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Abstract

This technical report documents the theoretical, computational, and practical as-

pects of the one-dimensional Navier-Stokes finite element flow model. The docu-

ment is particularly useful to those who are interested in implementing, validating

and utilizing this relatively-simple and widely-used model.

Keywords: one-dimensional flow; Navier-Stokes; Newtonian fluid; finite ele-

ment; elastic vessel; interconnected network; blood flow in large vessels; branching

flow; time-independent flow; time-dependent flow.
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1 Introduction

The one-dimensional (1D) Navier-Stokes flow model in its analytic formulation and

numeric implementation is widely used for calculating and simulating the flow of

Newtonian fluids in large vessels and in interconnected networks of such vessels [1–

5]. In particular, the model is commonly used by bioengineers to analyze blood flow

in the arteries and veins. This model can be easily implemented using a numeric

meshing technique, such as finite element method, to provide a computational

framework for flow simulation in large tubes. The model can also be coupled with

a pressure-area constitutive relation and hence be extended to elastic vessels and

networks of elastic vessels. Despite its simplicity, the model is reliable within its

validity domain and hence it can provide an attractive alternative to the more

complex and costly multi-dimensional flow models in some cases of flow in regular

geometries with obvious symmetry.

The roots of the 1D flow model may be traced back to the days of Euler who ap-

parently laid down its mathematical foundations. In the recent years, the 1D model

became increasingly popular, especially in the hemodynamics modeling. This is

manifested by the fact that several researchers [2–4, 6–18] have used this model

recently in their modeling and simulation work.

The ‘1D’ label attached to this model stems from the fact that the θ and r

dependencies of a cylindrically-coordinated vessel are neglected due to the axi-

symmetric flow assumption and the simplified consideration of the flow profile

within a lumped parameter called the momentum correction factor. Therefore,

the only dependency that is explicitly accounted for is the dependency in the flow

direction, x.

The biggest advantages of the 1D model are the relative ease of implementa-

tion, and comparative low computational cost in execution. Therefore, the use of

full multi-dimensional flow modeling, assuming its viability within the available
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computational resources, is justified only when the 1D model fails to capture the

essential physical picture of the flow system. However, there are several limitations

and disadvantages of the 1D model that restrict its use. These limitations include,

among other things, the Newtonian assumption, simplified flow geometry and the

one-dimensional nature.

2 Theoretical Background

The widely-used one-dimensional form of the Navier-Stokes equations to describe

the flow in a vessel; assuming laminar, incompressible, axi-symmetric, Newtonian,

fully-developed flow with negligible gravitational body forces; is given by the follow-

ing continuity and momentum balance relations with suitable boundary conditions

∂A

∂t
+
∂Q

∂x
= 0 t ≥ 0, x ∈ [0, L] (1)

∂Q

∂t
+

∂

∂x

(
αQ2

A

)
+
A

ρ

∂p

∂x
+ κ

Q

A
= 0 t ≥ 0, x ∈ [0, L] (2)

In these equations, A is the vessel cross sectional area, t is the time, Q is the

volumetric flow rate, x is the axial coordinate along the vessel, L is the length of

the vessel, α (=
∫
u2dA

Au2 with u and u being the fluid local and mean axial speed

respectively) is the momentum flux correction factor, ρ is the fluid mass density, p

is the local pressure, and κ is a viscosity friction coefficient which is usually given

by κ = 2παν/(α − 1) with ν being the fluid kinematic viscosity defined as the

ratio of the dynamic viscosity µ to the mass density. These equations supported

by appropriate compatibility and matching conditions are used to describe the 1D

flow in a branched network of vessels. The equations, being two in three variables,

Q A and p, are normally coupled with the following pressure-area relation in a

distensible vessel to close the system and obtain a solution
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p = po + f(A) (3)

In this relation, p and po are the local and reference pressure respectively, and f(A)

is a function of area which may be modeled by the following relation

f(A) =
β

Ao

(√
A−

√
Ao

)
(4)

where

β =

√
πhoE

1− ς2
(5)

In these equations, Ao and ho are respectively the vessel cross sectional area and wall

thickness at reference pressure po, while E and ς are the Young’s elastic modulus

and Poisson’s ratio of the vessel wall. Similar variants of this 1D flow model

formulation can also be found in the literature (see for example [7, 10, 18, 19]).

The continuity and momentum equations are usually casted in matrix form [2,

11, 12, 16] which is more appropriate for numerical manipulation and discretization.

In matrix form these equations are given by

∂U

∂t
+
∂F

∂x
+ B = 0 (6)

where

U =

 A

Q

 , F =

 Q

αQ2

A
+
∫
A
a
ρ
df
da
da

 =

 Q

αQ2

A
+ β

3ρAo
A3/2

 (7)

and
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B =

 0

κQ
A

 (8)

It should be remarked that the second term of the second row of the F matrix

can be obtained from the third term of the original momentum equation as follow

A

ρ

∂p

∂x
=
A

ρ

∂f

∂x
=
A

ρ

∂f

∂A

∂A

∂x
=

∂

∂x

∫
x′

A

ρ

∂f

∂A

∂A

∂x
∂x

=
∂

∂x

∫
A′

A

ρ

∂f

∂A
∂A =

∂

∂x

∫
A′

A

ρ

df

dA
dA =

∂

∂x

(
β

3ρAo
A3/2

)
(9)

3 Weak Form of 1D Flow Equations

On multiplying Equation 6 by weight functions and integrating over the solution

domain, x, the following is obtained

∫
Ω

∂U

∂t
· ωdx+

∫
Ω

∂F

∂x
· ωdx+

∫
Ω

B · ωdx = 0 (10)

where Ω is the solution domain, and ω is a vector of arbitrary test functions. On

integrating the second term of Equation 10 by parts, the following weak form of

the preceding 1D flow system is obtained

∫
Ω

∂U

∂t
· ωdx−

∫
Ω

F · dω
dx
dx+

∫
Ω

B · ωdx+ [F · ω]∂Ω = 0 (11)

where ∂Ω is the boundary of the solution domain. This weak formulation, cou-

pled with suitable boundary conditions, can be used as a basis for finite element

implementation in conjunction with an iterative scheme such as Newton-Raphson

method.
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4 Finite Element Solution

There are two major cases to be considered in the finite element solution of the

stated flow problem: single vessel and branched network where each one of these

cases can be time-independent or time-dependent. These four cases are outlined in

the following three subsections.

4.1 Single Vessel Time-Independent Flow

The single vessel time-independent model is based on dropping the time term in the

continuity and momentum governing equations to obtain a steady-state solution.

This should be coupled with pertinent boundary and compatibility conditions at

the vessel inlet and outlet. The details are given in the following.

In discretized form, Equation 11 without the time term can be written for each

node Ni(Ai, Qi) as

Ri =

 fi

gi

 =

 0

0

 (12)

where R is a vector of the weak form of the residuals and

fi =

Nq∑
q=1

[
−wqQ(ζq)

∂x

∂ζ
(ζq)

dωAi

dζ
(ζq)

dζ

dx
(ζq)

]
+Q(∂Ω)ωAi

(∂Ω) (13)

and

gi =

Nq∑
q=1

wq
∂x

∂ζ
(ζq)

[
−
(
αQ2(ζq)

A(ζq)
+

β

3ρAo
A3/2(ζq)

)
dωQi

dζ
(ζq)

dζ

dx
(ζq) + κ

Q(ζq)

A(ζq)
ωQi

(ζq)

]
+

(
αQ2(∂Ω)

A(∂Ω)
+

β

3ρAo
A3/2(∂Ω)

)
ωQi

(∂Ω) (14)

where q is an index for the Nq quadrature points, ζ is the quadrature point coor-
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dinate and

A(ζq) =
n∑
i

AciψAi
(ζq) & Q(ζq) =

n∑
i

QciψQi
(ζq) (15)

with n being the number of nodes in a standard element. Because of the non-

linear nature of the problem, an iteration scheme, such as Newton-Raphson, can

be utilized to construct and solve this system of equations based on the residual.

The essence of this process is to solve the following equation iteratively and update

the solution until a convergence criterion based on reaching a predefined error

tolerance is satisfied

J ∆U = −R (16)

In this equation, J is the jacobian matrix, ∆U is the perturbation vector, and

R is the weak form of the residual vector. For a vessel with n nodes, the Jacobian

matrix, which is of size 2n× 2n, is given by

J =



∂f1

∂A1

∂f1

∂Q1
· · · ∂f1

∂An

∂f1

∂Qn

∂g1

∂A1

∂g1

∂Q1
· · · ∂g1

∂An

∂g1

∂Qn

...
...

. . .
...

...

∂fn
∂A1

∂fn
∂Q1

· · · ∂fn
∂An

∂fn
∂Qn

∂gn
∂A1

∂gn
∂Q1

· · · ∂gn
∂An

∂gn
∂Qn


(17)

where the subscripts stand for the node indices, while the vector of unknowns,

which is of size 2n, is given by
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U =



A1

Q1

...

An

Qn


(18)

In the finite element implementation, the Jacobian matrix is usually evaluated

numerically by finite differencing, i.e.

J '



∆f1

∆A1

∆f1

∆Q1
· · · ∆f1

∆An

∆f1

∆Qn

∆g1

∆A1

∆g1

∆Q1
· · · ∆g1

∆An

∆g1

∆Qn

...
...

. . .
...

...

∆fn
∆A1

∆fn
∆Q1

· · · ∆fn
∆An

∆fn
∆Qn

∆gn
∆A1

∂gn
∆Q1

· · · ∆gn
∆An

∆gn
∆Qn


(19)

The procedure to obtain a solution is summarized in the following scheme

1. Start with initial values for Ai and Qi in the U vector.

2. The system given by Equation 16 is constructed where the weak form of the

residual vector R may be calculated in each iteration l (= 0, 1, . . . ,M) as

Rl =



f1(Ul)

g1(Ul)

...

fn(Ul)

gn(Ul)


(20)

3. The jacobian matrix is calculated from Equation 19.

4. System 16 is solved for ∆U, i.e.



4.1 Single Vessel Time-Independent Flow 12

∆U = −J−1R (21)

5. U is updated to obtain a new U for the next iteration, that is

Ul+1 = Ul + ∆U (22)

6. The norm of the residual vector is calculated from

N =

√
ε21 + ε22 + · · ·+ ε2N

N
(23)

where εi is the ith entry of the residual vector and N (= 2n) is the size of

the residual vector.

7. This cycle is repeated until the norm is less than a predefined error tolerance

(e.g. 10−8) or a certain number of cycles is reached without convergence. In

the last case, the operation will be aborted due to failure and may be resumed

with improved finite element parameters.

With regard to the boundary conditions (BC), two types of Dirichlet conditions

can be applied: pressure and volumetric flow rate, that is

A− ABC = 0 (for area BC) & Q−QBC = 0 (for flow BC) (24)

These conditions are imposed by replacing the residual function of one of the

governing equations (the continuity equation in our model) for the boundary nodes

with one of these constraints.

Imposing the boundary conditions as constraints in one of the two governing

equations is associated with imposing compatibility conditions, arising from pro-
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jecting the differential equations in the direction of the outgoing characteristic vari-

ables [20], at the inlet and outlet by replacing the residual function contributed by

the other governing equation with these conditions. The compatibility conditions

are given by

lT1,2

(
H
∂U

∂x
+ B

)
= 0 (25)

where H is the matrix of partial derivative of F with respect to U, while the

transposed left eigenvectors of H are given by

lT1,2 =

[
−αQ

A
±
√

Q2

A2 (α2 − α) + A
ρ
df
dA

1

]
(26)

that is

H
∂U

∂x
+ B =

 0 1

−αQ2

A2 + β
2ρAo

A1/2 2αQ
A


 ∂A

∂x

∂Q
∂x

+

 0

κQ
A

 (27)

i.e.

H
∂U

∂x
+ B =

 ∂Q
∂x(

−αQ2

A2 + β
2ρAo

A1/2
)
∂A
∂x

+
(
2α∂Q

∂x
+ κ
)
Q
A

 (28)

Hence, Equation 25 reduces to

[
−αQ

A
±
√

Q2

A2 (α2 − α) + A
ρ
df
dA

1

] ∂Q
∂x(

−αQ2

A2 + β
2ρAo

A1/2
)
∂A
∂x

+
(
2α∂Q

∂x
+ κ
)
Q
A

 = 0

(29)

that is
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(
−αQ

A
±

√
Q2

A2
(α2 − α) +

A

ρ

df

dA

)
∂Q

∂x
+

(
−αQ

2

A2
+

β

2ρAo
A1/2

)
∂A

∂x
+

(
2α
∂Q

∂x
+ κ

)
Q

A
= 0

(30)

In the last relation, the minus sign is used for the inflow boundary while the plus

sign for the outflow boundary. The compatibility conditions, given by Equation

30, replace the momentum residual at the boundary nodes.

4.2 Single Vessel Time-Dependent Flow

The aforementioned time-independent formulation can be extended to describe

transient states by including the time terms in the residual equations in association

with a numerical time-stepping method such as forward Euler, or backward Euler

or central difference. The time-dependent residual will then be given (in one of the

aforementioned schemes) by

Rt+∆t
TD =

∫
Ω

Ut+∆t −Ut

∆t
· ωdx+ Rt+∆t

T I = 0 (31)

where R is the weak form of the residual, TD stands for time-dependent and TI

for time-independent. The time-dependent jacobian follows

Jt+∆t
TD =

∂Rt+∆t
TD

∂Ut+∆t
(32)

Again, we have

∆U = −J−1R (33)

and

Ul+1 = Ul + ∆U (34)
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where the symbols represent time-dependent quantities and l represents Newton

iterations.

With regard to the boundary nodes, a steady-state or time-dependent bound-

ary conditions could be applied depending on the physical situation while a time-

dependent compatibility conditions should be employed by adding a time term to

the time-independent compatibility condition, that is

CTD = lT1,2
∂U

∂t
+ CTI = 0 (35)

where CTI is the time-independent compatibility condition as given by Equation

30, while CTD is the time-dependent compatibility condition, that is

CTD =

[
−αQ

A
±
√

Q2

A2 (α2 − α) + A
ρ
df
dA

1

] ∂A
∂t

∂Q
∂t

+ CTI = 0 (36)

i.e.

CTD =

(
−αQ

A
±

√
Q2

A2
(α2 − α) +

A

ρ

df

dA

)
∂A

∂t
+
∂Q

∂t
+ CTI = 0 (37)

where the time derivatives can be evaluated by finite difference, e.g.

∂A

∂t
' At+∆t − At

∆t
&

∂Q

∂t
' Qt+∆t −Qt

∆t
(38)

A sign convention similar to that outlined previously should be followed. An algo-

rithmic code of the time-dependent module is presented in Algorithm 1.

4.3 Branched Network

To extend the time-independent and time-dependent single vessel model to time-

independent and time-dependent branched network of interconnected vessels, match-

ing constraints at the branching nodes are required. These nodes are treated as
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Initialize time: t = to
Initialize Uto

for j ← 1 to numberOfT imeSteps do
Increment time by ∆t
for i← 1 to MaximumNumberOfNewtonIterations do

Find Rt+∆t
TD =

∫
Ω

Ut+∆t−Ut

∆t
· ωdx+ Rt+∆t

T I = 0

Find Jt+∆t
TD =

∂Rt+∆t
TD

∂Ut+∆t

Find ∆Ut+∆t = − (J−1R)
t+∆t
TD

Find Ut+∆t
i+1 = Ut+∆t

i + ∆Ut+∆t

Update: Ut+∆t
i = Ut+∆t

i+1

if (convergence condition met) then
Exit loop

else
if (MaximumNumberOfNewtonIterations reached) then

Declare failure
Exit

end if
end if

end for
Update: Ut = Ut+∆t

end for
Solution: Ut+∆t

End

Algorithm 1: Algorithmic code for the time-dependent module.

discontinuous joints where each segment connected to that junction has its own

index for that junction although they are spatially identical. The matching con-

straints are derived from the conservation of flow rate for incompressible fluid, and

the Bernoulli energy conservation principle for inviscid flow. More specifically, at

each n-segment branching node, n distinctive constraints are imposed: one repre-

sents the conservation of flow which involves all the segments at that junction, while

the other (n− 1) constraints represent the Bernoulli principle with each Bernoulli

constraint involving two distinctive segments. These constrains are summarized in
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the following relations
n∑
i=1

Qi = 0 (39)

and

pk +
1

2
ρu2

k − pl −
1

2
ρu2

l = 0 (40)

where k and l are indices of two distinct segments, and u (= Q
A

) is the fluid speed

averaged over the vessel cross section. In Equation 39 a directional flow is assumed

by attaching opposite signs to the inflow and outflow. The matching constraints,

which replace the residuals of one of the governing equations (continuity), are cou-

pled with compatibility conditions, similar to the ones used for the single vessel,

where these conditions replace the residual of the other governing equation (mo-

mentum). The sign convention for these compatibility conditions should follow

the same rules as for the boundary conditions, that is minus sign for inflow and

plus sign for outflow. This branching model can be applied to any branching node

with connectivity n ≥ 2. The special case of n = 2 enables flexible modeling

of discontinuous transition between two neighboring segments with different cross

sectional areas. Suitable pressure or flux boundary conditions (which for the time-

dependent case could be time-independent, or time-dependent over the whole or

part of the time stepping process) should also be imposed on all boundary nodes

of the network. With regard to the other aspects of the time-independence and

time-dependence treatment, the network model should follow the same rules as for

single vessel time-independent and time-dependent models which are outlined in

the previous sections.
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5 Non-Dimensionalized Form

To improve convergence, the aforementioned dimensional forms of the governing,

boundary, compatibility, and matching equations can be non-dimensionalized by

carefully-chosen scale factors. The following scale factors are commonly used to

scale the model parameters:

Q ∼ πR2
oUo A ∼ πR2

o p ∼ ρU2
o x ∼ λ t ∼ λ

Uo
(41)

where Ro, Uo, and λ are respectively typical values of the radius, velocity and length

for the flow system. In the following we demonstrate non-dimensionalization of the

flow equations by a few examples followed by stating the non-dimensionalized form

of the others.

5.1 Non-Dimensionalized Navier-Stokes Equations

Continuity equation 1st form (Equation 1):

∂A

∂t
+
∂Q

∂x
= 0 (42)

∂ (πR2
oA
′)

∂
(
λ
Uo
t′
) +

∂ (πR2
oUoQ

′)

∂ (λx′)
= 0 (43)

that is

∂A′

∂t′
+
∂Q′

∂x′
= 0 (44)

where the prime indicates a non-dimensionalized value.

Continuity equation 2nd form (Equation 6):
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Same as Equation 44.

Momentum equation 1st form (Equation 2):

∂Q

∂t
+

∂

∂x

(
αQ2

A

)
+
A

ρ

∂p

∂x
+ κ

Q

A
= 0 (45)

∂ (πR2
oUoQ

′)

∂
(
λ
Uo
t′
) +

∂

∂ (λx′)

(
α (πR2

oUoQ
′)

2

(πR2
oA
′)

)
+

(πR2
oA
′)

ρ

∂ (ρU2
o p
′)

∂ (λx′)
+ κ

(πR2
oUoQ

′)

(πR2
oA
′)

= 0

(46)

πR2
oU

2
o

λ

∂Q′

∂t′
+
απ2R4

oU
2
o

πR2
oλ

∂

∂x′

(
Q′2

A′

)
+
πR2

oρU
2
o

λρ

A′∂p′

∂x′
+
κπR2

oUo
πR2

o

Q′

A′
= 0 (47)

πR2
oU

2
o

λ

∂Q′

∂t′
+
απR2

oU
2
o

λ

∂

∂x′

(
Q′2

A′

)
+
πR2

oU
2
o

λ

A′∂p′

∂x′
+
κλπR2

oU
2
o

λπR2
oUo

Q′

A′
= 0 (48)

∂Q′

∂t′
+ α

∂

∂x′

(
Q′2

A′

)
+
A′∂p′

∂x′
+

κλ

πR2
oUo

Q′

A′
= 0 (49)

∂Q′

∂t′
+ α

∂

∂x′

(
Q′2

A′

)
+
A′∂p′

∂x′
+

2πανλ

(α− 1) πR2
oUo

Q′

A′
= 0 (50)

that is

∂Q′

∂t′
+ α

∂

∂x′

(
Q′2

A′

)
+
A′∂p′

∂x′
+

2ανλ

(α− 1)R2
oUo

Q′

A′
= 0 (51)

Momentum equation 2nd form (Equation 6):
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∂Q

∂t
+

∂

∂x

(
αQ2

A

)
+

β

3ρAo

∂

∂x
A3/2 + κ

Q

A
= 0 (52)

πR2
oU

2
o ∂Q

′

λ∂t′
+

(πR2
oUo)

2
∂

λπR2
o∂x

′

(
αQ′2

A′

)
+

(πR2
o)

1/2
β

λ3ρA′o

∂

∂x′
A′3/2 + κ

πR2
oUoQ

′

πR2
oA
′ = 0 (53)

πR2
oU

2
o ∂Q

′

λ∂t′
+
πR2

oU
2
o ∂

λ∂x′

(
αQ′2

A′

)
+

(πR2
o)

1/2
β

λ3ρA′o

∂

∂x′
A′3/2 + κ

UoQ
′

A′
= 0 (54)

∂Q′

∂t′
+

∂

∂x′

(
αQ′2

A′

)
+

1

(πR2
o)

1/2 U2
o

β

3ρA′o

∂

∂x′
A′3/2 +

λ

πR2
oUo

κ
Q′

A′
= 0 (55)

5.2 Non-Dimensionalized Compatibility Condition

Time-independent term of compatibility condition:

(
−α

UoQ′

A′ ±

√
U2
oQ

′2

A′2 (α2 − α) +
A′

ρ
√
πR2

o

β

2A′
o

√
A′

)
Uo∂Q′

λ∂x′

+

(
−α

U2
oQ

′2

A′2 +
β

2ρ
√
πR2

oA
′
o

A′1/2

)
∂A′

λ∂x′
+

(
2α
πR2

oUo∂Q′

λ∂x′
+

2παν

α− 1

)
UoQ′

πR2
oA

′ = 0 (56)

Time-dependent term of compatibility condition:

(
−α

UoQ′

A′ ±
√
U2
oQ

′2

A′2 (α2 − α) +
A′

ρ

β

(πR2
o)1/2 2A′

o

√
A′

)
∂A′

∂t′
+
Uo∂Q′

∂t′
= 0 (57)
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5.3 Non-Dimensionalized Matching Conditions

Flow conservation:

Q′1 −Q′2 −Q′3 = 0 (58)

Bernoulli:

p′k +
1

2
u′

2
k − p′l −

1

2
u′

2
l = 0 (59)

5.4 Non-Dimensionalized Boundary Conditions

A′ − A′BC = 0 (for area BC) & Q′ −Q′BC = 0 (for flow BC) (60)

6 Validation

The different modules of the the 1D finite element flow model are validated as

follow

• Time-independent single vessel: the numeric solution should match the ana-

lytic solution as given by Equation 63 which is derived in Appendix A. Also,

the boundary conditions should be strictly satisfied.

• Time-dependent single vessel: the solution should asymptotically converge

to the analytic solution on imposing time-independent boundary conditions.

Also, the boundary conditions should be strictly satisfied at all time steps.

• Time-independent network: four tests are used to validate the numeric so-

lution. First, the boundary conditions should be strictly satisfied. Second,

the conservation of mass (or conservation of volume for incompressible flow),

as given by Equation 39, should be satisfied at all branching nodes (bridge,
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bifurcation, trifurcation, etc.). A consequence of this condition is that the

sum of the boundary inflow (sum of Q at inlet boundaries) should be equal

to the sum of the boundary outflow (sum of Q at outlet boundaries). Third,

the conservation of energy (Bernoulli’s principle for inviscid flow), as given by

Equation 40, should be satisfied at all branching nodes. Fourth, the analytic

solution for time-independent flow in a single vessel, as given by Equation 63

in Appendix A, should be satisfied by all vessels in the network with possible

exception of very few vessels with odd features (e.g. those with distorted

shape such as extreme radius-to-length ratio, and hence are susceptible to

large numerical errors). The fourth test is based on the fact that the sin-

gle vessel solution is dependent on the boundary conditions and not on the

mechanism by which these conditions are imposed.

• Time-dependent network: the solution is validated by asymptotic conver-

gence to the time-independent solution, as validated by the four tests outlined

in the previous item, on imposing time-independent boundary conditions.

The solutions may also be tested qualitatively by static and dynamic visual-

ization for time-independent and time-dependent cases respectively to verify their

physical sensibility. Other qualitative tests, such as comparing the solutions of

different cases with common features, may also be used for validation.

It should be remarked that Equation 63 contains three variables: x A and Q,

and hence it can be solved for one of these variables given the other two. Solving

for A and Q requires employing a numeric solver, based for example on a bisection

method; hence the best option is to solve for x and compare to the numeric solution.

This in essence is an exchange of the role of independent and dependent variables

which has no effect on validation. Alternatively, Equation 76 can be used to verify

the solution directly by using the vessel inlet and outlet areas. In fact Equation 76

can be used to verify the solution at any point on the vessel axis by labeling the
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area at that point as Aou, as explained in Appendix A.

7 General Notes

7.1 Implementation

• The model described in this report was implemented and tested on both sin-

gle vessels and networks of vessels for time-independent and time-dependent

cases and it produced valid results. The implementation is based on a

Galerkin method, where the test functions are obtained from the same space

as the trial basis functions used to represent the state variables, with a La-

grange interpolation associated with a Gauss quadrature integration scheme

(refer to Appendix B for Gauss quadrature tables). Many tests have been

carried out to verify various aspects of the 1D model. These tests involved

many synthetic and biological networks which vary in their size, connectivity,

number and type of branching nodes, type of meshing, and so on. The tests

also included networks with and without loops although the great majority

of the networks contain loops. Some of the networks involved in these tests

consist of very large number of vessels in the order of hundreds of thousands

with much more degrees of freedom. Non-dimensional form, as well as dimen-

sional form, was tested on single vessels and branched networks; the results,

after re-scaling, were verified to be identical to those obtained from the di-

mensional form. The checks also included h and p convergence tests which

demonstrated correct convergence behavior.

• To be on the safe side, the order of the quadrature should be based on the sum

of orders of the interpolating functions, their derivatives and test functions.

The adopted quadrature order scheme takes the highest order required by

the terms.
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• A constant delta may be used in the evaluation of the Jacobian matrix by

finite difference. A suitable value for delta may be ∆Ai = ∆Qi = 10−7 or

10−8.

7.2 Solution

• Negative flow in the solution means the flow direction is opposite to the vessel

direction as indicated by the vessel topology, that is the flow rate of a segment

indexed as N1 N2 will be positive if the flow is from N1 to N2 and negative

if the flow is from N2 to N1.

• Interpolation polynomials of various degrees (p) in association with differ-

ent meshing (h) should be used to validate the convergence behavior. The

convergence to the correct solution should improve by increasing p and de-

creasing h. L2 error norm may be used as a measure for convergence; it is

given by

L2 =

(∫
X

(Sa − Sn)2 dx

)1/2

(61)

where Sa and Sn are the analytic and numeric solutions respectively, and X is

the solution domain. The integration can be performed numerically using, for

example, trapezium or Simpson’s rules. The error norm should fall steadily

as h decreases and p increases.

• With regard to the previously outlined implementation of the 1D model (see

§ 7.1), typical solution time on a typical platform (normal laptop or desktop)

for a single time-independent simulation on a typical 1D network consisting

of hundreds of thousands of degrees of freedom is a few minutes. The final

convergence is normally reached within 5-7 Newton iterations. The solution

time of a single time step for the time-dependent case is normally less than
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the solution time of the equivalent time-independent case, and the number of

the required Newton iterations of each time step in the time-dependent case

is normally less than that for the corresponding time-independent case.

• Since there are many sources of error and wrong convergence, each acquired

solution should be verified by the aforementioned validation tests (see § 6).

The 1D finite element code should be treated as a device that suggests solu-

tions which can be accepted only if they meet the validation criteria.

7.3 Non-Dimensionalization

• On implementing the non-dimensionalized form (as given in § 5) in the finite

element code, all the user needs is to scale the primed input values either

inside or outside the code; the results then should be scaled back to obtain

the dimensionalized solution.

• Different length scales can be utilized as long as they are in different orien-

tations (e.g. vessel length and vessel radius) and hence linearly independent;

otherwise the physical space will be distorted in non-systematic way and

hence may not be possible to restore by scaling back.

7.4 Convergence

A number of measures, outlined in the following points, can speedup convergence

and help avoiding convergence failure.

• Non-dimensionalization which requires implementation in the finite element

code (as given in § 5) where the input data is non-dimensionalized and the

results are re-dimensionalized back to the physical space.

• Using different unit systems, such as m.kg.s or mm.g.s or m.g.s, for the input

data and parameters.
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• Scaling the model up or down to obtain a similarity solution which can then

be scaled back to obtain the final results.

• Increasing the error tolerance of the solver for convergence criterion. How-

ever, the use of relatively large error tolerance can cause wrong convergence

and hence should be avoided. It may be recommended that the maximum

allowed error tolerance for obtaining a reliable solution must not exceed 10−5.

Anyway, the solution in all cases should be verified by the validation tests

(see § 6) and hence it must be rejected if the errors exceed acceptable limits.

• For time-dependent cases, the required boundary condition value can be im-

posed gradually by increasing the inlet pressure, for instance, over a number

of time steps to reach the final steady state value.

• The use of smaller time steps in the time-dependent cases may also help to

avoid convergence failure.

It should be remarked that the first three strategies are based on the same

principle, that is adjusting the size of the problem numbers to help the solver to

converge more easily to the solution.

7.5 Boundary Conditions

• Dirichlet type boundary conditions are usually used for imposing flow rate

and pressure boundary conditions. The previous formulation is based on this

assumption.

• Pressure boundary conditions are imposed by adjusting the inlet or outlet

area where p and A are correlated through Equation 3.

• While pressure boundary conditions can be imposed on both inlet and outlet

boundaries simultaneously, as well as mixed boundary conditions (i.e. inlet
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pressure with outlet flow or inlet flow with outlet pressure or mixed on one

or both boundaries), it is not possible to impose flow boundary conditions

on all inlet and outlet boundaries simultaneously because this is either a

trivial condition repeating the condition of flow conservation (i.e. Equation

39) at the branching junctions if the inflow is equal to the outflow or it is a

contradiction to the flow conservation condition if the inflow and outflow are

different, and hence no solution can be found due to ambiguity and lack of

constraints in the first case and to inconsistency in the second case.

• Zero Q boundary condition can be used to block certain inlet or outlet vessels

in a network for the purpose of emulating a physical situation or improving

convergence when the blockage does not affect the solution significantly.

• In some biological flow conditions there are no sufficient data to impose real-

istic pressure boundary conditions that ensure biologically sensible flow in the

correct direction over the whole vascular network. In such situations a back

flow may occur in some branches which is physically correct but biologically

incorrect. To avoid this situation, an inlet pressure boundary condition with

outlet flow boundary conditions where the total outflow is split according to

a certain physical or biological model (such as being proportional to the area

squared) can be used to ensure sensible flow in the right direction over the

whole network. The total amount of the outflow can be estimated from the

inlet flow which is usually easier to estimate as it normally comes from a sin-

gle (or few) large vessel. This trick may also be applicable in some physical

circumstances.

• Use may be made of an artificial single inlet boundary to avoid lack of knowl-

edge about the pressure distribution in a multi-inlet network to ensure correct

flow in the right direction. The inlets can be connected to a single artificial
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node (e.g. located at their centroid) where the radii of the connecting ar-

tificial vessels is chosen according to a physical or biological model such as

Murray’s law. This node can then be connected through a single artificial

vessel whose radius can be computed from a physical or biological model and

whose length can be determined from a typical L/R ratio such as 10. The

inlet of this vessel can then be used to impose a single p or Q biologically-

sensible boundary condition. It should be remarked that Murray’s biological

law is given by

rγm =
n∑
i

rγdi (62)

where rm is the radius of the mother vessel, rdi is the radius of the ith daughter

vessel, n is the number of daughter vessels which in most cases is 2, and γ

is a constant index which according to Murray is 3, but other values like 2.1

and 2.2 are also used in the literature.

• Time-dependent boundary conditions can be modeled by empirical signals

(e.g. obtained from experimental data) or by closed analytical forms such as

sinusoidal.

7.6 Initial Conditions

• The convergence usually depends on the initial values of area and flow rate.

A good option for these values is to use unstressed area with zero flow for

start.

7.7 Miscellaneous

• Apart from the interpolation nodes, there are two main types of nodes in

the finite element network: segment nodes and finite element discretization



7.7 Miscellaneous 29

nodes. The connectivity of the second type is always 2 as these nodes connect

two elements; whereas the connectivity of the first can be 1 for the bound-

ary nodes, 2 for the bridge nodes connecting two segments, or ≥ 3 for the

branching nodes (bifurcation, trifurcation, etc.). The mass and energy con-

servation conditions can be extended to include all the segment nodes with

connectivity > 1 by including the bridge nodes.

• For networks, the vessel wall thickness at reference pressure, ho, can be a

constant or vary from vessel to vessel depending on the physical or biological

situation. Using variable thickness is more sound in biological context where

the thickness can be estimated as a fraction of the lumen or vessel radius.

A fractional thickness of 10-15% of the radius is commonly used for blood

vessels [6, 16, 20–26]. For more details, refer to Appendix D.

• The previous finite element formulation of the 1D model for single vessels and

networks works for constant-radius vessels (i.e. with constant Ao) only and

hence to extend the formulation to variable-radius vessels the previous matrix

structure should be reshaped to include the effect of tapering or expanding

of the vessels. However, the vessels can be straight or curved. The size of the

vessels in a network can also vary significantly from one vessel to another as

long as the 1D flow model assumptions (e.g. size, shape, etc.) do apply on

each vessel.

• The networks used in the 1D flow model should be totally connected, that

is any node in the network can be reached from any other node by moving

entirely inside the network vessels.

• Different time stepping schemes, such as forward or backward Euler or central

difference, can be used for implementing the time term of the time-dependent

single vessel and network modules although the speed of convergence and
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quality of solution vary between these schemes. The size of the time step

should be chosen properly for each scheme to obtain equivalent results from

these different schemes.

• Although the 1D model works on highly non-homogeneous networks in terms

of vessels length without discretization, a scheme of homogeneous discretiza-

tion may be employed by using a constant element length, h, over the whole

network as an approximation to the length of the discretized elements. The

length of the elements of each vessel is then obtained by dividing the ves-

sel evenly to an integer number of elements with closest size to the given

h. Although discretization is not a requirement, since the 1D model works

even on non-discretized networks, it usually improves the solution. More-

over, discretization is required for obtaining a detailed picture of the pressure

and flow fields at the interior points. Use of interpolation schemes higher

than linear (with and without discretization) also helps in refining the vari-

able fields. Also, for single vessel the solution can be obtained with and

without discretization; in the first case the discretized elements could be of

equal or varying length. The solution, however, should generally improve by

discretization.

• Although the 1D model works on non-homogeneous networks in terms of

vessels radius, an abrupt transition from one vessel to its neighbor may hinder

convergence.

• In general, the time-dependent problem converges more easily than its equiva-

lent time-independent problem. This may be exploited to obtain approximate

time-independent solutions in some circumstances from the time-dependent

module as the latter asymptotically approaches the time-independent solu-

tion.
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• The correctness of the solutions mathematically may not guarantee physio-

logical, and even physical, sensibility since the network features, boundary

conditions, and model parameters which in general highly affect the flow pat-

tern, may not be found normally in real biological and physical systems. The

quality of any solution, assuming its correctness in mathematical terms, de-

pends on the quality of the underlying model and how it reflects the physical

reality.

• Because the 1D model depends on the length of the vessels but not their

location or orientation, a 1D coordinate system, as well as 2D or 3D, can

be used for coordinating the space. The vessels can be randomly oriented

without effecting the solution. A multi-dimensional space may be required,

however, for consistent and physically-correct description of the networks.

• The reference pressure, po, in Equation 3 is usually assumed zero to simplify

the relation.
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8 Conclusions

The one-dimensional Navier-Stokes formulation is widely used as a realistic model

for the flow of Newtonian fluids in large vessels with certain simplifying assump-

tions, such as axi-symmetry. The model may also be coupled with a pressure-area

constitutive relation and hence be extended to the flow in distensible vessels. Nu-

merical implementation of this model based on a finite element method with suit-

able boundary conditions is also used to solve the time-independent and transient

flow in single vessels and networks of interconnected vessels where in the second

case compatibility and matching conditions, which include conservation of mass

and energy, at branching nodes are imposed. Despite its comparative simplicity,

the 1D flow model can provide reliable solutions, with relatively low computational

cost, to many flow problems within its domain of validity. The current document

outlined the analytical and numerical aspects of this model with theoretical and

technical details related to implementation, performance, methods of improvement,

validation, and so on.
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Nomenclature

α correction factor for axial momentum flux

β parameter in the pressure-area relation

γ Murray’s law index

ε residual error

ζ quadrature point coordinate

κ viscosity friction coefficient

µ fluid dynamic viscosity

ν fluid kinematic viscosity (ν = µ
ρ
)

ρ fluid mass density

ς Poisson’s ratio of vessel wall

ψ basis function for finite element discretization

ω vector of test functions in the weak form of finite element

Ω solution domain

∂Ω boundary of the solution domain

A vessel cross sectional area

ABC boundary condition for vessel cross sectional area

Ain vessel cross sectional area at inlet

Ao vessel cross sectional area at reference pressure

B matrix of force terms in the 1D Navier-Stokes equations

E Young’s modulus of vessel wall

f(A) function in pressure-area relation

F matrix of flux quantities in the 1D Navier-Stokes equations
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h length of element

ho vessel wall thickness at reference pressure

H matrix of partial derivative of F with respect to U

J Jacobian matrix

L length of vessel

N norm of residual vector

p local pressure

p order of interpolating polynomial

po reference pressure

q dummy index for quadrature point

Q volumetric flow rate

QBC boundary condition for volumetric flow rate

r radius

R weak form of residual vector

Sa analytic solution

Sn numeric solution

t time

∆t time step

u local axial speed of fluid

u mean axial speed of fluid

U vector of finite element variables

∆U vector of change in U

x vessel axial coordinate
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9 Appendix A: Derivation of Time-Independent

Analytical Solution for Single Vessel

The following analytical relation linking vessel axial coordinate x to cross sectional

area A, cross sectional area at inlet Ain, and volumetric flow rate Q for time-

independent flow can be derived and used to verify the finite element solution

x =
αQ2 ln (A/Ain)− β

5ρAo

(
A5/2 − A5/2

in

)
κQ

(63)

The derivation is outlined in the following. For time-independent flow, the

system given by Equation 6 in matrix form, will become

∂Q

∂x
= 0 x ∈ [0, l] , t ≥ 0 (64)

∂

∂x

(
αQ2

A
+

β

3ρAo
A3/2

)
+ κ

Q

A
= 0 x ∈ [0, l] , t ≥ 0 (65)

that is Q as a function of x is constant and

∂

∂A

(
αQ2

A
+

β

3ρAo
A3/2

)
∂A

∂x
+ κ

Q

A
= 0 (66)

i.e.

(
−αQ

2

A2
+

β

2ρAo
A1/2

)
∂A

∂x
+ κ

Q

A
= 0 (67)

which by algebraic manipulation can be transformed to

∂x

∂A
=
−αQ2

A
+ β

2ρAo
A3/2

−κQ
(68)

On integrating the last equation we obtain
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x =
αQ2 lnA− β

5ρAo
A5/2

κQ
+ C (69)

where C is the constant of integration which can be determined from the boundary

condition at x = 0 with A = Ain, that is

C =
−αQ2 lnAin + β

5ρAo
A

5/2
in

κQ
(70)

i.e.

x =
αQ2 ln (A/Ain)− β

5ρAo

(
A5/2 − A5/2

in

)
κQ

(71)

For practical reasons, this relation can be re-shaped and simplify to reduce the

number of variables by the use of the second boundary condition at the outlet, as

outlined in the following. When x = L, A = Aou where L is the vessel length and

Aou is the cross sectional area at the outlet, that is

L =
αQ2 ln (Aou/Ain)− β

5ρAo

(
A

5/2
ou − A5/2

in

)
κQ

(72)

which is a quadratic polynomial in Q i.e.

− α ln (Aou/Ain)Q2 + κLQ+
β

5ρAo

(
A5/2
ou − A

5/2
in

)
= 0 (73)

α ln (Ain/Aou)Q
2 + κLQ+

β

5ρAo

(
A5/2
ou − A

5/2
in

)
= 0 (74)

with a solution given by

Q =

−κL±
√
κ2L2 − 4α ln (Ain/Aou)

β
5ρAo

(
A

5/2
ou − A5/2

in

)
2α ln (Ain/Aou)

(75)
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which is necessarily real for Ain ≥ Aou which can always be satisfied for normal

flow conditions by proper labeling. For a flow physically-consistent in direction

with the pressure gradient, the root with the plus sign should be chosen, i.e.

Q =

−κL+

√
κ2L2 − 4α ln (Ain/Aou)

β
5ρAo

(
A

5/2
ou − A5/2

in

)
2α ln (Ain/Aou)

(76)

This, in essence, is a relation between flow rate and pressure drop (similar to

the Hagen-Poiseuille law for rigid vessels) although for elastic vessels the flow rate,

as given by Equation 76, does not depend on the pressure difference (as for rigid

vessels) but on the actual inlet and outlet pressures.

Although Equation 76 may look a special case of Equation 63 as it involves only

the vessel two end areas, Aou may be assumed to be the area at any point along

the vessel axis, with L being the distance form the vessel inlet to that point, and

hence this relation can be used to verify the finite element solution at any point on

the vessel.
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10 Appendix B: Gauss Quadrature

In this appendix we list points and weights of Gauss quadrature for polynomials

of order 1-10 which may not be easy to find.
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Table 1: Gauss quadrature points and weights for polynomial order, p, 1-10 assuming a 0-1 master element.
p Points
1 0.500000000000000
2 0.211324865405188 0.788675134594812
3 0.112701665379259 0.500000000000000 0.887298334620741
4 0.069431844202974 0.330009478207572 0.669990521792428 0.930568155797026
5 0.046910077030669 0.230765344947159 0.500000000000000 0.769234655052841 0.953089922969331
6 0.033765242898424 0.169395306766867 0.380690406958402 0.619309593041598 0.830604693233133 0.966234757101576
7 0.025446043828621 0.129234407200303 0.297077424311301 0.500000000000000 0.702922575688699 0.870765592799697 0.974553956171380
8 0.019855071751232 0.101666761293187 0.237233795041836 0.408282678752175 0.591717321247825 0.762766204958164 0.898333238706813 0.980144928248768
9 0.015919880246187 0.081984446336682 0.193314283649705 0.337873288298095 0.500000000000000 0.662126711701905 0.806685716350295 0.918015553663318 0.984080119753813
10 0.013046735741414 0.067468316655508 0.160295215850488 0.283302302935377 0.425562830509185 0.574437169490815 0.716697697064623 0.839704784149512 0.932531683344493 0.986953264258586

Weights
1 1.000000000000000
2 0.500000000000000 0.500000000000000
3 0.277777777777778 0.444444444444444 0.277777777777778
4 0.173927422568727 0.326072577431273 0.326072577431273 0.173927422568727
5 0.118463442528095 0.239314335249683 0.284444444444444 0.239314335249683 0.118463442528095
6 0.085662246189585 0.180380786524069 0.233956967286345 0.233956967286345 0.180380786524069 0.085662246189585
7 0.064742483084435 0.139852695744638 0.190915025252559 0.208979591836735 0.190915025252559 0.139852695744638 0.064742483084435
8 0.050614268145188 0.111190517226687 0.156853322938943 0.181341891689181 0.181341891689181 0.156853322938943 0.111190517226687 0.050614268145188
9 0.040637194180787 0.090324080347429 0.130305348201467 0.156173538520001 0.165119677500630 0.156173538520001 0.130305348201467 0.090324080347429 0.040637194180787
10 0.033335672154344 0.074725674575291 0.109543181257991 0.134633359654998 0.147762112357376 0.147762112357376 0.134633359654998 0.109543181257991 0.074725674575291 0.033335672154344
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11 Appendix C: Biological Parameters

In this appendix, we suggest some biologically-realistic values for the 1D flow model

parameters in the context of simulating blood flow in large vessels.

1. Blood mass density (ρ): 1050 kg.m−3 [6, 7, 16, 25, 27–31].

2. Blood dynamic viscosity (µ): 0.0035 Pa.s [4, 6, 7, 15, 16, 20, 25, 27, 30, 32–34].

3. Young’s elastic modulus (E): 100 kPa [4, 6, 13, 15, 16, 20, 22, 25, 27, 34–38].

Also see [25, 39] on shear modulus.

4. Vessel wall thickness (ho): this, preferably, is vessel dependent, i.e. a fraction

of the lumen or vessel radius according to some experimentally-established

mathematical relation. The relation between wall thickness and vessel inner

radius is somehow complex and vary depending on the type of vessel (e.g.

artery or capillary). For arteries, the typical ratio of wall thickness to inner

radius is about 0.1-0.15, and this ratio seems to go down in the capillaries and

arterioles. Therefore a typical value of 0.1 seems reasonable [6, 16, 20–26].

5. Momentum correction factor (α): 4/3 = 1.33 assuming Newtonian flow. A

smaller value, e.g. 1.2, may be used to account for non-Newtonian shear-

thinning effects [2, 3, 7, 16, 17, 20, 28, 40].

6. Time step (∆t): 1.0-0.1 ms [4, 7, 9, 10, 13, 15, 16, 18–20, 25, 29, 34, 41–45].

7. Pressure step (∆p): 1.0-5.0 kPa [4, 7, 16, 29].

8. Time of heart beat: 0.85 s assuming 70 beats per minute.

9. Poisson ratio (ς): 0.45 [2, 4, 6, 13, 22, 25, 27, 34, 37, 39, 41].
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