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We deduce from Newtonian mechanics the cosmological constant, following some older ideas. An 

equivalent to this constant in classical mechanics it was found. Therefore in our development, the 

cosmological constant appears in a natural way into Friedmann cosmological model. But the theoretical 
context in which it appears tells almost nothing about the nature of expanding universe force. 

 

Introduction 
 

The Newtonian derivation of the Friedmann equations by Milne [1] and McCrea 

[2] came after Friedmann [3] and Lamaitre [4,5] demonstration. They, [3, 4, 5] had used 

general relativity, for an unbounded homogeneous universe, to show the validity of the 

Friedmann equations. Milne and McCrea, using a Newtonian formalism, had obtained the 

same results like relativistic cosmology theory. Nevertheless this Newtonian cosmology 

can not explain all the observational data since it does not contain a theory of light 

propagation. Even so, this approach is quite legitimate, since the structural similarity of 

general relativity and Newtonian celestial mechanics were pointed out by Cartan [6,7]. 

Following his ideas [8] showed a correct derivation of the Friedmann equations from 

Newtonian theory. 

The development of Milne [1] leads to some problems:1) the force on any particle 

of an infinite homogeneous distribution is undetermined [9]; 2) the finiteness of force 

requires either the mass distribution to be finite, and thus homogeneous, or 

inhomogeneous and infinite, for cosmological distances; 3) the recession speed of the 

mass distribution particles is close to the speed of light, which presume a relativistic 

treatment of the expanding sphere. These problems were partially solved in [10], 

considering that the expanding sphere describe a small region compared with the size of 

the observable universe. Since all regions of an uniform and isotropic universe expend 

the same way, the study of a small region may give information about the whole 

universe, in which case the Newtonian treatment is correct [11]. 

However, this solution solved some issues and leads to other problems regarding 

the center of a local isotropic and homogeneous expansion that is a point impossible to 

establish. Carter [12] and McCrea [13] indicated that each point can be chosen as center 

with local isotropy and homogeneity surrounding, but there is a zone at the boundary of 

the expanding sphere where these properties are broken. But the same problem occurs in 

general relativity too. 

By taking into account all above considerations we can conclude that the 

Newtonian cosmological models derived from Friedmann’s equations are perfectly valid 

for an homogeneous universe and for small scale of length. 

We presently develop a follow-up of Milne ideas by introducing in a natural 

manner the cosmological constant . Empirically introduced by Einstein in 1917 [14], 

the cosmological constant, after the discovery of expanding universe [15], was repelled 

by its author. However, in Friedmann model,  appears from general relativity equations 

of field deduced by Lemaitre in 1927, [3,4,16]. Milne, [1,2], demonstrated his Newtonian 

derivation, in which the cosmological constant appears  by postulation. 



The main aim of this paper is to show that  can be introduced directly, without 

postulation. 

 

Theoretical treatment 

 

If two spheres attract each other with a force proportional with 
2

1

r
, as 

demonstrated by Newton’s theorem, then we can replace the two spheres with points that 

have the mass of the associated spheres. In this case one can study [17], the general form 

of the gravitational potential and the limits of this approximation. 

 Considering a spherical surface with radius , density , situated at distance r 

from a center O and an arbitrary exterior point P, one observes that the gravitational 

potential in P is equivalent to one generated by the mass )(m  placed in O. We can write 

this as a function of the gravitational potential due to a central mass at distance r, )(r  :  
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where )(  is a constant which can be added to the potential without altering its 

associated law force. 

Equation (1) has two classes of solutions. The first one, [18], is function of the 

Yukawa type potentials: 
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with the equivalent mass: 
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and 321 ,, AAA  being arbitrary real constants,   is a constant R or C and   

  3)( 2A  

When 03 A and 0 we obtain the mass of sphere in the Newtonian particular 

case: 
2

)( 4 m  

The second class of solutions of equation (1) contains the algebraic potentials 

[19]: 
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with the same equivalent mass: 
2

)( 4 m , 

321 ,, BBB  arbitrary real constants and 
2

23)( 22   BB   



The Newtonian potential 1 r  is obtained by taking into account another 

property of inverse square radius force. For the potential   the interior of a spherical 

surface must be an equipotent region. In general )(r will have this property if: 
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Equation (5) has the unique solution: 
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where the constant C can be zero without it’s associated force law being altered. 

The potential (6) has been used by Milne to derive the first Friedmann equation 

from the conservation of the total energy: 
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where the cosmological constant has been introduced by postulation.  

Nevertheless if we observe that equation (4) includes the term 2

2rB  which is the 

Newtonian equivalent of a cosmological constant, one may reconsider Milne’s derivation. 

First thing we must do is to presume valid the potential (4). In other words to 

consider as valid the hypothesis that the interior region of the supposed spherical surface 

will not to be an equipotent region. Consequently we have: 
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which is the potential (4) with 03 B , an operation which simplifies (4) without 

the associated force law being altered. 

Then we have: 

GMB 1 , where G is the Newton’s gravitational constant and M is the entire 

mass within the sphere, 

3
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, and   is the mass density. The constant 2B  is presumed positive, 

it correspond to a repulsive force. 

The gravitational energy of a particle of mass m on motion within the potential (8) 

is: 
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The kinetic energy of the same particle can be written as: 
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The conservation of the total energy leads, after an elementary calculus, to 

equation: 
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with k a dimensionless constant given by: 



2

2

mc

E
k   

The total force on a particle with mass m is: 
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If 0F , leading to 0/ dtdr and .const , we obtain: 




3

4
2 2

G
B                                                                                                        (11) 

 Using the same procedure like in the case of equation (7) we find the same result 

for the quantity
3

2c
 .This indicates that there is a physical equivalence between the two 

quantities, observed directly from similarities between equations (7) and (9). The only 

significant difference between them is the fact that one is deduced naturally from 

equation (8), the other is postulated.  

In conclusion if we neglect equation (7) and set: 
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we have been deduced the cosmological constant from Newtonian theory. 

 

Discussions 

 

The derivation of cosmological constant from Newton’s theory doesn’t solve the 

problem of its physical nature. We can’t conceive a Newtonian cosmology pure and 

simple based on this theory. To establish a concordance with observational data we must 

exceed the Newtonian theory and make the assumptions which lead us to ’s physical 

nature. Thus the constant 2B  will result from other theories, as until now. Some early 

generalizations of general relativity theory found that the cosmological constant arose 

naturally from the mathematics, [20, 21]. But these ideas don’t have a natural support and 

were soon abandoned.  Inevitable we must consider 2B  as an intrinsic energy density of 

the vacuum in which case the form (11) it will be conserved. A positive cosmological 

constant is generated by a negative vacuum pressure. The sign minus between the 

constant B and the cosmological constant legitimate this idea. A positive repelling force 

corresponds only to a negative pressure. Hence the cosmological constant problem is 

occurring, which is known like the most difficult situation of fine-tuning in physics. 

There is no coherent procedure to derive the cosmological constant from particle physics, 

and also the modern field theories are pessimistic regarding this matter. 

Even so the constant  seams to be the best solution for any complete 

cosmological model, like a cyclic one. Following [22] we observe that (6) is, for 0l , 

the depending part on r solution of the Laplace’s equation, [23]:  
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but the potential (4) it is not.  

As illustrated in ref. [22] , the potential (4) could have a distribution with absolute 

minima or maxima. It means that a Newtonian universe without a cosmological constant 

is instable and generates paradoxes. Under these circumstances we have only an 



expanding universe. By including the cosmological constant makes sense to a cyclic 

cosmological model. For this reason we need , otherwise we don’t have alternative to 

an eternal expanding universe. 

A coherent theory could be build only if we accept the modified potential (4) 

instead the common potential (6). On the other hand a Newtonian celestial mechanics 

governed by (4) it doesn’t make sense at small distances. But the opposite situation of 

having two Newtonian mechanics, one for small distances, (eq. 6) and another for 

cosmological distances, (eq.4), introduce too much ambiguity into the theory. If we 

imagine the situation of two existing force laws, only one operable, this is completely 

unscientific. There is only one Newtonian mechanics, governed by only one potential, no 

matter what distances are claimed. 

Comparing the potentials expressed by equation (4) and (6), one may observe that 

the former has a simpler representation but there is a reconciliatory way, regarding to all 

aspects, for potential (4): to make it looks like (6). In other words, one could formulate a 

new potential with a modified gravitational constant. The cumulated effects of the 

attracting and repelling potentials within relation (4) can be written as an effect of a 

single sensibly smaller gravitational constant. Further work will consider this problem. 

 

 

Conclusions 

 

In this paper we obtain the complete Newtonian derivation of the first 

Friedmann’s equation. The cosmological constant was introduced in a natural way, as it 

resulted from (4), by calculus not by postulation. It is discussed then the importance of 

 in context of a cyclic cosmological model, in which is indispensable. As another 

consequence it appears to be the modified gravitational constant which holds for great 

values of the universe mass, at any scale we want. 
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