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Abstract

In the present discussion we study the grading of Quaternion algebra(H) and Lorentz algebra of O(3,1) group.
Then we have made an attempt to make the whole Poincaré algebra of SO(3,1) in terms of Quaternions. After this
the supersymmetrization of this group has been done in a consistent manner. Finally the dimensional reduction from
D =4 to D = 2 has been studied.

1 Introduction

In order to unify the symmetry of Poincaré group with some internal group several attempts have been made, Coleman
and Mandula in[1] 1967 set a restriction to the incorporation of Poincaré symmetry to the internal symmetry group upto
which this unification is possible. But actually this doesn’t offer any unification of Poincaré group with internal symmetry
group. This theorem which is called no-go theorem of Coleman and Mandula based on the extension of symmetry of
S-matrix under the assumption of physical conditions of locality, causility, positivity of energy and for finite numbers of
particles. Wess and Zumino [2] realized that the unification of Poincaré group to internal symmetry group is possible by
introducing anticommutation relations of supersymmetric charges into the theory, which relate the fermions to bosons.
However it’s proof has been estabilished by Haag, Lapuszanski and Sohnius [3] . Thus Supersymmetric field theories
arises as the maximum symmetry of S-matrix that is possible. This is the largest extension of the Lie algebra of Poincaré
group and internal symmetry group. Which has not only commutators but also anticommutators of supercharges which
generate the supersymmetric transformation. Since this theory can be a possible answer for the most of the heirarchy
problems [4] of the standard model, unification of gravitation and dark matter and dark energy several attempts have
been made experimently in search of this symmetry. But still not confirmed yet. However it is always been a interesting
theory searched by the theoretical physicists in attempt to unify the fundamental forces of nature.

In the work of L. Brink and J. H. Schwarz it is argued that [5] the supersymmetry is only possible for the cases
of dimensions D = 2,4,6,10 called critical dimensions. They show that the action is supersymmetric for D = 4,6, 10

dimensions without the inclusion of further fields. It has shown previously that [6] nonabelian Yang-Mills fields with



minimal coupling to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4,6 or 10. Before
this the realization between the Lorentz group in various dimensions and the division algebras [7| has been established
by Kugo-Townsend [8] which further extended and generalized by Jerzy Lukierski et. all. [9, 10] and many more authors
[11, 12, 13] previously. It is summarized that the algebras R,C,H,O can be useful for the description of supersymmetric
field theories in higher dimensions [6]-[13]. Also the compactification of higher dimensional supersymmetry to lower
dimensional supersymmetry theory has been studied by L. Brink et.all.[5] in a consistent manner.

Keeping in view the connection between the normed division algebras (R, C, H, @) and supersymmetric theories
in the present paper we made an explicit relation between the Poincaré group of SO(3,1) and normed division algebra
of Quaternions, then supersymmetrization of this Poincaré group has been done in a consistent manner. Finally the

dimensional reduction of the supersymmetry in D = 4 to D = 2 dimensional space has been studied.

2 Quaternion Algebra

2.1 Quaternion algebra in matrix representation:

Quaternion algebra (H) [7] is described over the field of real numbers by

q =qoeo + q1€1 + q2€2 + q3€3

where ¢;(Vj = 1,2, 3) are the real numbers and the basis elements e; satisfying the following relations

€iej = — (5ij+ €ijk €k (i,j,kj = 1t03) (1)

€;jr is Levi-Civita tensor, which is a totally antisymmetric tensor and having value +1 for the permutation (ijk) =
(123), (231), (312). In 4 x 4 real matrix representation the Quaternion elements [10] are

0 1.0 o0 ]
100 0 _ I 0
€1 = =102 ®
0 00 -1 0 —I
0 01 0 |
0 0 1 0]
0 0 0 1 0 I
€y = =I®
1 0 0 0 -7 0
0 -1 0 0|
0 0 o0 1]
0 0 -1 0 01
€3 = =109 ® 2
s 0 1 0 0 2(10) @
10 0 0|

These basis elements satify the following commutator bracket relations

[ei,ej] =2 Eijk (7% (Vi,j, k=1 t03) (3)



by substituting 7; = § for these basis elements we have the Lie algebra of Quaternion as

Tiy Tj| = €ijk Tk Vi, i,k =1to3 (4)
J J

and the €, is the structure element of the Lie algebra of quaternion. Since there is a correspondence between the

Pauli matrices and quaternion basis elements [7] as e; — —io; (Vi = 1,2, 3).

2.2 Grading of Quaternion algebra

The Zs-graded algebra [14] L is the direct sum of two algebras Lo & Lihaving the following properties
(i) Lo is an even lie algebra with degree g(Lg) = 0 and Lo X Lo — Lo
(ii) Liis odd Lie algebra with degree g(L1) =1 and Lo x Ly — Lo , L1 x L1 — Lo
(iii) Representation of Lo in dim L1 x dim L,

taking the 4x4 dimensional representation of algebra L of quaternion we have

Lo ={m € Lo, [ri,75] =€ij1 T, (Vi,j,k =1t03)}
Ly ={Qq € L1, (Va = 1t04) [Qa, 7] = (73) ,, @b € L1,
and {Qa, Qv} = (Ki)apTi € Lo (Vi =1t03,Va,b=1to4)}. (5)

The x;’s must be symmetric. By the generalized Jacobbi identity we have

[Ti, {Qa> Qb }] +{Qb; [Ti, Qa]} +{Qu, [Qp, Ti]} =0 (6)

which reduces to the equation

Tikj + (i)' = Eiji Fk (7)

by which the matrices x;’s evaluated as

00 1 0
1ot 1o 0o 0o -1
K1 ==0 =—
1798 I 0 211 0 0 0
0 -1 0 0
0100
S 1o 11100 0
Kg=— =0 =—-
? PR 210 0 0 1
0010
1 0 0 0
1 I 0 1o -1 0 o
s 278 0—1] 2| o0 ~1 0 ®)
0 0 1



These k}s matrices are symmetric matrices which are not closed in a sence that
(ki Kj] =— €ijk T (9)

however together with matrices of (2) they span the gradded lie algebra space of quaternion. Similarly the other generalized

Jacobbi’s identity is satisfied also

{Qaa {Q67 Qc}’} + {Qb, {QC7 Qa}} + {Qca {Qaa Qb}} =0 (10)

So the superalgebra of Quaternion(H) has:-

Zo-graded algebra L is the direct sum of two algebras Ly & L,

The matrix representations of (2) and (8) together form a real representation of the group O(3,1). So by gradding of
quaternion algebra may be extend the rotaion group of to the Lorentz group of O(3,1) group.

3 Lorentz Group and Poincare Algebra in D = 4 space:

The Lie algebra of quaternion

[Ti,Tj} = Cijk Tk (11)

satisfy the Lie algebra of O(3) group where the 7;’s are the generators of the rotation group O(3). Similarly the x;’s follow

the commutators relations

[Kis k] =— €ijk Tk

[/fi,Tj] = Cijk Kk- (12)

As may be seen by the commutator algebra relations of (11) k; satisfy the relations of the commutator relations of the
generators of Lorentz boost. They form the real matrices representation of Lorentz boost generators. Further we may

construct the Hermitian matrices of Angular momentum [14]

and anti-Hermitian matrices for the generators of Lorentz boost

K; =ik;, K| = —K; (14)

7

The generators of Lorentz group follow the following commutation relations



(s, J5] =i €ijn Ik
(K, K] = — i €51 I,
(K, J;] =i €451 Ki (15)

The above generators of Lorentz group make O(3, 1) noncompact group of four dimensional rotation. These relations can
be combined into an explicit form by writing
€ijr Mim =J;
Moy, = - K, (16)

The M,,,’s are the generators of lorenz group O(3, 1) satisfy the relation

[(Myw, Myo| = = i(ppMuo + Mo Mup — Mo Mup — 1upMyo) (17)

Poincare Algebra contain the elements of Generators of four dimensional rotation and the generators of translation

(linear momentum operator) which satisfy these commutation rules:

[P,u.a PI/] :O
(M Pyl =i(up Py — 1up o)
[M,u,l/a Mpa] = - i(np,pMVo’ + nVUMMp - nMUMVp - nupMuo) (18)

3.1 Quaternionic realization of Poincare group in SO(3,1) group:

The 2 x 2 dimensional quaternionic I'-matrices in Weyl representation can be written as

0 0 0 0 1
I, = S P ) 1= “ ) ro=i , (19)
—e€1 0 —€9 0 —€3 0 1 0

which satisfy the relation of clifford algebra as

FMFV + FuFu :277qu2 (20)

where 7, = {—1,1,1,1}. Then we can form second rank tensor quantity X,, as

[D,T) =TT, (21)

1
EHV:Z



Which satisfy the folowing commutation relations

[Z;,LLM Zpa} = - i(nupzz/o’ - nﬂazup - nupz,uo + nuazup)
[Zuya Fo’] :i(nuaru - nuoru)

The 4 x 4 Dirac y-matrices in Weyl represantation may be written in quaternionic realization as

0 T,
= Yu=0to3).
Tu <Fu 0) (Vu 03)

the generators of Lorentz group are defined as

— 1

DI 0
Sy = 1 ['7;/71/ - '71/'7/1] = ( " ) (V,u, v=_0to3)

0 X

The generators of translation or linear momentum may be written as

py{(ﬁ 8)} (Vu,v =0to 3)

Which together with ¥, satisfy the following commutation rules

[p;upu] =0
[EpvsPpl = = i(NppPv — MwpPp)
[EHV7 Epa] = - i(nupEVU - nuUEVp - nupEpU + nVUEup)

3.2 Quaternionic realization of Casimir Invariants of the Poincare Group in SO(3,1):

(22)

(23)

(24)

The algebra of SO(3,1) is non-compact group. However we know that SO(4) group is it’s compact group which is
homomorphic to the SU(2) ® SU(2) group [14] so there are two Casimir operator for the Poincare Algebra for SO(3,1).

Since the matrix realization of generators of translation P,is such that

ID;L =DPu

The matrix realization of P¥ and M*"¥is such that

;
PY —p),
M* — %,

Where f is transpose of quaternionic conjugate of matrices. So we define the scalar product P* P, by

1
PPy = Tr(pup}, + pjpw)

(28)



where the Trace of quaternion matrices is define as the real trace of the matices. The P*P,is the first casimir operator of
Poincare algebra of SO(4). The second one is constructed by the Pauli-Ljubanski polarization vector|[14]. In this case we

construct this vector by writing

1
W, :§e,,,,paP”Mf’” (29)

Then second casimir operator is defined as W, W# which commute with every element of the Poincare algebra of SO(3,1).

4 Supersymmetrization of Poincare Group:

The supersymmetrization [14] of the Poincaré algebra in SO(3,1) may be done in the following manner
L= Lo D Llwith
(i)Lo : (Poincaré algebra in SO(3,1))

(i) L1 :(Qq,Va = 1to4) Quare 4 dimensional two component spinor as

Qu = ( gz ) , (Yo = 1t02) (30)

Qs 2 dimensional spinor. For the zo grading of the Poincaré algebra in SO(3,1) we define :

Defining the composition rule % in L such as

x: L xL—L
AxB=AB — (=1)9F9LIAB (Vi j=0,1) (31)

where AeL, BeLsand A x BeL,ysmoa2-9(Ly), g(Ls) are the order of grading for the sub -algebras L, and L, defined as

0, (for bosons)
9(Lr) = 1, (for fermions) (vr = 0,1) w

So, g(Lop) = 0 and g(Ly) = 1. Taking these considerations we get the commutation relations as

1. : Ly x Ly — Lo whose commutation rules are obtained in equation .

2. : Ly x L1 — L1 which enables the following commutation rules

[P,uv Qa} :0
My, Qo) = — () abQs, {Va,b=1to4, andVu,v = 0to3} (33)

3. :L1 x Ly — Lg gives rise the following anti commutation relations for spinors

{Qaa Qb}ELo
{Qaa Qb}ELo'



As such, the Ly contain the generators of Poincare algebra of D = 6 space. So, there must be

{Qa7 Qb} :aHPp, + ﬂMVMpV (34)

where o/ = —2(Y#C)qp and B = (E*C)qp , C is charge conjugation matrix and =, are the representations of Lorentz
algebra in D = 10 space. However, by the generalized Jacobi identity the second term S*” in equation vanishes and hence,

we get the anticommutator rule

{Qm Qb} = 2(’7MC)abP/J~ (35)

Multiplying both side of the above equation by C' and imposing Majorana condition {(CQ)a = an}, we get

{Qav Qb} ZQ(VH)abPM (36)

In quaternionic 4z4 dim. representation:-
Ly : Lie algebra of Poincare group {P,, M, } in quaternionic representation
Ly: Lie algebra of {Q, [a = 1to4]}
satisfy the following equations

[(Myuw, Mps] = —i(MupZve — MuoZvp — NupZpo + MwoZpp)
(M, Pp] = —i(upPy — mupPy)
[P, Pl =0
[Pu;Qal = 0
My, Qal = —(Eu)ab@s
{Qa; v} = 20v")ap Py
{Qu, v} = —2(v"C)apPy
{Qa. Qs = 2(C ") et Py (37)

Where C = iv27v9

4.1 Quaternionic realization of Casimir invariants of Super-Poincare group of SO(3,1):

Supersymmetric extension of Super-Poincare group involve the generators of Poincare group and anticommutating super

charges also, which generate the symmetry between the particle and their super patners. By the (36) we have

{QaaQb} :2(’7M)abpu =2 ( ]-E)# 1—(‘)“ )

Qa el _ 0 (Fﬂ)a'
{<Qa>’<QB QB)}Q(MW 0 B)f“ )



which yield
{@a.Qy) =210, P
{Qa, Qﬁ} =0, {Qav QB} =0 (39)
The matrix representation can take the form in Graded 8 x 8 matrix representation [10] for this group represented by

M, : 0 P, 1 0 0 : Qa
My, = ... ¢ oo |LPi= 0 [ Qa= (40)

0 : 0 0 : 0 0 : 0

So one of the Casimir operator for this super group is still PP, since Str(pﬂpjt + pru) = tr(p,tpL + pru) is an identity

element of the supergroup

1 .
PtP, = Ztr(pﬂpl o) =] ... (41)
0 : I

Whereas W, W*# = I, is not a casimir operator since it remain not an identity element for the group

I 0
wwe=| ... . (42)
0 0
In this case the second Casimir operator of group is
Cc? =C,,C" (43)

where C),,, is

Cu =B,P, — B, P,

1_
B, =W, + iQrqu (44)

5 Dimensional reduction from 4 to 2 dimensions:

The supersymmetric gauge invariant Lagrangian for gauge supermultiplets [5, 15] in on-shell case is

1
L=~ (Fi,F* —Re(ix'T"D,x") (45)



Where

a a a abc Ab pc
Fy, =0,A) —0,A], +gf" AL A,
DMXa :8MXG + gfabcAZXC

Supersymmetric action

1
S = / d*x <4F[}UF‘““’ —Re (i)‘(“F“D#Xa)>

Which is invariant under the supersymmetric transformation

SA% = €T, X", X" = Sy, P

Where x* and € are quaternionic spinors and I'*are 4-dimensional Dirac matrices in D = 4 space represented as

1
= % )= % 2} = " ®)r=i" '),
—e; O —ey 0 —e3 0 1 0

In D = 4 space the spinor is a 4-component spinor containing the structure of two 2-component Dirac spinors

(2

satisfying the Majorana condition|[5]

x =0x"

where C is charge conjugation matrix C = iI'sT'g. By this condition we have

“(2)

where qZ = es¢p = —ioe¢.To reduce D = 4 into lower dimensional space D = 2 can be done by

80,33 — 0, 8,1 :(81 — 8t = 80/,82 — 81/)

then the first term of the lagrangian reduces to

1 a aur 1 a a ,V/ 1 a 4 a 1 a ’ a aoc C
—ZFWF mo— 1FM,V,F wv §(DM,A3)(D” A3y — Q(DM,AO)(D“ A%y — —(gfabe A0 A3<)?

1
2
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(46)

(51)

(52)



the second term reduces to

Xa]_’WD#Xa :d_)a’YWD#/Qba + (Z)agfabcAngc + d_)“egqﬁcAggfabc (55)

Where the second term transform as a scalar and third term as a pseoscalar since e3 = —io3 = 75

The supersymmetric invariant action can be written as

8 :/ Bl F P = (D, A3) (D 4% —

a ! a 1 aoc C
Qo Hv (Du’Ao)(D“ A° ) — i(gf be A% 43 )2

1
2
+Rei(¢°9" D¢ +i6"gf*** Afe* + ¢"esg Alg)] (56)

Which is invariant under the supersymmetric transformation

SA =0 e — ey )
SAP =Ey50" — ¢y5e
A —i(eg® — @)
0" =(Zp U 4 igf* e AGAG + 4 Dy A% g f*¢ — ' Dy A% g f*)e (57)

6 Conclusion:

The previous attempts of relating the division algebra to extradimensional space has been studied. In this present
discussion first we made an attept for grading of Quaternion algebra in matrix representation. Then a natural transition
from the grading of quaternion algebra to O(3,1) Lorentz group has been developed. The Poincare algebra can be shown
to be expressed in a consist manner in terms of quaternion algebra. Then supersymmetrization of this group has been
done. Since it has been shown by earlier authers that the Poincare symmetry can be related to the internal symmetry
only through the maximum extension of S matrix via supersymmetry which relates fermion states to bosonic states.
Supersymmetry has potential to answer the hierarchy problem, dark matter, unification of fundamental interactions. Here
we tried to make a clear relation between the normed division algebra of Quaternions and supersymmetry of SO(3,1)
group. At last we tried to compact this supersymmetry theory into D = 2 space. Where the potentials of compactified

dimensions become a scalar and pseudoscalar parts of potential.
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