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Abstract: This paper will answer the mystery of the coupling constant (𝑒), a puzzle of its origin 

that was made popular by Richard Feynman, by using what will be defined as “temporal 

kinematics”. Temporal kinematics studies the motion of time, we will name this “temporal 

motion” and provide a detailed explanation and kinematics to why this concept is far more 

accurate than the current concept of “repulsive gravity” that dominates in the cosmic inflation 

studies. Temporal motion should not be confused with cosmic inflation, it can only act as an 

initiator of it. Temporal kinematics functions as a bridge between General Relativity and 

Quantum Mechanics. 
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Introduction 

Some of the unexplained problems in physics can be explained and proven in a relatively simple 

way if we apply the logic of General Relativity on other fields of physics. The simplest way is to 

use “temporal motion” instead of “repulsive gravity” [1] to explain the inflation of space from 

the initial inflation, often called “cosmic inflation”, to the present time. 

We use a (-, +, +, +) metric, where (-) marks the dimension of time (𝑡) as usual [2]. Even in the 

simplest form of a (𝑅4) flat spacetime with (𝑡, 𝑥, 𝑦, 𝑧)  we have a metric: 

(1) 𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑥2 + 𝑦2 + 𝑧2 

We will proclaim that temporal motion inflates space; the inflation is its equivalent of what a 

trajectory is for spatial motion. Temporal motion has a velocity (𝑐) which is the speed of light 

and can be thought of as a speed limit of the Universe. This limit exists due to temporal motion 

since nothing can move in space faster than time due to the entanglement of space and time 

known as the spacetime continuum. 

Cosmological model 

The Universe will be represented as homogenous and isotropic. Isotropy means that the metric 

must be diagonal since it will be show that space is allowed to be curved. Therefore we will use 

spherical coordinates to describe the metric.  

The metric is given by the following line element: 

(2) 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) 

where we measure (𝜃) from the north pole and at the south pole it will equal (𝜋). 

In order to simplify the calculations, we abbreviate the term between the brackets as: 

(3) 𝑑𝜔2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜑2 

because it is a measure of angle, which can be thought of as “on the sky” from the observers 

point of view [4]. It is important to mention that the observers are at the center of the spherical 

coordinate system. 

Due to the isotropy of the Universe the angle between two galaxies, for the observers, is the true 

angle from the observers’ vantage point and the expansion of the Universe does not change this 

angle. 

Finally, we represent flat space as: 

(4) 𝑑𝑠2 = 𝑑𝑟2 + 𝑟2𝑑𝜔2 



Robertson and Walker proved that the only alternative metric that obeys both isotropy and 

homogeneity is: 

(5) 𝑑𝑠2 = 𝑑𝑟2 + 𝑓𝐾(𝑟)
2𝑑𝜔2 

where (𝑓𝐾(𝑟)) is the curvature function given by: 

(6) 𝑓𝐾(𝑟) = {

𝐾−1 2⁄  𝑓𝑜𝑟 𝐾 > 0
𝑟 𝑓𝑜𝑟 𝐾 = 0

𝐾−1 2⁄ sin ℎ (𝐾1 2⁄ 𝑟) 𝑓𝑜𝑟 𝐾 < 0

 

which means that the circumference of a sphere around the observers with a radius (𝑟) is, for 

(𝐾 ≠ 0), not anymore equal to (𝐶 = 2𝜋𝑟) but smaller for (𝐾 > 0) and larger for (𝐾 < 0). 

The surface area of that sphere would no longer be (𝑆 = (4𝜋 3⁄ )𝑟
3) but smaller for (𝐾 > 0) and 

larger for (𝐾 < 0). If (𝑟) is (𝑟 ≪ |𝐾|−1 2⁄ ) the deviation from (𝐶 = 2𝜋𝑟) and (𝑆 = (4𝜋 3⁄ )𝑟
3) is 

very small, but as (𝑟) approaches (|𝐾|−1 2⁄ ) the deviation can become rather large. 

The metric in the equation (1) can also be written as: 

(7) 𝑑𝑠2 =
𝑑𝑟2

1 − 𝐾𝑟2
+ 𝑟2𝑑𝜔2 

If we determine an alternative radius (𝑟) as: 

(8) 𝑟 ≡ 𝑓𝐾(𝑟) 

This metric is different only in the way we chose our coordinate (𝑟). 

We can now build our model by taking for each point in time a RW space. We allow the scale 

factor and the curvature of the RW space to vary with time [3]. This gives the generic metric: 

(9) 𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2[𝑑𝑥2 + 𝑓𝐾(𝑥)
2𝑥2𝑑𝜔2] 

the function (𝑎(𝑡)) is the spatial scale factor that depends on time and it will describe the spatial 

expansion of the Universe. We use (𝑥) instead of (𝑟) because the radial coordinate, in this form, 

no longer has meaning as a true distance. 

Temporal Motion 

Temporal motion needs three spatial equations for a trajectory, specifically it needs (2 + 1) 

spatial dimensions. 

Therefore (𝐷 = 2 + 1) is the number of spatial dimensions. 



The equation for temporal motion has to be on a quantum level to satisfy the observational 

evidence that suggests the opinion that the Universe comes from a singularity. We do so by 

establishing (𝑑Д) where (Д) represents the number of temporal dimensions which is (1), however 

having in mind that time has a negative value in the metric (−,+,+,+ ) we give it a value of 

(−1). We will represent this as (−𝑝) where (𝑝 = 1) and it is a very low constant pressure. We 

use it in a dimensionless form: 

(10) 𝑝 = ∫
1

𝑥
𝑑𝑥 = ∫

1

𝑦
𝑑𝑦

𝑒

1

= 1
𝑒

1

 

We name this constant the Ellis dimensionless constant, in honor of George Ellis. 

We write a simple equation of motion: 

(11) 𝛿 ↠ = 𝛿 ∫𝑑Д 𝐿(𝑎(𝑡), 𝑎̇(𝑡))   

Where (↠) is the symbol for temporal motion, (𝑎(𝑡)) is the three-dimensional 

trajectory/inflation and (𝑎̇(𝑡)) is the velocity that equals (𝑐) the speed of light. However: 

(12) 𝑎̇−1(𝑡) = −𝑝𝑐  

Where the pressure (𝑝) equals 1. This allows us to form the equations, three of them, for the 

temporal course of inflation. 

And the trajectory describing inflation (𝑎(𝑡)) becomes (𝑎−1(𝑡)) and functions as: 

(13) 𝑎−1(𝑡)

{
 
 

 
 ↠

(𝑥) = log
lim
𝑥→∞

(
𝑝
𝑥
+𝑝)

𝑥(𝑥)

↠ (𝑦) = log
lim
𝑦→∞

(
𝑝
𝑦
+𝑝)

𝑦(𝑦)

↠ (𝑧) =  𝜋𝑦(𝑡̇) + 𝛿𝑥(𝑡̇)

 

Where (𝑡̇) is the positive first derivative of time. We name it Feynman time in honor of Richard 

Feynman. 

(14) 𝑡̇ = 𝑧 + 𝐸𝑣 

Where (𝐸𝑣) is the energy state of the vacuum and it is zero by definition. Therefore the first 

derivation of time, Feynman time, functions as the third dimension (𝑧) and it has the energy 

value of the vacuum, which is zero. 

The equations might seem too complicated to comprehend but they are practical when we apply 

that (𝑝 = 1) we get the solutions ( lim
𝑥→∞

(
1

𝑥
+ 1)

𝑥

) equals (𝑒) and ( lim
𝑦→∞

(
1

𝑦
+ 1)

𝑦

) equals (𝑒) as 

well, where the first two equations become (↠ (𝑥) =  log𝑒(𝑥)) and (↠ (𝑦) =  log𝑒(𝑦)) and the 



number (𝑒) is the Euler’s number, not the coupling constant we are looking for. The third 

equation (↠ (𝑧)) is the “wave function”, representing “temporal waves”. Every temporal wave 

can be thought of as a spatial layer, or a frame. We will define them as “z-frames” and state that 

each value of (𝑧) represents every individual z-frame from (1) to (𝑛).   

The mathematical core of the equations is: 

(15) 𝑒 = 𝜋 − 𝛿 

This equation is the symmetry of temporal motion and therefore it is the mathematical logic 

behind the temporal kinematics, simply put the mathematical foundation of temporal motion. We 

shall name this equation the “logos equation”.  Now we conclude from the equation that (𝛿 =

0.423310825130748) and define that: 

(16) 𝛿 =
𝒆

𝐷
+ Ω + (𝛿𝐶𝐾𝑀 − 𝛿𝑃𝑀𝑁𝑆) 

Where (𝐷 = 2 + 1) is the number of spatial dimensions, (Ω ≈ 0.3) is the ratio of the actual 

density of the Universe to the critical minimal density necessary for the Big Crunch scenario to 

occur in the distant future, (𝒆) is the coupling constant and it is measured to be (𝒆 =

0.08542455), (𝛿𝐶𝐾𝑀 ≈ 0.995) is the CKM cp-violating phase and (𝛿𝑃𝑀𝑁𝑆) is the PMNS cp-

violating phase and its value is currently unknown. After doing the calculus we conclude that 

(𝛿𝑃𝑀𝑁𝑆 = 0.900164024869252) however we approximate it to be (𝛿𝑃𝑀𝑁𝑆 ≈ 0.900164 ±

0.0000001) where we are making a prediction that can be tested experimentally in order to 

confirm the claims of this paper. The first objective of the paper was to explain how the coupling 

constant (𝒆) arises in physics. 

 When we draw the functions, we get an image: 

 

 

Figure 1: Trajectory/cone of temporal motion where every ellipse is a temporal wave. 



Dimensions of the Universe 

The Universe has four dimensions, a (−1) temporal dimension and (2 + 1) spatial dimensions 

where the (+1) is the (𝑧) dimension that is described in temporal kinematics as the positive first 

derivative of time. The best way to explain this is to say that the dimensions (t) and (z) are 

entangled, which forms the relationship of spacetime that General Relativity studies. In simpler 

terms we could say that temporal waves are spatial layers or frames. We name them z-frames. 

This explains the lack of curved space in the Universe (it is observed to be near flat), and its near 

homogeneous and near isometric nature. 

The constant pressure (𝑝) prevents anything in space to travel faster than time (𝑐) due to the 

equation (12). 

Z-frames 

Every individual z-frame is represented by a value of (𝑧) from eq. (13), for example the current 

period is (z= 1), to represent different eras of the Universe. [5] 

For: 

(17) (𝑧 ≃ 1000)  

we have a value: 

 (18) 𝑎(𝑡) ≃ (
3

2
𝐻0√𝛺𝑚;0𝑡)

2 3⁄

 

which is a z-frame know as “matter dominated era”. Earlier than that, in a z-frame known as the 

“radiation dominated era”, a period when the Universe was dominated by radiation, around (z ≳

3200) we have a value: 

(19) 𝑎(𝑡) ≃ (2𝐻0√𝛺𝑟;0𝑡)
1 2⁄

 

The early, radiation dominated Universe expanded as: 

(20) 𝑎 ∝ √𝑡  

Every frame has slightly more temporal-kinetic energy, or “dark energy”, than the previous one 

but since the differences in the trillions of frames is complicated to determine it is therefore 

simpler and more productive to only use some frames. 

Due to the low negative pressure of temporal motion, its kinetic energy which is “dark energy”, 

also has a low negative pressure (−𝑝 = −1) [6]. Having such a pressure, dark energy accelerates 

the inflation of space conducted by temporal motion. 



Fundamental interactions 

Due to the relationship of space and time fundamental interactions also have their temporal 

equations.  

Electromagnetic interaction 

 

Figure 2: Geomagnetic field of Earth. 

 

(21) 𝑎−2(𝑡)

{
 
 

 
 
↠ (𝑥) = log

lim
𝛼𝑥→0

(𝑝+𝛼𝑥)
𝑝
𝛼𝑥⁄ (𝑥)

↠ (𝑦) = log
lim
𝛼𝑦→0

(𝑝+𝛼𝑦)
𝑝
𝛼𝑦⁄
(𝑦)

↠ (𝑧) = 𝜋𝑦(𝑡̈) + 𝛿𝑥(𝑡̈)             

 

Same as with the first temporal equations, (𝑝 = 1) providing the solutions (𝑒) meaning that (↠

(𝑥) = log𝑒(𝑥)) and (↠ (𝑦) = log𝑒(𝑦)) where (𝑒) is the Euler’s number. The third equation also 

functions as a wave equation due to the positive second derivative of time (𝑡̈) and the (𝑒 = 𝜋 −

𝛿) also applies explaining how waves spread though space and time, that is the spacetime 

continuum. Since (𝛼𝑥 → 0) and (𝛼𝑦 → 0) we get two timelike curves that form an 

electromagnetic potential well. Here (𝑡̈) functions as a wave field for the fundamental interaction. 

We will name it Mileva time, in honor of Mileva Maric/Marity Einstein, and it equals: 

(22) 𝑡̈ = 𝑧 + 𝛼𝑧 

Where: 

(23) 𝛼𝑧𝑥 = 𝛼𝑧 ∙ 𝑒
𝛼𝑥 



and: 

(24) 𝛼𝑧𝑦 = 𝛼𝑧 ∙ 𝑒
𝛼𝑦 

Therefore: 

(25) 
𝑑𝛼𝑧𝑥
𝑑𝛼𝑥

=
𝑑(𝛼𝑧 ∙ 𝑒

𝛼𝑥)

𝑑𝛼𝑥
= 𝛼𝑧

𝑑(𝑒𝛼𝑥)

𝑑𝛼𝑥
= 𝛼𝑧𝑥 

and: 

(26) 
𝑑𝛼𝑧𝑦

𝑑𝛼𝑦
=
𝑑(𝛼𝑧 ∙ 𝑒

𝛼𝑦)

𝑑𝛼𝑦
= 𝛼𝑧

𝑑(𝑒𝛼𝑦)

𝑑𝛼𝑦
= 𝛼𝑧𝑦 

We define that (𝛼𝑧 = 𝛼) where (𝛼) is the fine-structure dimensionless constant. This describes 

the electromagnetic interaction between two elementary charged particles. 

 

Figure 3: The electromagnetic field where the red and the blue lines are timelike curves that 

form a potential well and the green line is the axis. 



We can also explain the "mass gap” using Temporal Kinematics. 

The mass gap 

We will describe the mass gap as a difference of Feynman time (𝑡̇) and Mileva time (𝑡̈). 

(27) 𝑡̇
𝛼
→ 𝑡̈ 

where (𝑡̇ = 𝑧 + 𝐸𝑣) and (𝐸𝑣 = 0) while (𝑡̈ = 𝑧 + 𝛼𝑧) where, as the lightest elementary particle, 

we take the photon, thus (𝛼 =
𝒆2

(4𝜋𝜀0)ћ𝑐
= 0.0072973525664). Other elementary particles can be 

used as well. 

Gravitational interaction 

 

Figure 4: The Gravitational field of Earth. 

The temporal equations are: 

(28) 𝑎−2(𝑡)

{
 
 

 
 
↠ (𝑥) = log

lim
𝛼𝐺𝑥

→0
(𝑝+𝛼𝐺𝑥)

𝑝
𝛼𝐺𝑥
⁄

(𝑥)

↠ (𝑦) = log
lim

𝛼𝐺𝑦
→0
(𝑝+𝛼𝐺𝑦)

𝑝
𝛼𝐺𝑦
⁄

(𝑦)

↠ (𝑧) = 𝜋𝑦(𝑡̈) + 𝛿𝑥(𝑡̈)             

 

Where (𝛼𝐺𝑥 → 0) and (𝛼𝐺𝑦 → 0) form timelike curves and therefore a gravitational well and the 

solutions for (↠ (𝑥),↠ (𝑦)) are again (𝑒), same as before. For gravity, Mileva time (𝑡̈) is: 



(29) 𝑡̈ = 𝑧 + 𝛼𝐺𝑧 

Same as with the electromagnetic interaction, we have: 

(30) 𝛼𝐺𝑧𝑥 = 𝛼𝐺𝑧 ∙ 𝑒
𝛼𝐺𝑥  

and: 

(31) 𝛼𝐺𝑧𝑦 = 𝛼𝐺𝑧 ∙ 𝑒
𝛼𝐺𝑦  

Therefore: 

(32) 
𝑑𝛼𝐺𝑧𝑥
𝑑𝛼𝐺𝑥

=
𝑑(𝛼𝐺𝑧 ∙ 𝑒

𝛼𝐺𝑥)

𝑑𝛼𝐺𝑥
= 𝛼𝐺𝑧

𝑑(𝑒𝛼𝐺𝑥)

𝑑𝛼𝐺𝑥
= 𝛼𝐺𝑧𝑥  

and: 

(33) 
𝑑𝛼𝐺𝑧𝑦
𝑑𝛼𝐺𝑦

=
𝑑(𝛼𝐺𝑧 ∙ 𝑒

𝛼𝐺𝑦)

𝑑𝛼𝐺𝑦
= 𝛼𝐺𝑧

𝑑(𝑒
𝛼𝐺𝑦)

𝑑𝛼𝐺𝑦
= 𝛼𝐺𝑧𝑦 

We define that (𝛼𝐺𝑧 = 𝛼𝐺) where (𝛼𝐺) is the gravitational coupling dimensionless constant. 

Where we have described the gravitational interaction between a pair of elementary particles of 

our choice. 

Gravitational polar inequality 

Due to the asymmetry of the poles (specifically their center) the gravitational poles are unequal, 

which influences solar instability. 

The more massive a star is the less stable it will be. With medium size stars, gravitational polar 

inequality leads to a gradual shrinking of the core since it is the most massive part of the star, 

until the core shrinks to the size sufficient for the medium sized star such as the Sun, to become a 

red giant. The core seeks to attain a balance of equal poles, which it can never achieve as shown 

on the image bellow. 

As we can see on the figure five, no matter how much we shrink the circles the poles will never 

be equal until point (0) is reached which represents the point of singularity. This is best 

noticeable with super massive stars where the core does not shrink but implodes into point (0) 

while the other layers of the star explode. This makes black holes the only gravitationally 

symmetrical celestial bodies. 

Gravitational polar inequality is the second prediction this paper makes. 

 



 

Figure 5: Gravitational polar inequality in 2D. 

Gravity and electromagnetism have the (𝑥 → ∞, 𝑦 → ∞) range and (𝑎−2(𝑡) = 𝑝𝑐) velocity. 

The Strong and the Weak interaction 

Unlike the gravitational and electromagnetic interaction, strong and weak interactions have 

nowhere near infinite range (𝑥 → ∞), (𝑦 → ∞), which is why instead of (𝑝) we will use (𝛼𝑠) 

which is the strong coupling constant (𝛼𝑠 ≈ 1). 

(34) 𝑎−2(𝑡)

{
 
 

 
 
↠ (𝑥) = log

lim
𝑔𝑥→0

(𝛼𝑠+𝑔𝑥)
𝛼𝑠

𝑔𝑥⁄ (𝑥)

↠ (𝑦) = log
lim
𝑔𝑦→0

(𝛼𝑠+𝑔𝑦)
𝛼𝑠

𝑔𝑦⁄
(𝑦)

↠ (𝑧) = 𝜋𝑦(𝑡̈) + 𝛿𝑥(𝑡̈)             

 

Where, as before, (𝑔𝑥 → 0, 𝑔𝑦 → 0) make timelike curves and (𝑡̈) is: 

(35) 𝑡̈ = 𝑧 + 𝑔𝑧 

As before: 

(36) 𝑔𝑧𝑥 = 𝑔𝑧 ∙ 𝑒
𝑔𝑥 



and: 

(37) 𝑔𝑧𝑦 = 𝑔𝑧 ∙ 𝑒
𝑔𝑦 

Therefore: 

(38) 
𝑑𝑔𝑧𝑥
𝑑𝑔𝑥

=
𝑑(𝑔𝑧 ∙ 𝑒

𝑔𝑥)

𝑑𝑔𝑥
= 𝑔𝑧

𝑑(𝑒𝑔𝑥)

𝑑𝑔𝑥
= 𝑔𝑧𝑥 

and: 

(39) 
𝑑𝑔𝑧𝑦

𝑑𝑔𝑦
=
𝑑(𝑔𝑧 ∙ 𝑒

𝑔𝑦)

𝑑𝑔𝑦
= 𝑔𝑧

𝑑(𝑒𝑔𝑦)

𝑑𝑔𝑦
= 𝑔𝑧𝑦 

We define that (𝑔𝑧 = 𝑔) where (𝑔) is the coupling constant (gauge coupling parameter). 

Common symmetry 

If the dimensionless coupling constant (𝑔) is much lesser than one (𝑔 ≪ 1) then the second 

derivative temporal waves are weakly coupled. If (𝑔) is of order one (𝑔 = 1) or higher (𝑔 > 1), 

then the second derivative temporal waves are strongly coupled. Second derivative temporal 

waves are fields of fundamental interactions. 

 We have there by explained why all elementary particles have dual nature by applying temporal 

equations, and we found a common symmetry for all four fundamental interactions by using 

dimensionless physical constants, hence explaining their origin and importance. 

 

Figure 6: The Atom, where + and the green center is the nucleus and the blue cloud and 𝑒− 

represents the electron cloud. 



Conclusion 

If we apply the new values from the temporal equations assuming no distinction between the 

spatial directions, we can change some of the equations in the cosmic inflation theory in order to 

make them more logical. We write the FRLW metric as: 

(40) 𝑑𝑠2 = −𝑑𝑡2 + 𝑎(𝑡)2 [
𝑑𝑟2

𝑝 − 𝑘𝑟2
+ 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑ф2)] 

With a time-invariant Hubble constant, we have a de Sitter metric where: 

(41) 𝑑𝑠2 = −𝑑𝑡2 + 𝑒2𝐻𝑡(𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2) 

We also define the density parameter: 

(42) Ω𝑝 ≡
𝜌

𝜌𝑐
=

3
8𝜋𝐺⁄ (𝐻2 + 𝑘 𝑎2⁄ )

3𝐻2
8𝜋𝐺⁄

= 𝑝 +
𝑘

𝑎(𝑡)2 𝐻2
 

When (𝑎(𝑡) = 𝑒𝐻𝑡) and (𝐻 = 𝑐𝑜𝑛𝑠𝑡.) we have: 

(43) Ω𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑝 +
𝑘

𝑎(𝑡)2 𝐻2
= 𝑝 + 𝑘𝐻−2𝑒−2𝐻𝑡 

Where, as before (𝑝 = 1) therefore the pressure drives (Ω𝑝) very rapidly to the value of (1). With 

enough influence by temporal motion, the initial value of (Ω𝑝) that may have differed from (1) 

could have been driven close enough to (1) that it would be approximately equal to it in the 

present period of the Universe. 

Using temporal equations allows for a much simpler and more accurate theory of inflation. 

Temporal kinematics creates the cone (seen on Figure 1), setting the course of inflation from the 

beginning and to an end as well.  

Possible quantum fluctuations: 

(44) ф(𝑥⃗, 𝑡) = ф(𝑡) + 𝛿ф(𝑥⃗, 𝑡) 

Resulting in: 

(45) 𝛿ф = [(𝐿 𝑎(𝑡))
3
]
−1/2

∑ [𝑎𝑘⃗⃗𝑔𝑘(𝑡)𝑒
𝑖𝑘⃗⃗𝑥⃗𝑦⃗⃗ + 𝐻. 𝐶. ]

𝑘⃗⃗
 

The time dependent part of the fluctuation is: 

(46) 𝛹𝑘 ≡ 𝑎(𝑡)−3/2𝑔𝑘 



Therefore: 

(47) |𝛿ф|2 = 𝐿−3|𝛿𝛹𝑘|
2 

where (𝐿 → ∞). 

We consider an inflation field composed of a spatially homogenous term plus a first order: 

(48) ф(𝑥⃗, 𝑡) = ф(0)(𝑡) + 𝛿ф(𝑥⃗, 𝑡) 

In units of: 

(49) ћ = 𝑐 = 𝑝 = 1 

 we get the evolution equation: 

(50) 𝜕𝑡
2𝛿ф + 3𝐻𝜕𝑡𝛿ф − 𝑎

−2(𝑡)∑𝜕𝑖
2

𝐷

𝑖=1

𝛿ф +𝑚(ф(0))
2
𝛿ф = 0 

Here the (𝑎−2(𝑡)) represents the evolution of the fundamental forces. This proves that there is 

only one form of evolution and that is the evolution of the Universe (celestial/cosmic evolution). 

In order words, laws of physics, including evolution, dictate everything in the Universe including 

life, natural selection and even death. This is explained by temporal laws. 

The first temporal law: 

Time does not move forward nor can it move backward, time simply moves on. Temporal waves 

move on from the beginning, the Big Bang, to the end, the Big Crunch with possibility of some 

other similar scenarios. This is dictated by the (Ω) factor in the basis of (𝛿), due to its value (Ω ≈

0.3) which is the value necessary for an event such as the Big Crunch to occur in the distant 

future. In other words, everything that has a beginning must have an end. Time has a 

deterministic nature while space, due to the t-z entanglement, has a near-deterministic nature. 

The second temporal law: 

The second temporal law is a derivation of the first, specifically regarding life. Everything that is 

born (is alive) must eventually die. This is also due to the (Ω) factor in the basis of (𝛿), meaning 

that both life and death are dictated by the basic laws of physics.  

Temporal Kinematics 

Temporal kinematics successfully unites General Relativity and Quantum Mechanics by 

providing a common temporal symmetry for all four fundamental interactions. Temporal 

Kinematics is a falsifiable theory since it makes a prediction regarding (𝛿𝑃𝑀𝑁𝑆) and claiming the 

existence of gravitational polar inequality, both of which are observable.  
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