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Abstract

To the collections of problems solved via Geometric Algebra (GA) in

[1]-[11], this document adds a solution, using only dot products, to the

Problem of Apollonius. The solution is provided for completeness and for

contrast with the GA solutions presented in [4].

The Problem of Apollonius: Given three coplanar circles, construct

the circles that are tangent to all three of them, simultaneously.
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1 Introduction

The Problem of Apollonius reads,

“Given three coplanar circles, construct the circles that are tangent

to all three of them, simultaneously.”

Figure 1: The Problem of Apollonius: “Given three coplanar circles (e.g. C1,
C2, and C3), construct the circles that are tangent to all three of them, simulta-

neously.” There are eight solution circles, two of which (C4 and C5) are shown

here.

Because this problem, along with several of its limiting cases, has been

treated at length in the references, the solution presented here will leave the

details to the reader. We will identify only the solution circle that encloses none

of the givens. (I.e., C4 in Fig. 1.)

2 Solution

2.1 Defining Variables that are Amenable to Treatment

via GA

The variables that we will use are shown in Fig. 2.

2.2 Solution Strategy

Our strategy will be to express the vector c4 in two ways, from which we will

then derive expressions for t̂ and r4.
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Figure 2: Definition of variables used for identifying the solution circle C4.

2.3 Formulating and Solving the Equations

We begin by equating two expressions for the vector c4

c4 = (r1 + r4) t̂ = c2 + (r2 + r4) ŵ2

∴ (r1 + r4) t̂− c2 = (r1 + r4) ŵ2.

Now, we’ll square both sides to eliminate the unknown vector ŵ2, after which

we’ll solve for r4:

r4 =
c2

2 + r1
2 − r1

2 − 2r1c2 · t̂
2
(
r2 − r1 + c2 · t̂

) . (1)

Similarly,

c4 = (r1 + r4) t̂ = c3 + (r3 + r4) ŵ3;

(r1 + r4) t̂− c3 = (r3 + r4) ŵ3; and

r4 =
c3

2 + r3
2 − r1

2 − 2r1c3 · t̂
2
(
r3 − r1 + c3 · t̂

) . (2)

Equating the expressions for r4 from Eqs. (1) and (2),

c2
2 + r1

2 − r1
2 − 2r1c2 · t̂

r2 − r1 + c2 · t̂
=

c3
2 + r3

2 − r1
2 − 2r1c3 · t̂

r3 − r1 + c3 · t̂
.

After cross-multiplying, simplifying, and rearranging as explained in the

references, we obtain{[
c3

2 − (r3 − r1)
2
]
c2 −

[
c2

2 − (r2 − r1)
2
]
c3

}
︸ ︷︷ ︸

We′ll call this vector “z”.

·̂t = (r3 − r1)
(
c2

2 − r2
2
)

− (r2 − r1)
(
c3

2 − r3
2
)

+ (r3 − r2)
2
r1

2. (3)
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The geometric interpretation of Eq. (3) is shown in Fig. 3: Our solution

method has found the points of tangency of two tangent circles. One of them

encloses all three of the givens, while the other encloses none of them.

Figure 3: The geometric interpretation of Eq. (3): Our solution method has

found the points of tangency of two tangent circles. One of them encloses all

three of the givens, while the other encloses none of them.
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