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Abstract. This paper is an attempt to generalize the well-known expression 

of the gravitational potential for more than three dimensions. We used the 

Sneddon-Thornhill approach of the Newton’s theorem and then the results are 
passed through the filter of Poisson’s equation. The comparison with other 

theories implies some restrictions, but the overall results are valid until the 

experiment will disprove them.  
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1. Introduction 
 

In reference (Sneddon & Thornhill, 1948) the authors were trying to 

accredit a new demonstration of Newton’s theorem and have found some new 

results concerning the classical gravitational potential. So, the relation: 
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has the solutions: 
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where Φ are the potentials per unit mass and A=B=C=G, the gravity constant. 

The reasoning used to create the relation (1) is simple. The gravitational 

potential created by a point mass, in which all the mass of a spherical material 
shell is concentrated, is equivalent to the gravitational potential of the spherical 

shell itself, in a whatever exterior reference point P. 

In (Barnes & Keorghi, 1984) one can find another solution for the 
gravitational potential: 
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result developed in (Răuţ, 2010) for the expansion of the universe case. Finely, 
in (Răuţ, 2011) these results are generalized for all the measurable cases. 

According to (Sneddon & Thornhill, 1948) the well-known Newtonian 

potential 1  can be obtained from the condition that the solution (2) should be 

capable to create surfaces of equal potential in spherical shell interior, so that: 
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In the following we will state that condition (4) is no longer taken into 

consideration. Since the shell seams to not exist because it has the same 
potential as the point which is its center, their potentials are equivalent. Thereby 

the gravitational potential generated by the central point mass it creates 

equipotent surfaces around its’ point exterior whatever the considerate distance 

is. The interior of the shell is the exterior of the point mass. Thus the 
gravitational potential somewhere into the shell is the same as the gravitational 

potential of the point mass correspondent, because they are calculated in the 

same point, indifferently where it is. In addition, at different scales it is an 

unforgettable mistake to use 1 , so to presume condition (4) to be not 

considered seams to be quite reasonable. On the other hand we don’t know what 

the expression of gravitational potential in shell interior is. We can only intuit it. 

If we imagine that we can minimize the interior of the shell in vicinity of the 
central point, then solution (2) is valid. 

As a consequence, in the following considerations we will show a new 

approach of this problem. Additionally, we will generalize the solution (2) for 
more than three dimensions. 

 

                                             2. The N-Dimensional Case 
 

In equation (1) we can neglect the second left term. If the condition (4) is 

no more valid then the constant γ, corresponding to the additional potential in 

equation (1), term which can be added to the gravitational potential without the 
resulted law force to be altered, has now neither signification. In consequence the 

relation (1) becomes: 
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This relation allows the solutions (2) for the gravitational potential per 

unit mass, as in previous case. The difference now is that with (5) we are not 

able to generate solutions which to admit other constants than those from (2). In 

previous case we were forced to make these constants null. 
With relation (5) we can now think about the multidimensional case. 

Suppose: 
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is the relation between the potential of the central point mass and the potential 

of its corresponding n-dimensional shell. In this relation σ is the 2-dimensional 
mass density of the n-dimensional shell, thus (6) has no meaning for less than 

three dimensions. The correspondent equivalent masses ( )m   will be defined 

depending on the gravitational potential. In equation (6) we made the hypothesis 

that the gravitational potential of the n-dimensional shell is due to one 

dimension only, defined as a thickness.  
A (n-1)-dimensional surface, with every dimension defined by the 

radius r is, (Weeks, 1985): 
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Equation (6) has the solutions: 
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with the equivalent mass: 
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and the corresponding Yukawa-like potentials: 
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with the equivalent mass: 
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The general solution: 
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with the equivalent mass: 
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is the same as the one obtained in (Randall & Sundrum, 1999). Nevertheless, 

(Ehrenfest, 1918) was stated that in a n-dimensional space 
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accordance with this statement we must modify the equation (6) as follows: 
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This equation has the solutions: 
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with the same equivalent masses as (7) and (8). The solution (13) is a novel one 
but in some respect it is equivalent with (8). The universal gravity constant is 

influenced by scale and this dependence can be expressed by the distance at 

which the interaction takes place. The lower is the distance the larger is the 

gravity constant, 
3n

nG G r


 . The same comments are valid for (7) and (12). 

The overall solution in this case must have the equivalent mass (10). 
Regarding the solutions (8), they must verify the Poisson’s equation: 

                                          4 ( )n vacG      

Although they are generated by the matter we must do this compromise 

to be in agreement with Poisson’s equation, as solution (7) is. The solutions (13) 
must verify the Poisson’s equation: 
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as solution (12) does (Ehrenfest, 1918).  

 
3. Conclusions 

 

In this paper the results given in (Răuţ, 2011) are generalized for the 
multidimensional case. The results are not found in (El-Nabulsi, 2012) but they 

are in agreement with (Randall & Sundrum, 1999). Nevertheless, it can occur 

the situation when (12) and (13) are valid. In any case, the attempt to unify the 
two solutions can lead to some logical conclusions. On one hand, if the 

universal gravity constant depends on scale, this dependence can be expressed 

by the distance at which the interaction takes place. On the other hand, the size 

of interacting masses can influence the strength of interaction and therefore the 
physical value of the universal gravity constant. Future experimental results will 

determine which of (7)-(8) and (12)-(13) solutions are valid. 
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