limit classical description. It successfully
explains the anomalous velocity changes observed in spacecraft flybys of the earth as due to interaction of the spacecraft
velocity with the earth’s gravitational co-field. It further provides a basis for analyses of astronomical objects moving

in gravitational co-fields and for possible laboratory experiments. Given a gravitational field of the form Γ =
M

4πεogr2
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r̂ + rθ̈θ̂ and applying a curl operator yields a gravitational induction term dΩ/dt which defines the gravitational
co-field Ω = 2ω. The curl of Ω yields a gravitational form of Amperes Law and associated inertial dipole fields
for orbital and for rotating objects. The acceleration of a mass moving with velocity V in an Ω field is given by

a = ΩxV. An electromagnetic field analysis, starting with E =
Q

4πεor2
r̂ + β′mq rθ̈θ̂ parallel to that done for the

gravitational case, successfully reproduced Maxwell’s equations. The electrical co-field is B =
m
q ω; the Inertial is

Ω = 2ω. Both are angular velocity fields having a constant multiplier. Thus the relationships involving B and Ω
are similar with differences occurring as a result of the different constant multipliers and the fact that µog is not a
constant. It is not a constant because in the gravitational case every problem has different driving masses and radii. In
electromagnetism, all interactions are driven by the electron. The fundamental equations governing the gravitational
co-field are summarized as:

Γ =
M

4πεogr2
r̂ + rθ̈θ̂ Gravitational Field equation including Co-Field

∇× Γ =
∂Ω

∂t
Inertial Induction

Ω = 2ω Value of Gravitational Co-Field

aθ = 2ω × v + ω̇ × r Acceleration of a mass in an Ω field

∇×Ω =

(
µogJm +

1

v2
∂Γ

∂t

)
ẑ Co-Field interaction with mass currents and fields

(Inertial form of Ampere’s law)

µog =

[
8πRo

M

]
Inertial Permeability

Ω =
µogµg
2πZ3

=

[
Ro

Z

]3
Ωo Axial value of dipole along axis from origin

Ω =
µogµg
4πR3

=
1

2

[
Ro

R

]3
Ωo. Radial value of the dipole in the orbital plane.
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