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Abstract  

 In this paper we propose another proof for Fermat’s Last Theorem (FLT). We found a simpler 
approach through Pythagorean Theorem, so our demonstration would be close to the times FLT was 
formulated. On the other hand it seems the Pythagoras’ Theorem was the inspiration for FLT. It 
resulted one of the most difficult mathematical problem of all times, as it was considered. 
Pythagorean triples existence seems to support the claims of the previous phrase.    
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1. INTRODUCTION 
 

Fermat’s Last Theorem postulates that there are not three integers a, b, c which satisfy the 

Diophantine equation: 

                                                
nnn cba  ,   2,,,, *  nZncba                                                  (1) 

for any natural value of n greater than two. Apparently simple, this theorem statement has given much 

trouble to many generations of mathematicians. Although it was formulated in 1637, after several partial 
demonstrations, the successful proof comes later, in 1995, after some papers published by the British 

mathematician Wiles, [1] and [2]. A brief history of the unsuccessful efforts to solve FLT is found in ref. [3]. 

In our opinion, the demonstration difficultness of this theorem consists in its countless possibilities of 
approach. In this context we present, in the following, another demonstration of this theorem, in terms of 

Pythagorean Theorem. 

  
 

2. PYTHAGORAS’ THEOREM VS. FERMAT’S LAST THEOREM 
 

In order to make an easy demonstration, which otherwise it would be reduced to an endless series of 

attempts by giving values to integers a, b and c, hence impossible to prove in fact, we must reduce our 

problem to another problem in which a, b and c must gain significance. The best way is to reduce equation 
(1) to a geometry problem. Consequently, a convenient way is to reduce the problem to a relation between 

sizes of a rectangular triangle. Therefore let us consider a, b and c the sizes of a rectangular triangle. It is 

known that the relation between them is, according to the Pythagorean Theorem: 
222 cba                                                                        (2) 
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where 
*,, Rcba   include both negative and positive values. 

The sizes a and b can take positive or negative values if we convenient choose the reference system in which 
we built the rectangular triangle. Regarding the hypotenuse, given that it is a sum of squares: 
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1

22 )( bac   

it is obvious that it can also take negative values too. 
Let us now define the trigonometric functions 

ca /sin   

and: 

cb /cos   

with )2,0(   because  a and b must take both positive and negative values. 

For a better understanding why a and b must take positive and negative values, we can imagine a circle like 
trigonometric circle in which we outlined in each quadrant a symmetric triangle. In quadrant I, a and b are 

positive and α is an acute angle. In quadrant II a is positive and b is negative, the angle α is already an obtuse 

angle. You might think now that sharp angles sum is not equal to π/2. The fulfilling condition for a 
rectangular triangle is broken. Beginning with quadrant II angle α would be already obtuse and this is the 

reason why triangles cannot be conceived in these quadrants. But this is not exactly so. In quadrant II, for 

example, the angle symmetrical with α will have the value π-α. If the opposed angle will have the value α-π / 

2, then their sum will be exactly the condition that must be fulfilled by a rectangular triangle. Thus our circle 
will not be a simple reference for the measure of a and b, positive and negative. Hence we obtain four 

identical rectangular triangles, with identical sizes and angles. The only difference between them is that some 

of them are positive, other negative, something conventional, actually illustrating their perfect symmetry 
from the center of coordinate axes. 

With these established notions we can think now a way to transform equation (2) in a relation close 

to equation (1). One way is to multiply equation (2) by c and using trigonometric functions defined above in 
order to obtain an equation in which the power of the unknowns a, b, and c to be multiplied by one order. 

Remaking the multiplication n times we have therefore: 

  nnnnn bac 22 cossin                                                          (3) 

It would have been easier to write 
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but we choose the form (3) because the functions formed by sine and cosine of high power in (4) cannot be 

defined if the trigonometric functions have negative values. We have therefore (3) in which we can already 

operate the restriction 
*,, Zcba  . 

We distinguish two main cases. The first case corresponds to the general situation in which: 

pn 2                                                                          (5) 

Here p must be seen not necessarily an integer but rather as a number that make (5) an integer. 

Considering (5), equation (3) becomes: 

  ppppp bac 2222222 cossin                                                  (6) 

Obviously, for p=1 it results equation (2) from which we started. a, b, and c are integers this time, 

and we can say that we have already demonstrate the viability of the general relation (2) for integer numbers. 
But we are interested in higher powers than two of n, respectively higher than one of p and therefore in an 

equation (6) of the form (1). Note that we can do this, and this is to write equation (6) of the form: 
ppp edc 222                                                                    (7) 

with  sinad  and  cosbe , 
*, Zed  , only if the condition 

pp 222   
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is fulfilled. 

By replacing 2/1p  in equation (6) we get immediately the equation: 

 cossin bac  

which turns in equation (2) through trigonometric functions sine and cosine definition relations. So, our 

equation (6) can be written as equation (1), but only for p=1/2. For higher powers of p, 2/1p , we always 

have: 

pp 222   

which leads to the conclusion that between three numbers 
*,, Zcba  , for any p>1, there is only a relation 

of the form (6). The form (6) does not exclude therefore a relation like: 
mkp edc 2

 

with pmk 2 , but with d and e real numbers. The quantities d and e cannot be integers because they are 

a product of an integer and a real number. Particular cases of extreme values of trigonometric functions are 

excluded because the quantities included in equation (6) are the sizes of a rectangular triangle for which the 
sum of the sharp angles is always equal to π / 2. 

A special case is the one in which: 
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For pn 2  we have 
122/1 2)2(   pn
, and equation (6) becomes 

12122 22   ppppp bac  

Note that for p=1 the result is equation (2). But we are interested in higher values of p. Therefore, to have an 

equation of the form (7) it have to 

pp 21  

Hence p=-1 for which 
222   edc  

equation that can be written as 
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or 
2'2'2' edc   

with 
*',',' Zedc  . 

The second main case is corresponding to: 

12  pn  

and brings nothing special in the spectrum of results. We obtain the equation: 

  ppppp bac 2112211212 cossin                                              (8) 

for which we do the same kind of reasoning. Equation (8) becomes the type: 
121212   ppp edc                                                                (9) 

with  sinad  and  cosbe , 
*, Zed  , under condition:  

pp 2112  . 

This condition easily leads to the only possible result, equation (2). We are interested in all situations but 

especially in 

pp 2112   

But this leads to the conclusion that between the three integer numbers 
*,, Zcba   and p> 1 could not be any 

relation but that illustrated by the form (8). 

The particular case in which the sine and cosine values are equal is described by the equation: 
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The condition: 
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leads to equation: 
222   edc  

which can be written as: 
2'2'2' edc   

with 
*',',' Zedc  . 

 

 

3. PARTICULAR CASE 

A simplest case, whose solution is obvious, is when trigonometric functions are positive, 

)2/,0(   In equation (3), written in the form (4): 
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we can do the restriction 
*,, Ncba  . For n=2 we can see that the resulting that equation (2) it results very 

easily. For n>2 we must see what happens with trigonometric functions within parentheses. Noting that: 
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and: 

1sin0  ,  1cos0  , 1sin0
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also: 
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cos,sin  

can arise only as: 
nnn edc  , 

*Nc , 
Red,  

where 
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From equation (4) it might exist a situation. Consider: 

3n , 1,0sin   and 0...zxya  , 

where x, y, z are component ciphers of the natural number a. It is possible, therefore, the situation in 

which
*Nd  . In this situation we also know that 

Re  and 
*Nc . As you can see, this situation cannot 

exist because a natural number cannot be the sum of an integer number and a real one. So this situation is 
impossible. 

The same conclusion applies also for n=3k, for k natural number and sinα=0,0…01, with a=x0…0. 

As for the situation when sinα=cosα, It is treated the same way and lead to the same results as in the previous 

cases, n = 2p and n = 2p +1. 
By summing, ultimately, all the conclusions of all cases in a single one there are no three integers a, 

b and c that satisfy equation (1), for n> 2. The solutions of this equation are only for n = 2. 
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4. DISCUSSIONS 

Whereas equations (6) and (8) result from equation (2) by multiplying with c, you would think that 

we've proven nothing so far, these equations are equivalent to equation (2). We assume that equation (2) is 

valid from the very beginning and we got finally that only (2) may be valid. It is what you might call a trivial 
case. But things seem to stand exactly opposite.. We assume, in the hypothesis, that equation (2) is indeed 

valid, but a, b, c are real numbers. The result is that the equation (2) is indeed valid, but in case we are 

interested, when a, b, c are integers. Other cases, for higher powers of n, are impossible. It is a correct 
reasoning because in the FLT statement equation (2) is assumed valid, for any integer triplet, other cases 

being impossible. In our reasoning we start with what is known, but the numbers a, b and c are assumed to be 

not integers. This is the result we reached. We initially assumed that the equation (2) is valid, whatever be 

three real numbers a, b and c. 

By using this reasoning, if we assume that the Pythagorean Theorem is of the form 
333 bac  , 

we have reached the same conclusion: there cannot be three integers a, b, c which satisfy the equation  
333 bac  . The same conclusion is if the Pythagorean Theorem is 

202020 bac  . No matter what form 

has therefore the Pythagorean Theorem, the result is of the form of Pythagorean Theorem. This seems to be 

strange at first sight, but in our opinion, is due to the similarities of the two theorems form. Up to a point you 

might get the impression it is one and the same theorem. You might think that FLT is just an existence 
theorem for equation (2), and there is no a clear line of separation between them. And this is, perhaps, 

because Fermat’s Theorem was inspired by the Pythagoras’ Theorem, and tries to apply it only to some 

numerical values without any meaning. He succeeded to create, hence, the most difficult mathematical 

problem, according to some, of all times. By the same blur delimitation between the two theorems we use in 
our approach. We have shown that there can be no triples of integers satisfying the equation (1), for higher 

powers of n. The solutions are only for n=2. 

 

 

5. Conclusions 

 

Based on the similarities that exist, to certain extent, from Pythagorean Theorem and Fermat’s 

Last Theorem, we attempted, in this paper, to demonstrate the later through the former. It has been 

shown that given equation (1), it has no solution a, b, c integers, but only for n=2. Case corresponding 
to Pythagorean Theorem. 
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