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Abstract. The aim of this paper is to establish a synthetic form for Bernoulli’s law concerning an adiabatic ideal 
gas flow and to apply it to the expanding universe. Unfortunately, the obtained law is not applicable to the expansion 

of the universe, but it is applicable only to ordinary cases of fluid mechanics. 

 

Introduction 

 

A simple law that can describe, in terms of specific physical quantities, for instance temperature 

or pressure, an adiabatic flow of an ideal gas, with a, particularly, variable velocity, does not exist. 

There is, in exchange, the law which links the cooling or the warming of a fluid in motion 

through a small section by the Joule-Thomson effect, (Reif, 1965). 

In the following, we will try to obtain such a law. We will use a particular form of the Bernoulli’s 

law, (Resnick & Halliday, 1960), and an expression that describes an adiabatic transform of an ideal gas, 

belonging as it is well-known to Poisson, (Bailyn, 1994). 

Then, logically, we will discuss about the field of application of the result. 

 

Theoretical model 

 

For the beginning, let consider the Bernoulli’s law, in which the gravitational pressure is null, of 

an ideal fluid flow: 

(1) 
   

 
 p const , 

where ρ is, formally, the ideal fluid mass density, particularly an ideal gas mass density, v is the flow 

velocity and p is the static pressure. 

 Accordingly, if this ideal gas flow is adiabatic, then the complete description of it must include 

the law: 

(2)                    



where T is the gas temperature, p is its static pressure and γ is the adiabatic exponent,          

 Let’s apply now to equation (1) the first derivative with respect to time. We obtain: 

(3) 
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If the gas is ideal, then it is incompressible too, i.e.        , variations of density with respect to time 

are zero. Considering this observation, equation (3) becomes: 

(4)    
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Then we must apply the first derivative with respect to time to equation (2) also: 
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After reduction with quantity         and introduction of remaining result in equation (4) we will find: 

(5) 
  

  
 

   

 
 
 

 
       

  

  
     

The ideal gas state equation is, (Perrot, 1998): 

           , 

where 

       

Is the internal energy of the ideal gas. The report of the last two equations is: 
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 Taking into account this last result within equation (6), and the fact that        , after the 

obvious simplifications, we have: 

(6) 
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Equation (7) is a synthesis of equation (1) and (2), with a simpler form, is the essence of the two 

equations from which it is resulted. 

 In order to obtain the simplest form of this equation, we seek, hence, to eliminate the time-

dependence. Accordingly, we multiply and divide with 2 the second term of equation (7). Next, if we 

consider               and          , it results: 
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equation that can be written more simple as: 



(7)   
  

   
       , 

which is the synthetic final form, the most simple resulting equation from (1) and (2), under conditions it 

was established. 

 

Discussions 

 

 Equation (8) is a simplified synthetic writing of both equations (1) and (2), under conditions 

specified during its deduction. At first sight equation (8) sets a relation between gas temperature and the 

velocity of the gas flow. The higher is the velocity the lower is the temperature. In fluid mechanics, in the 

case of an ordinary adiabatic expansion, this would be translated, in a first phase, by a decrease of 

temperature. If the expansion would take place, in a first phase, with           , then, in a second 

phase, with           , the overall effect would be           

 The same conclusion would be valid in the case of an adiabatic compression  So that, it’s hard to 

imagine an adiabatic flow that it produce a decrease or an increase of temperature only, in order to relate 

equation (8) with some practical applications. Maybe the solution is, in the second phase, when the 

velocity must fall more slowly than it was increased in the first phase, to put in contact the gas with a 

thermostat. Thus we could design a thermal machine whose operation have the result the cooling or the 

warming of a gas. But, under normal conditions of an adiabatic transform, in both ways the overall effect 

is null. 

 Let’s see now, however, if equation (8) is suitable to the expansion of the universe. The universe 

is conceived as an adiabatic system as a whole, which is expanding with a constant, but time-dependent 

with a slow variability of epoch speed, the Hubble’s constant  The actual speed, on each mega parsec, 

through which the expansion it is manifesting itself is 69,32 0,8 Km/s, (Bennet et al., 2013). If we 

approximate the space as a superfluid, (Liberati & Maccione, 2014) and we want to calculate the speed of 

its expansion, in the event of cooling from 2,7 K as the universe has now, to 1,7 K, in the future, we have 

an unpleasant surprise. Equation (8) does not apply in this case, because the value of specific heat at 

constant pressure is unknown.  

 In the case of a superfluid,    varies very much with temperature. Liquid helium, for instance, has 

     for T=1 K and              at T=2,2 K, (Keesom & Keesom, 1935). Except this fact, even if 

we empirical approximate the specific heat at constant pressure for space, we have no clue about how this 

value varies with temperature, as any other superfluid. Our ideal gas, from which space  is made of, 

should, logically, have a constant    with respect to temperature. Otherwise, if this physical quantity 

would vary decreasingly with respect to temperature, we get, to the situation when a decrease of one 

degree of the universe’s temperature to cause an expansion with a smaller speed  What is contradictory 

with the actual data concerning the accelerated expansion of the universe.  

 So, until now, the overall problem in this case is the same as in the previous case, the unknown 

specific heat at constant pressure.  



 Nor in relativistic case the things seem to look better. Here, unlike the previous cases, we are on a 

ground of pure speculation. Because equation (8) was deduced only for non-relativistic speeds and a 

rigorous deduction of equation (8) for relativistic speeds assumes to consider the relativistic version of 

equation (1), which I acknowledge that does not exist, then the solution is to approximate empirically the 

equation (8) for relativistic speeds. We propose the formula: 

(8)   
  

  
    

 

        
         

where the second term tends to       when    . As the temperature concerns, the result of the 

microscopic process of a thermal movement, we adopted the same position as P. T. Landsberg, 

(Landsberg, 1967), in this matter: it does not vary in relativistic way.  

 With equation (9) we can treat inflation at    , or other cases corresponding to     too. 

However, there are only conflicting results, due to the fact that the same specific heat at constant pressure 

is unknown  Now, we can’t approximate the space as a superfluid, we better think of it as a very high 

energy “superplasma” with an unknown   . Either the specific heat at constant pressure varies with 

temperature or not, we are reaching to contradictory results, one way or another. Relativistic speeds after 

inflation or smaller temperatures as in standard theory, (deGrasse & Goldsmith, 2004). This situation 

illustrates that we are on a purely speculative ground and nothing more. 

 

Conclusions 

 

 In this paper we obtained a synthetic form of Bernoulli’s law concerning an adiabatic ideal gas 

flow. Unfortunately, the obtained law is not applicable to the expansion of the universe, but it is 

applicable only to ordinary cases of fluid mechanics. 

 There is the possibility to create a thermal machine capable to cool or warm a gas and more, and 

to be well described by the law we obtain. He hope there will be other applications of it too. 
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