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Abstract. In-water quenching technique, which is the preparation 

procedure of conventional amorphous wires (CAW), induces internal stresses in 

the material. These stresses, coupled with magnetostriction, give rise to large 

magnetoelastic anisotropies. Using the calculated distribution of internal stresses, 

the aim of this work is to evaluate the theoretical distribution of magnetoelastic 

anisotropies of CAW with positive, negative and nearly zero magnetostriction. 

The anisotropy constants were calculated as functions of wire dimensions, taking 

into account that the influence of wire length is neglected. Consequently, we 

elaborate two simple calculation programs which enable us to calculate the 

magnetoelastic distribution in every point of wire radius, for any 

magnetostriction, positive, negative or nearly zero, and any values of parameters 

and physical quantities involved. 
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1. Introduction 

 

Conventional amorphous wires are prepared by the in-water quenching 

technique. This procedure has a very high cooling rate from the molten alloy 

and introduces internal stresses within the conventional amorphous wires 
(CAW). These stresses, which couple with material magnetostriction, give rise 

to large magnetoelastic anisotropies. The distribution of these anisotropies 

determines the domain structure and magnetization process of CAW. The aim 
of this paper is, first of all, to evaluate the distribution of magnetic anisotropies 

and compare the theoretical results with experimental results for CAW 

anisotropies. This could not be possible without the works (Velasquez et al., 

1991) which have established the distribution of internal stresses in CAW,  

                                                
Corresponding author; e-mail: m_b_raut@yahoo.com 



                                                       
 

 

(Severino et al., 1992) and, last but not least, our own work for the experimental 

evaluations, (Răuţ et al., 2006). 

 
2. General Theory 

 

The absence of long-range order, which is a property of magnetic 

amorphous materials, implies an absence of magnetocristaline anisotropy. 

Consequently, magnetoelastic anisotropy and the anisotropy induced by form are the 
main causes which the magnetization processes in these types of materials are based 

on. The form is a geometrical factor, thus it could be properly chosen in order to 

minimize the demagnetizing field or neglect it. So, the only one that exhibits some 
interest in this matter is the magnetoelastic anisotropy. This anisotropy originates in 

coupling between the internal stresses introduced by fabrication process and 

magnetostriction. Therefore it depends on value and distribution of internal stresses 
and on the intensity of magnetoelastic coupling with magnetostriction. By a proper 

choose of the composition we could have some control concerning the 

magnetostriction constant of the alloy we have working with, but in internal stresses 

case we don’t have it at all. These stresses are a consequence of the rapid quenching 
process and not depend in most of cases on composition. Their dependence is on the 

cooling rate and on the temperature gradient within CAW during the rapid 

solidification process. The distribution of magnetoelastic anisotropy is the main 
factor which decides the configuration of magnetic domains; this is the reason why 

the magnetization processes are directly influenced by it. 

In order to obtain the expression of the magnetoelastic anisotropy 
constant, let’s consider a cylindrical sample. 

If we apply this sample certain exterior mechanical stresses, the 

additional volumetric energy density due to sample deformation is: 
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where: ije , i,j = 1,2,3 is the deformation tensor and ij , i,j = 1,2,3 the stress tensor. 

In order to simplify the future calculations we will consider the 

mechanical stresses uniformly distributed within sample.: ij . The 

direction   has the director cosines i  cu i = 1,2,3, relative to the crystal 

principal axes. For simplicity reasons we assume also that the crystal has cubic 

simmetry. Under these conditions: 
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the elastic deformations will be: 
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where ijs  are the elastic constants of the crystal. Equations (3) are valid under 

the hypothessis that deformations and stresses are proportional. 

According to the above considerations and the fact that the energy (1) 

is, after all, a magnetostriction energy, we can write it as: 
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where i , i = 1,2,3 are the director cosines of the vector sM  (saturation 

magnetization), i.e. apparent anisotropy direction, and  2,1B  are two constants 

with different expressions depending on the type of the crystalline lattice with 

cubic simmetry. 

The form (4) is obtained from magnetostriction energy general 

expression customizing: 
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Consider that the sample is uniformly magnetized after two directions, 

(100) and (111), the most general case. Under these conditions, the relative 

elongations related to the two directions will be: 
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where 100  and 111  are the magnetostriction constants and ijc  are elasticity 

moduli from tensorial expression. 
Using the relations between elastic constants and elasticity modulii: 
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and the relations (6), the expression (4) takes the form: 
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with sum after i, j = 1,2,3 and i ≠ j. 

If the material has a positive anisotropy constant then the magnetization 

sM  is orientated after (100) direction. Under these circumstances 1i   and  

0j  , also the expression (8) becomes: 
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with  i = 1,2,3 . 

But if the material has a negative anisotropy constant then the direction 

of the magnetization vector coincides with (111). From the fact that 

3/1ji   it rezults: 
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with i,j = 1,2,3 si i ≠ j. 

 If   is the angle between the magnetization direction and the stress apllication 

direction then we have: 
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with sum after i = 1,2,3. From equations (10) and (11) we obtain: 
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Consider now the general expression (8) and costumize it for the 

amorphous materials case. We suppose that magnetostriction is isotropic, 

 111100 . It rezults: 
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which is the expression of the volumetric energy density due to deformation. 

The most general expression for the anisotropy energy (obtained by 
neglecting high order terms), is: 

 

                                                   2coskW                                             (14) 
 

In the amorphous materials case the anisotropy energy is related to 

magnetostriction values. For this reason, comparing the expressions (13) and 

(14) we find for the amorphous materials anisotropy constant: 
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This is a very important result because underlies the anisotropy constant 

calculus. Except this fact, the form (15) successfully applies to materials with 

relative low magnetostriction, (Squire & Atkinson, 1995). 
In concrete situations the anisotropy direction is determined by the 

following reasoning: if λσ > 0, the minimum energy orientation of magnetization 

vector coincides with stress direction; if λσ < 0, then the magnetization vector is 
perpendicular to stress direction. 

 
3. Particular Case 

 
We present in the following a model for anisotropy distribution of the 

conventional amorphous wires. A general model, for all types of amorphous 

wires, is impossible yet, because the anisotropy distribution is calculated 
different, depending on the type of the wire. Under these conditions, a general 

algorithm for anisotropy distribution calculation can’t exist. The anisotropy 

distribution is established from case to case, according to (15), where  is the 

magnetostriction constant and  is the mechanical stress within material. The 
magnetostriction constant is usually known, being a material characteristic, the 

magnetic anisotropy distribution is therefore given by the mechanical stresses 
distribution, which originates in the fabrication process of these wires. 

We go forwards and evaluate the stress distribution in amorphous wires. 

Consider that these wires have the reduced radius ε and the temperature 

gradient, which is the physical cause of the stress, it propagates only in radial 



                                                       
 

 

direction. For simplicity we will use the cylindrical coordinates to solve this 

problem. So, in accordance with elasticity theory, we have three component of 

stresses: an axial component ),(  xz


, a radial component ),(  xr


 and an 

angular one ),(  x
. Here x is the reduced coordinate 

r
x

R

 
 

 
, R being the 

wire radius and r the radial cylindrical coordinate. 
The evaluation of the stress expression is made by considering that the 

solidification process is carried out in successive steps from the surface to the 

interior, after radial direction and uniformly. Heat conduction equation is solved 

according to the initial conditions, which are different from case to case. What 
we obtain is the temperature distribution within the wire. Considering this 

distribution, we obtain the stress distribution as a result of preparation process. 

Taking into consideration the stress distribution we can obtain the 
magnetic anisotropy distribution as a result of stress-magnetostriction coupling. 

According to the above considerations this coupling is made differently 

from case to case. 

On this basis we treat in the following the conventional amorphous 
wires case, according to (Velasquez et al., 1991). Starting with equation (15) we 

will calculate the mechanical stress distribution. Taking this into account we 

have: 
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By integrating the expressions (16) we will get the stress distributions 

corresponding the three cylindrical coordinates, exactly which is what we are 

interested. This integration must be done as mentioned above, according how 
the solidification of the melt is taking place. In other words, depending on how 

heat propagates in the material. This fact is taking into account by solving the 

heat conduction equation: 
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where ),( txTT   is the temperature in a random point x = r/R (r being the 

cylindrical coordinate and R the wire radius) corresponding to a time t, D is 

thermal diffusivity ckD / (with k thermal conductivity,   mass density of 

the material and c is the material specific heat). 

Under the hypothesis that the solidification of the material is producing 

in successive concentric shells, from the exterior to interior and the heat flow is 

stationary during this solidification process, equation (17) has the solution: 
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where T1 is the temperature of the melt and T2 − the environmental temperature 
reached by the melt after solidification and cooling. 

By entering the eq. (18) in (16) and solve the integral we obtain the 

mechanical stress expressions within wire after solidification: 
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Because these integrals have not exact solutions, we solve them 

numerically. The values of parameters and physical quantities involved are 

representative for CAW. Thus for T1 =1400 K, T2 = 300 K, E = 100000 MPa, 

k = 0.0000004, 1/K   = 0.33, which are typical for CAW, we obtain a 

maximum stress of hundreds of MPa, as we can observe in fig. 1. 
Based on the stresses distribution, the next logical step is to establish 

the magnetic anisotropy distribution. Considering the above remarks we have 

performed two calculation programs which enable us to establish the anisotropy 
distribution for CAW corresponding to every kind of situation. Thus we can 

calculate the magnetoelastic anisotropy constant in every point of wire’s radius, 

with any magnetostriction, positive, negative or nearly zero and any values of 
parameters and physical quantities involved. 

 



                                                       
 

 

 
 

Fig. 1 − Stress distribution depending on wire radius under following conditions: 

T1 = 1400 K, T2 = 300 K, = 0.33, k = 4x10-6 K-1, typical for CAW. 

 

Magnetic anisotropy is the result of coupling between stresses and 

magnetostriction. The stresses have the dominant role in this coupling and in 
accordance with the sign and the value of magnetostriction we distinguish two cases: 

A) Materials with positive magnetostriction (for example Fe-Si-B 

alloys), 
610 . In fig. 1 we observe two zones of interest from the dominant 

stress point of view.  One region corresponding to x = 0-0.7, here the dominant 
stresses are the axial stresses and one corresponding to x = 0.7-1, where the 

dominant stresses are the radial stresses. In the first one the coupling between 

axial stresses and positive magnetostriction give rise to an axial magnetic 
anisotropy. In the second one the magnetic anisotropy is radial, following the 

same considerations. In conclusion, in this case we have two regions: a central 

core with axial anisotropy and an outer shell with radial anisotropy (fig.2). 
The existence of magnetic domain structure given by this distribution 

was reported in (Severino et al., 1992) experimental work. Except that, some 

new magnetization particularities were observed in both regions. Because of 

Matteuci and Wiedeman inverse effects and the magnetoelastic behavior of 
material, they have found a circular component of local magnetization. 

B) Materials with negative magnetostriction and nearly zero 

magnetostriction (Co-Si-B and Fe-Co-Si-B alloys), 
76 10,10    (fig.3). 

We have been included in this category the materials with nearly zero 
magnetostriction because these materials have also negative magnetostriction 

but with one order of magnitude smaller than the others, the reason why the 

distribution of magnetic anisotropy is the same for both categories. 
In this case we have a different situation. Because we have negative 

magnetostriction and for more than 0.7 of wire’s radius we have positive 

stresses, the anisotropy distribution is not established the same way as in case 
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A). In a case like this we must choose the dominant stress that is the smallest 

one. The coupling with magnetostriction will establish the value of anisotropy 

but not its direction. The magnetization easy axis it will be a perpendicular 

direction to the smaller stress direction. 
Considering the above remarks, in this case we have three interest 

regions. The first one corresponding to x = 0-0.54, with the smallest positive 

stress the radial stress, the second one corresponding to x = 0.54-0.7, with the 
smallest positive stress the azimuthal stress and the last one corresponding to 

x = 0.7-1, in which the stress and magnetostriction have the same sign. In this 

region the direction of anisotropy will be the azimuthal direction because of 
direct coupling between stresses and magnetostriction. In the other two regions 

the coupling between the smallest stresses and magnetostriction will give the 

absolute value of anisotropy. But its direction will be perpendicular to the 

smallest stresses directions.  This direction will be axial or azimuthal (radial in 
the second zone). We will choose the axial direction corresponding to energy 

minimization. Otherwise, in these regions will be large magnetostatic and 

exchange energies. The magnetic domain forming it has to be the result of 
minimal energy and only an axial anisotropy will assure this. 

 

 
 
 

Fig. 2 − The magnetic anisotropy distribution in the general case  > 0 under the 

conditions: T1 = 1400 K, T2 = 300 K, E = 106 MPa, k = 4x10-6K-1,  = 0.33,  = 10-6. 
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Fig. 3 − The magnetic anisotropy distribution in the general case  < 0 under the 

conditions: T1 = 1400 K, T2 = 300 K, E = 106 MPa, k = 4x10-6 K-1,  = 0.33,  = 10-7. 

 

By observing the magnetic domains in considered regions we 
concluded that the axial direction is the only one possible. 

Our experimental data confirm these conclusions, (Răuţ et al., 2006). 

We have been performed experimental measurements by GMI (giant 

magnetoimpedance effect) method in order to verify the theoretical results in 
the surface region of CAW. We have been tested some probes consisting of 

Co-Fe-Si-B CAW and we have found for anisotropy field KH  values near to 

50 A/m. The anisotropy constant deduced from anisotropy field expression, 

written in uniform rotation of magnetization hypothesis  
 

sK MkH 0/2   

 

was estimated at 20.25 J/m
3
. The calculated theoretical value for the same 

conditions is 22.6 J/m
3
. There is a good agreement between theory and 

experiment, (Răuţ et al., 2006). 

 

                                         4. Conclusions 
 

Rapid solidification process gives rise in CAW of three kinds of 

stresses: axial, radial and azimuthal. These stresses coupled with 

magnetostriction are at the origin of the magnetoelastic anisotropy. In case 
corresponding to materials with positive magnetostriction we have shown the 

existence of two regions of interest: central core, where the magnetoelastic 

anisotropy is axial, and the outer shell, with radial anisotropy. 
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The case corresponding to materials with negative magnetostriction was 

studied too. We have shown the existence of three regions of interest. One is 

central, with axial anisotropy, the others with azimuthal anisotropy. 

The experimental investigations confirm the theoretical results. 
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