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Abstract. Following some older ideas, an equivalent for the cosmological 
constant in classical mechanics it was found. In our development, this 
Newtonian equivalent for the cosmological constant appears in a natural way 
into Friedmann first equation. 
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1. Introduction 

 
Empirically introduced by Einstein in 1917 [1], the cosmological 

constant, after the discovery of expanding universe [2], was repelled by its 

author. However, in Friedmann model [3],  appears from general relativity 
equations of field deduced by Lemaitre in 1927, [4, 5]. They had used general 
relativity, for an unbounded homogeneous universe, to show the validity of the 
Friedmann equations. 

The Newtonian derivation of the Friedmann equations by Milne [6] and 
McCrea [7] came after Friedmann and Lamaitre demonstrations. Milne and 
McCrea, using a Newtonian formalism, had obtained the same results like 
relativistic cosmology theory. Nevertheless this Newtonian cosmology can not 
explain all the observational data since it does not contain a theory of light 
propagation. Even so, this approach is quite legitimate, since the structural 
similarity of general relativity and Newtonian celestial mechanics were pointed 
out by Cartan [8, 9]. Following his ideas, [10] showed a correct derivation of 
the Friedmann equations from Newtonian theory. 

We presently develop a follow-up of Milne ideas by introducing in a 

natural manner the cosmological constant  . 
 



                                                                                                
 

 
2. Theoretical treatment 

 
If two compact spheres attract each other with a force proportional with 

2

1

r
, as demonstrated by Newton’s theorem, then we can replace the two 

spheres with points that have the mass of the associated spheres. The same idea 
is valid if we have instead the two spheres, two spherical shells. More than this, 
we can expand the spherical shell thickness in vicinity of its center, so that 
finally the difference between a compact sphere and a spherical shell is the 
vicinity of central point, undetermined. In this case one can study, the general 
form of the gravitational potential and the limits of this approximation. 

 Consider a homogenous spherical shell with its thickness, 

density and its center O, situated at distance r from an arbitrary exterior point 

P. If note )(r  the gravitational potential generated by an unit mass placed at 

distance r, one observes that the gravitational potential in P is equivalent to one 

generated by the point mass )(m  placed in O. Consequently the gravitational 

potential of the point mass at distance r must be equal to the gravitational 
potential of the spherical shell at the same distance: 
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where the term containing )(  is a constant which can be added to the 

potential without altering its associated force law. 
The general solution of equation (1) is given by: 
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where the potentials i  are the independent solutions of eq. (1): 
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Eq. (1) must satisfy the relation: 
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where the equivalent masses are: 
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(3)                                        
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is a constant which can be added to the potential without alter its associated 
force law. 

The solutions i  were deduced independently in [11], ( 32  ) 

and in [12], ( 41  ). Because the first solution describes an interaction 

at small scale we concentrate to the second one. This solution is actually the 
algebraic potential: 
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with the same equivalent mass: 
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321 ,, BBB are arbitrary real constants and: 
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is a constant with the form (2). 

The well known Newtonian potential
1 r  is deduced by 

considering another property of inverse square radius force. For the potential (4) 
the interior of the spherical shell must be an equipotent region. In general 

)(r will have this property if: 
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Equation (5) has the unique solution: 
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where the constant C can be zero without it’s associated force law being altered. 
A potential with a form close to (6) has been used by Milne to derive 

the first Friedmann equation from the energy integral: 
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where the term containing the cosmological constant has been introduced by 
postulating a so-called expansion force.  Nevertheless if we observe that 

equation (4) includes the term 
2

2rB  which contains the Newtonian equivalent 

of a cosmological constant, one may reconsider Milne’s derivation. 
First thing we must do is to presume valid the potential (4). In other 

words to consider as valid the hypothesis that the interior region of the supposed 
homogenous spherical shell will not be an equipotent region. Consequently we 
have: 
(8) 



                                                                                                
 

   
 

 

which is the potential (4) with 03 B , an operation which simplifies (4) 

without the associated force law being altered. 
Then we have: 

                                      GMB 1 , 

where G is the Newton’s gravitational constant and M is the entire mass within 
the sphere, a constant with respect to time, 

                                  
3

3

4
rM  


 

 and   is the mass density. We chose BGMB 1 , to be in accordance with 

Milne’s derivation. Thus we expand the thickness of the spherical shell in 
vicinity of its center, in order to have a good approximation between our 

spherical shell and a compact sphere. The constant 2B  is presumed positive, it 

correspond to a repulsive force. 
The force applied on a particle of mass m in motion within the potential 

(8) is: 
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This equation will lead us, by integration, to an equation of form (7). 
Multiplying it with the first derivative of 2r one will observe very easily that the 
left term is the derivative with respect to time of square first derivative. The last 
right term is obvious the derivative with respect to time of the repulsive 
potential. To calculate the first right term we need the expression: 
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which result by the fact that the entire mass within the sphere, M, is a constant 
with respect to time and this leads to:  
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After we integrate (8’), introducing the scale parameter and replacing 
the integration constant with another constant proportional with the ratio r/a it 
results, after an elementary calculus, the energy integral: 
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with k a dimensionless constant given by: 
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 There is a physical equivalence between the two equations, observed 
directly from similarities between expressions (7) and (9). The only significant 
difference between them is the fact that one is deduced naturally from equation 
(8), the other is deduced from a postulated so-called expansion force.  

In conclusion if we neglect equation (7) and set: 
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we have been found a Newtonian equivalent for the cosmological constant. 
 
 

3. Discussions 
 
 

The equivalence relation (10) doesn’t solve the problem of the 
cosmological constant physical nature. We can’t conceive a Newtonian 
cosmology pure and simple based on this theory. To establish a concordance 
with observational data we must exceed the Newtonian theory and make the 

assumptions which lead us to ’s physical nature. Thus the constant 2B  will 

result from other theories, as until now. Some early generalizations of general 
relativity theory found that the cosmological constant arose naturally from the 
mathematics, [13, 14]. But these ideas don’t have a natural support and were 

soon abandoned.  Inevitable we must consider 2B  as an intrinsic energy density 

of the vacuum in which case the form (10) it will be conserved. A positive 
cosmological constant is generated by a negative vacuum pressure. The sign 
plus of the constant B and the cosmological constant legitimate this idea. A 
positive repelling force corresponds only to a negative pressure. Hence the 
cosmological constant problem is occurring, which is known like the most 
difficult situation of fine-tuning in physics. There is no coherent procedure to 
derive the cosmological constant from particle physics, and also the modern 
field theories are pessimistic regarding this matter. 

A solution to the cosmological constant physical nature matter is 
provided by the gravitational potential (8) itself. The existence of a gravitational 
potential in the form (8) seems to legitimate the idea that the cosmological 
constant is the natural consequence of it. So, the physical nature of 
cosmological constant must be searched in the matter density not in vacuum 
energy density as it was by now. To solve the cosmological constant physical 
nature problem it is equivalent to consider Λ as an expression of the 
observational lack of matter and energy in the entire universe, the dark matter 
and the dark energy. 
 
 
 
 



                                                                                                
 

4. Conclusions 
 

In this paper we obtain a Newtonian equivalent for the cosmological 
constant by using the first Friedmann’s equation. The Newtonian equivalent 
was introduced in a natural way, as it resulted from (8), by calculus not by 

postulation. It is discussed then the material nature of  , which seems to be the 
lack of matter and energy in the entire universe.                    
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