Integer Composition Signatures

(Draft)

Santi J. Vives Macallini
@jotasapiens
http://jotasapiens.com

Abstract: We introduce integer composition signatures (ic): a hash-based family of one-time
signatures. The family shows improvements over previous schemes like Winternitz: less
costly/shorter signatures, verification in constant time, and tweakable parameters allowing
optimization for either signing/verifying.

Keywords: signatures, hash, postquantum, cryptography.

1. Introduction

In this paper we will introduce ic, a family of one-time, hash-based, digital signatures.

The family shows improvements over previous hash-based schemes like wots (Winternitz one-
time signatures). Some of the advantages are:

A more efficient size/cost trade-off, allowing for signatures of the same size with less
computational cost (fewer hash functions evaluations) or a similar cost with a signature of
smaller size.

Verification in constant time and signing in nearly constant time.
Resistance against forgery without the need for checksums.
Tweakable parameters, that make the signature tunable to a large range of uses:

o Unlike wots, whose w parameter only leads to signatures of various (but limited)
signature lengths, the size of the signatures can by adjusted to an arbitrary number of
output hashes L (length).

o In addition to compression, the ic family allows for expansion to reduce the cost of signing
and verifying.

o The signature can be tuned for fast verification, fast signing, and values in between.

http://twitter.com/jotasapiens
http://jotasapiens.com/

1.1 Concepts
Winternitz One-Time Signatures (wots)

In a wots scheme, the signer picks n numbers uniformly at random to create the private key v (at
the bottom of the graph).

Po P P2 Pz Ps Ps5s Pin

—_ = —

f
f
t
f

—_ == —
— — | — —

ma

Then, a (keyed) one-way function is iterated over each of the numbers at the bottom to compute
the public key p at the top. The one-wayness of the function ensures the values at a lower level
cannot be computed from higher ones.

In order to sign, the hash of a message is encoded as a list f;; w-bit numbers. The parameter w

determines the compression level of the signature. The one-way function is iterated over the first
numbers in the private key v, a number ot times determined by f,.

Once the signature is published, all values at higher levels (those between f,, and the public key)
become known. To avoid an attacker from forging a signature, a checksum of the signature is
needed. The checksum is computed in a similar way as the main part of the signature.

To verify, the iterations remaining to reach the higher level are applied to the main part and the
checksum. The result is compared against the public key p.

Integer Composition Signatures (ic)

An ic signature represents each message as an integer composition of an integer N. That is, one
of the many ways an integer N can be written as a sum of parts, taking into account the ordering
of the parts. For example, the tuples (2, 2,2, 2), (4,2, 1, 1), (1, 2, 2, 3) and (3, 2, 1, 2) are distinct
compositions of the integer 8.

Similarly to wots, the parts in the composition are used to determine the number of iterations of
the one-way functions. But a difference arises: since the composition requires that their parts add
up to N (as seen in the graph), a higher level in any of the parts results in a lower level in at least
another.

Po P P2 P3 Ps Ps5s Pig

Nt

! ot
! Pt
! o
! bt

t
f
f
f

f
f
!
f

Vo Vi Vo V3oV, Vs v,

An attacker can no longer forge a signature from the values of a known message without
breaking the one-way function. This eliminates the need for a checksum, leading to a smaller,
faster signature.

The ic family of signatures uses compositions that are length-restricted (with a fixed number of
parts), and alphabet-restricted, with parts taking values from an alphabet=0, 7, 2, ..., zeta.

In the different sections of this paper, we will:

* describe a method to transform the hash of a message into a restricted composition, which is
equivalent to picking a composition uniformly at random from the set of all possible
compositions (2.3, 2.4, 2.5)..

* describe the signature scheme based on restricted integer compositions. (2.2, 2.3, 2.4).

* describe methods for finding optimal constants, that minimize the number of hash
evaluations for diferrent uses (2.1).

* compare various types of ic signatures, showing that the family can be tweaked to
outperform wots verification or signing (4.).

2. Description of the algorithm

2.1 Parameters and constants

The ic signature takes 3 main parameters: bits, length and type.

An ic signature with parameters (bits, length) is a one-time signature of size=length, capable of
signing at least 20t distinct messages.

Let the auxiliary function R (N, L) be the amount of all possible compositions of the integer N with
length L. (2.5)

Let the auxiliary function R (N, L, z) be the amount of all possible compositions of the integer N
with length L and a restricted alphabet=0, 1, 2, ..., z. (2.5)

Type 'V' constants

(Optimal for fast verification)
Given the parameters bits and length:

1. Using the auxiliary function R, find the smallest integer N that satisfies:
R (N, length) >= 2bits

2. Find the smallest integer zeta that satisfies:
R (N, length, zeta) >= 2bits

3. Return the constants (N, zeta) as the result.

Type 'a’ constants

(Approximately optimal for verifying, while being faster at keys creation and signing)
Given the parameters bits and length, and a tolerance value:

1. Find the smallest integer N' that satisfies:
R (N, length) >= 2bits
2. Compute N:
N =N'*(1+tolerance / 100)
3. Find the smallest integer zeta that satisfies:

R (N, length, zeta) >= bits
4. Return the constants (N, zeta) as the result.

Type 'zmin' constants

(Minimal keys creation time, at the expense of greater signing time)
Given the parameters bits and length:

1. Define the function n (z) as the smallest integer n satisfying:
R (n, length, z) >= 2bits

2. Find the smallest integer zeta that satisfies:
R (n(zeta), length, zeta) >= 2bits

3. Define N:
N = n(zeta)

4., Return the constants (N, zeta) as the result.

Type 's' constants

(Optimized for fast keys creation and signing)

Given the parameters bits and length:

. Define the cost function W (nz, nn, nr):

Wieys =Nz * length

Wsign = nz * length - nn

Weomp = R (nn, length) / nr

W (nz, nn, nr) = Wyeys + Wsign + Weost

. Define the function n (2) as the smallest integer n satisfying:

R (n, length, z) >= 2bits

. Define the function r (z) as:

r(z) =R (n(z), length, z)

. Find the smallest integer zeta that satisfies:

W (zeta, n(zeta), r(zeta)) < W (zeta+1, n(zeta+1), r(zeta+1))

. Define N:

N = n(zeta)

. Return the constants (N, zeta) as the result.

Type '1/s' constants

(Optimal for fast keys creation and signing. Inverse mode)

Given the parameters bits and length:

1.

Define the cost function W (nz, nn, nr):
Wieys = nZ * length

Wi/sign = nn

Weomp = R (nn, length) / nr

W (nz, nn, nr) = Wkeys + W1ssign * Weomp

. Define the function n (2) as the smallest integer n satisfying:

R (n, length, z) >= Dbits

. Define the function r (z) as:

r(z) =R (n(z), length, z)

. Find the smallest integer zeta that satisfies:

W (zeta, n(zeta), r(zeta)) < W (zeta+1, n(zeta+1), r(zeta+1))

. Define N:

N = n(zeta)

. Return the constants (N, zeta) as the result.

M and mbits constants

Given the parameter length and the constant N:

1. Set the variable r:

r=1

2.Forn=1,2, ., length:

e r*=N+n

3. Return M =r as the result.

Given M:

1. Define the output size mbits of two one-way functions hashA, hashB:
mbits = len (binary (M - 1))

2.2 Keys creation

Given a one-way function hashUp with output size bits:

1. Generate the private key by picking numbers (with size=bits) uniformly at random:
priv = privg, privy, privy,..., Priviength - 1
privy = urandom (bits)

2. For each privp, apply zeta iterations of the one-way function hashUp:

pub = pubg, pubj, puby,..., pubjength - 1
pubp, = hashUp (privy, iterations=zeta)

3. Publish the list pub as the public key.
2.3 Signing

1. Compute the hash value h of the message:
h = hashA (message)

2.Givenacountern=0, 1, ...

e Compute:
m = hashB (n || h)
* Compute the #m restricted composition of N, using the auxiliary function compR:
¢ = compR (N, length, i=m)
* Stop the counter when a pair (m, ¢) is found that satisfies:
m<M
max (c) <= zeta

3. Compute the list ups, as needed for signing:
ups = upso, upss, ..., UPSiength-1
Where each upsy, is given by:

* |f mode == normal (type='"v', 'a’,'s' or 'zmin"):
upsp = zeta - ¢y
* Else, mode == inverse (type='1/s"):

upsn =Cp

4. Apply upsy, iterations of the one-way function hashUp to each privy, in priv:

f=rfofi, f/ength -1

fn = hashUp (privy, iterations=ups)

5. Publish (f, n) as the signature.

2.4 Verification

Given a message, a signature (f, n) and a public key pub:

1. Compute the hash value h of the message:
h = hashA (message)

2. Compute the hash value m of the message
m = hashB (n || h)

3. Check that m < M.

4. Compute the #m restricted composition of N, using the auxiliary function compR:
¢ = compR (N, length, i=m)

5. Check that no partin cis bigger than zeta:
max (c) <= zeta

6. Compute the list ups (for verification):
ups = upso, upsi, ..., UPSiength-1
Where each upsy, is given by:

* |f mode == normal (type="/, 'a’, or's’):
upsp = Cp

* |f mode == inverse (type='1/s"):
upsp = zeta - ¢

7. Apply upsy, iterations of the one-way function hashUp to each f,:

t=1to, t1, ... Uength - 1
tn = hashUp (f,, iterations=upsy,)

8. Check that t == pub.

9. The signature is valid if all test
(steps 3, 5 and 8) evaluate to true, invalid otherwise.

2.5 Auxiliary functions
compR

(Transforms and integer m in the range [0, M) into a length-restricted composition of N)

Given the constants N, length and an integer m:

1. Represent the integer m as a mix-radix number with bases b:
b = N+length-1, N+length-2, ..., N-1
d = mixradix (m, bases=b)
2. Create the tuple p:
p = (po)
po = N + length (d)
3.Foreachd,ind:
e Definer:
r=d+1
e Givenacountern=0,1, ..
o Ifr-p, <=0, stop the counter. Let /i be the last value of the counter.

o Else, subtract p, fromr:

r-=pn

* Append (ps - r) to p:

p=p |l (ps-1
® Assign (r- 1) atindex fi of p:
pa=r-1

4. Return the tuple p as the result.

mixradix

Given a number and a list of bases b:

1. Set the variable n:
n =number
2. Create the empty tuple r:
r=()
3. For each byyst, .., b1, by:
e Compute
e =nmod b,
n = floor (n/ by)
* Append e to the tupler:
r=rile

4. Return r as the result.
R(N, L)
R (N, L) is the number of integer comps of N, with length L and alphabet 0, 7, 2, ..., N

Given the parameter L and N:

1. Set the variable r:
r=1

2.Forn=1,2 .,L:
e r*=N+n

3. Compute:
r /= factorial (L - 1)
4. Return r as the result.

R(N, L, 2)

R (N, L, z) is the number of integer comps of N, with length L and alphabet 0, 7, 2, ..., z

For a given z, the integer R (N, L, z) can be computed iteratively. To do so, we will define the special
cases L=1, N=0, and a method to compute R for each L = 2, 3, ... from its previous value L-7:

* R(N,1,2)=1
for any value of N, z.

* R(O,L 2=1
for any value of L, z.

e R(N,L,z)=sumR(n, L-1,2),forn=5s0...5s1
where:
pO=max (0, N-z *(L- 1))
p1=min (z, N)
sO=N-pl
s1=N-p0

* For agiven L, z pair, N can take values in the range [0, z*L+1).

3. Table of N, zeta constants

The table shows computed N, zeta values for parameter bits=256, with various lengths and types.

length

20

24

28

32

40

48

56

64

(bits=256)

type 'v'

N=90189
zeta=41972

N=21126
zeta=7730

N=7796
zeta=2316

N=3786
zeta=962

N=1437
zeta=318

N=778
zeta=112

N=510
zeta=67

N=375
zeta=45

4. Evaluation

type 'a’

N=91541
zeta=18786

N=21442
zeta=3707

N=7912
zeta=1183

N=3842
zeta=507

N=1458
zeta=157

N=789
zeta=72

N=517
zeta=42

N=380
zeta=28

type's’

N=120841
zeta=12105

N=28017
zeta=2369

N=9903
zeta=755

N=4613
zeta=326

N=1665
zeta=103

N=868
zeta=49

N=557
zeta=29

N=409
zeta=19

type '1/s’

N=109440
zeta=12348

N=25613
zeta=2419

N=9316
zeta=773

N=4432
zeta=334

N=1621
zeta=106

N=857
zeta=50

N=549
zeta=30

N=401
zeta=20

To evaluate the scheme we will take into account the cost of signing and verifying, given by the
number of hash evaluations. The cost of verification is given by W,,r, and the cost of signing

corresponds to the added costs W¢omp and Wsigp (the cost of finding a valid composition, and the

cost of computing the signature from the private key):

Wyer =N

Wsign = zeta * length - N
Wecomp = R (N, length) / R (N, length, zeta)

The following table compares the cost of keys creation for 256-bit ic signatures with length=28
and various types. Costs of wots+ are shown for comparison.

length (bits) signing verifying

ic (type='Vv") 7424 bits 57.1 msp 7.8 msy

ic (type="a") 7424 bits 25.2 msy, 7.9 msp

ic (type='s') 7424 bits 10.5 msy, 9.9 msy,

wots+ 7424 bits 14.3 msp 14.3 msp,
(bits=256)

For reference, a msy, equals 1 ms, assuming a computer performing 1 million hash iterations per

second. The length in bits includes the size of a salt (or seed), used to randomize the hash
functions.

5. Source code

A python implementation is provided to further illustrate the ic family of signatures. The code can
be found at:

[1] http://jotasapiens.com/

http://jotasapiens.com/

