
Four Dimensional Quantum Hall Effect for Dyons

Pawan Kumar Joshi and O.P.S.Negi

Department of Physics
Kumaun University
S. S. J. Campus

Almora – 263601 (Uttarakhand)

Email: pj4234@gmail.com
ops_negi@yahoo.co.in

Abstract

Starting with division algebra based on quaternion, we have constructed the generaliza-

tion of quantum Hall effect from two dimension to four dimension. We have constructed

the required Hamiltonian operator and thus obtained its eigen values and eigen functions

for four dimensional quantum Hall effect for dyons. The degeneracy of the four dimen-

sional quantum Hall system has been discussed in terms of two integers (P andQ) related

together where as the integer Q plays the role of Landau level index and accordingly the

lowest Landau level has been obtained for four dimensional quantum Hall effect associated

with magnetic monopole(or dyons). It is shown that there exists the integer as well the

fractional quantum Hall effect and so, the four dimensional quantum Hall system provides

a macroscopic number of degenerate states and at appropriate integer or fractional filling

factions this system forms an incompressible quantum liquid.

Key Words: Quaternion, dyons, Hamiltonian operator, Landau level etc

1 Introduction

The similarity between particle physics and condensed matter physics has played a very

important role in the physics [1]. The famous particle model (Standard Model), the idea of
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spontaneously broken symmetry and the Higgs mechanism were first originated from the BCS

theory of superconductivity [2]. The discovery of quantum Hall effect(QHE) [2] was a remark-

able achievement in condensed matter physics. Almost all condensed matter systems are well

described by a non-relativistic Hamiltonian of the electron and nuclei [3]. But some theories like

superconductivity, super-fluidity, antiferromagnetism, quantum Hall effect(integer and fractional)

and the magnetism are not fully described [4] by this model. These system are best described

by effective quantum field theories. In quantum Hall effect (i.e. integer and fractional) [2], the

electrons are trapped in a thin layer at the interface between two semiconductors or between

a semiconductor and an insulator [5]. Both the integer and the fractional quantum Hall effect

[2, 5, 6] were discovered in the very special context of semiconductor hetro-structures subjected

to very large magnetic fields at very low temperatures (T = 2K or even less). The fundamental

properties of quantum Hall effect are a consequences of the fact that the energy spectrum of elec-

tron system used for the experiments is a discrete energy spectrum in terms of three-dimensional

Coulomb repulsion [2, 5, 6]. One dimensional systems theory developed by Bethe’s,[7] defines

exact ground state wave function of the corresponding Hamiltonian. On the other hand, the two

dimensional theory [8] of quantum Hall effect describes an incompressible quantum fluid with

fractional charged [5]. This incompressible liquid theory has also been described by a Chern-

Simons-Landau-Ginzbure (CSLG)[9], while spherical geometry for fractional quantum Hall effect

was first introduced by Haldane [10] in order to construct the hierarchy of fractional quantum

Hall effect. Haldane [10] approach has been taken as very convenient to study the fractional

quantum Hall effect, where the magnetic field is produced by Dirac magnetic monopole [11] and

the flux is quantized in terms Dirac quantization condition[11], followed by the monopole vector

potential in terms of spherical coordinates[12]-[15]. Further more, this theory has been extended

by Fano[16], where the eigenfunctions are described in terms of monopole harmonics [17].

Now it is recognized that there are many connections between string theory and the above

mentioned theory of quantum Hall effect [18]. The first of them constructed by Bernevig et.al.

[19] reproducing the quantum Hall effect on a sphere, followed by a series of papers[20]-[23].

Another line of progress was started by the proposal of Susskind [24] that the granular structure

of the quantum Hall fluid can be captured by making the ordinary Chern-Simons description of

non-commutative geometry. This model can also be obtained from the Lagrangian of a charged

particle moving in magnetic field on replacing its coordinates matrices, based on the matrix

theory for D0-brane. Recently an interesting extension of quantum Hall effect by Zhang and

Hu [14] in four dimensions. Zhang [14] constructed a generalization of quantum Hall effect,

where particles move in four dimensional space under a SU(2) gauge field. This system has
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a macroscopic number of degenerate single particle state. It should be noted that in the two

dimensional quantum Hall effect, the current is always perpendicular to the applied magnetic

field, while in four dimensional case there are three extra independent directions for this current.

It means that there exists no unique direction for the current in quantum Hall system. Zhang

and Hu [14] found a remarkable theoretical construction of a new physical phenomenon a four

dimensional quantum Hall effect [9, 13, 14, 15, 16] on an S4. The common feature in these models

is to generalize the Landau problem on different higher dimensional manifolds. This is because

the Landau problem is the cornerstone of quantum Hall effect(QHE).

Renewed interest [2, 9, 14, 26, 27, 25] shows that possibility of the existence of magnetic

monopoles could be batter understood in condensed matter physics, where the magnetic materials

[25]-[27] contain the magnetic field associated with magnetic monopoles. So, keeping in view the

recent interests on monopole(dyons) and their possible role to produce strong magnetic field

responsible for quantum Hall effect, in this paper we have made an attempt to investigate the

role of non abelian dyons in order to explain the quantum Hall effect in four dimensions. Here

two dimensional quantum Hall effect has been generalized to four dimensional case in terms of

quaternions and non abelian gauge theory of dyons.

2 Quaternions

Quaternions (or division algebra) mean a set of four and introduce new methods in physics

and mathematics. Quaternion represents the natural extension of complex numbers and form

an algebra under addition and multiplication. They were first described by Irish mathematician

Sir William Rowan Hamilton [28] and applied [29] to mechanics in three-dimensional space.

Quaternions have the same properties as complex numbers but differ in the way that commutative

law is not valid which gave the possibility of developing the fundamental laws in physics [30]-[32].

A striking feature of quaternions is that the product of two quaternions is non commutative,

meaning that the product of two quaternions depends on which factor is to the left of the

multiplication sign and which factor is to the right. The algebra of quaternion H is a four -

dimensional algebra over the field of real numbers R and a quaternion φ is expressed in terms of

its four base elements [28, 29]-as

φ = φµeµ =φ0 + e1φ1 + e2φ2 + e3φ3, (µ = 0, 1, 2, 3) (1)

where φ0, φ1, φ2, φ3 are the real quarterate of a quaternion and e0, e1, e2, e3 are known as

quaternion unit (basis elements). A quaternion is also expressed as the combination of scalar
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and vector parts i.e.

φ =
(
φ0,
−→
φ
)

; (2)

here
−→
φ = e1φ1 +e2φ2 +e3φ3 is vector part and φ0 is scalar part. The quaternion units eA, (∀A =

0, 1, 2, 3) satisfy the following relations

e0eA = eAe0 = eA;

eAeB = −δABe0 + fABCeC . (∀A,B,C = 1, 2, 3) (3)

Where δAB is the delta symbol and fABC is the Levi Civita three index symbol having value

(fABC = +1) for cyclic permutation, (fABC = −1) for anti cyclic permutation and (fABC = 0)

for any two repeated indices. As such we may write the following relations among quaternion

basis elements

[eA, eB] = 2 fABC eC ;

{eA, eB} = −2 δABe0;

eA( eB eC) = (eA eB ) eC . (4)

The brackets [ , ] and { , } are used respectively for commutation and the anti commutation

relations while δAB is the usual Kronecker Dirac - Delta symbol. H is an associative but non

commutative algebra. Alternatively, a quaternion is defined as a two dimensional algebra over

the field of complex numbers C as

φ = (φ0 + e1φ1) + e2 (φ2 − e1φ3) (5)

The quaternion conjugate φ is defined as

φ = φµeµ =φ0 − e1φ1 − e2φ2 − e3φ3 (6)

In practice φ is often represented as a 2× 2 matrix where e0 = I, ej = −iσj (j = 1, 2, 3)and σj

are the usual Pauli spin matrices. Hence a quaternion can be decomposed in terms of its scalar
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(Sc(x)) and vector (V ec(x)) parts as

Sc(φ) =
1

2
(φ + φ );

V ec(x) =
1

2
(φ − φ ). (7)

The norm of a quaternion is expressed as

N (φ) =φφ = φφ =| φ |2= φ2
0 + φ2

1 + φ2
2 + φ2

3. (8)

Since there exists the norm of a quaternion, we have a division i.e. every φ has an inverse of a

quaternion and is described as

φ−1 =
φ

| φ |
. (9)

Rather the quaternion conjugation satisfies the following property

φ1φ2 =φ1 φ2. (10)

The norm of the quaternion is positive definite and obey the composition law

N (φ1φ2) =N (φ1)N (φ2) . (11)

The sum and product of two quaternions are described as

(α0,
−→α ) +

(
β0,
−→
β
)

=
(
α0 + β0,

−→α +
−→
β
)
,

(α0,
−→α ) .

(
β0,
−→
β
)

=
(
α0β0 −−→α .

−→
β , α0

−→
β + β0.

−→α
)
. (12)

Quaternion elements are non-Abelian in nature and thus represent a non commutative division

ring.

3 Field Associated with Dyons

The generalized duality invariant Dirac Maxwell’s equation in presence of electric and magnetic[33,

34] charges are expressed as
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−→
∇ ·
−→
E = ρe ;

−→
∇ ×

−→
H =

−→
j +

∂
−→
E

∂t
,

−→
∇ ·
−→
H = ρm ; ∇×

−→
E = −

−→
k − ∂

−→
H

∂t
, (13)

where ρe is the charge source density due to electric charge , ρm is the charge source density due

to magnetic charge (monopole),
−→
j is the current source density due to electric charge (e) and

−→
k

is the current source density due to magnetic charge(g). This hypothesis of existence of magnetic

charge(monopole) provides an explanation for the quantization of electric charge, Dirac [11, 35],

gave an interesting result was that the product of electric charge (e) with magnetic monopole

charge (g) must be quantized.

eg = I. (14)

where I is an integer which could assume the values 1, 2, 3........

In spite of many good point, Dirac’s monopole theory encounters the difficulty of string. The

vector potential can not be defined uniquely and definitely along this string. This condition

was referred as Dirac’s veto [36]. It is unnatural and undesirable condition because string are

unphysical object. The name dyon was coined by Schwinger [36] for the particles carrying

simultaneously the existence of electric and magnetic charges. Dyons are not strictly static,

although they are stationary in certain gauges, and they have non - zero kinetic energy. A dyon

with a zero electric charge is usually referred to as a magnetic monopole. Schwinger extended

the Dirac quantization condition (14) to the dyon. So an alternative approach which is free from

Dirac string involve a second potential in addition to the electric four potential. The electric and

magnetic fields of dyons satisfying the generalized Dirac Maxwell’s equations are now expressed

in terms of components of two four potentials in a symmetrical manner i.e.

−→
E =−

−→
∇φe −

∂
−→
A

∂t
−
−→
∇ ×

−→
B ,

−→
H =−

−→
∇φg −

∂
−→
B

∂t
−
−→
∇ ×

−→
A, (15)

Where {Aµ} =
{
φe, ~A

}
and {Bµ} =

{
φg, ~B

}
are the component of two four potential associated

respectively

The complex vector electrodynamic field
−→
ψ =

−→
E − i

−→
H reduces the four GDM [33] equations

to two differential equations as
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−→
∇ .
−→
ψ =ρ;

−→
∇ ×

−→
ψ = −i−→j − i∂

−→
ψ

∂t
. (16)

Consequently, the Lorentz force equation of motion may be written in following form as

m
d2x

dt2
=
(
eFµν + gF̃µν

)
uν ; (17)

which may further be reduced to

m
dv

dt
= e

(−→
E +−→u ×

−→
H
)

+ g
(−→
H −−→u ×

−→
E
)

; (18)

wherem is the mass of the particle, e is the electric charge, {uν} is four-velocity of particle, space-

time four vector is defined as {xµ}= {t,−→x } and g is magnetic charge. Electric and magnetic

four-current are related as jµ = euµ and kµ = guµ. As such the duality invariance is an intrinsic

property of Maxwell’s Lorentz theory of electrodynamics in presence of monopole(ie. for dyons).

let us introduce the generalized charge for dyon as q = e − ig, so that the Generalized four

potential V µ =
(
φ, ~V

)
associated with dyons is defined as

V µ = Aµ − iBµ; (19)

So the duality transformations for {Aµ} and {Bµ} are described as

Aµ = Aµcosθ +Bµsinθ;

Bµ = Aµsinθ −Bµcosθ;
(20)

Hence, the covariant tensorial form of generalized Dirac-Maxwell’s equations of dyons may be

written as,
∂νF

µν = jµ;

∂νF̃µν = kµ;
(21)

These equation are invariant under the duality transformations

(
F, F̃

)
=

(
Fcosθ + F̃ sinθ; Fsinθ − F̃ cosθ

)
;

(jµ, kµ) = (jµcosθ + kµsinθ; jµsinθ − kµcosθ) .
(22)
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where
g

e
=
Bµ

Aµ
=
kµ
jµ

=
F̃

F
= −tanθ. (23)

is described as constancy condition. The generalized charge may also be written as

q =| q | e−iθ. (24)

In addition to the dual symmetry,the equation of motion (17) and the GDM field equation (21)

leads to the following symmetries;

(a) invariance under a pure rotation in charge space or its combination with a transformation
containing simultaneously space and time reflection(strong symmetry);

(b) a weak symmetry under charge reflection combined with space reflection or time reflection

(not both);

(c) a weak symmetry under PT (combined operation of parity and time reversal) and strong

symmetry under CPT (combined operation of charge conjugation, parity and time reversal).

using equation (23), the Interaction of ithdyon in the field of jth dyon may be written as

follows

Iij =
Ajµ
ej
q∗j qiu

i
µ,

where Ajµ is the electric four potential describing the field of jth dyon ej is its electric charge and

uiµ is the four-velocity of ith dyon in the field of jth this equation shows that

(a) interaction between two dyons is zero, when their generalized charges are orthogonal in

their combined charge space.

(b) interaction depends on electric coupling parameter

αij = eiej + gigj. (25)

under the constancy condition ei
gi

=
ej
gj
=constant.

(c) interaction depends on the magnetic coupling parameter(i.e. chirality)

µij = eigj − giej; (26)

under the condition ei
gj

= − ej
gj

The coupling between two generalized charges qi and qjis described
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as

q∗i · qj = (eiej + gigj)− i (eigj − giej) = αij − i µij; (27)

where the real part αij is called the electric coupling parameter ( the Coulomb like term) re-

sponsible for the existence of either electric charge or magnetic monopole while the imaginary

part µij is the magnetic coupling parameter and plays an important role for the existence of

magnetic charge. Both of these parameters are invariant under the duality transformations. The

parameter µij has also been named as Chirality quantization parameter for dyons and leads the

following charge quantization condition i.e.

µij = ±I (I∈Z); (28)

where the half integral quantization is forbidden by chiral invariance and locality in commutator

of the electric and magnetic vector potentials.

4 Generalized Angular Momentum in Presence of Non-Abelian

Dyons

We have described the dyons and their interactions only in abelian context [37]. Here we have

made an attempt to extend this theory to higher dimensional space leading to the generalization

of Maxwell’s fields to Yangs-Mills fields. In this case, the physical space is associated with the

n- dimensional internal charge space known as isospin space. Any gauge transformation in this

space must give rise to a local phase transformation of the type,

Ψ (x)→Ψ
′
(x) = exe

(
−iχj (x)T j

)
Ψ (x) (29)

whereχj (x)is the parameter for gauge change and T j are n×n matrices leading to the generators

of the gauge transformation. For SU (2), the two dimensional space in terms two dimensional

Pauli-spin matrices,T j (∀ j = 1, 2, 3) are Pauli matrices. These matrices satisfy the following

commutation rules ,

[
T j, T k

]
=iεjklT l (∀ j, k, l =1, 2, 3, ) (30)

In this case of dyon the complex charge space of dyons opens into a higher dimensional internal

space. Now it is widely recognized that magnetic monopoles are better understood in non-
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Abelian gauge theories. Thus for SU (2) case there corresponds the three gauge fields V c
µ (x),

where Vµ (x) is the generalized potential of dyon. Using equation (19 &23) when the value of

θ = 0, we can easily see that the form of generalized potential Vµ is same as Aµ, So the generalized

potentialVµ (= Aµ), generalized Yang-Mill’s tensor Gµν and the covariant derivative Dµ In terms

of matrices may be written as follows[38];

Aµ =AcµT
c

Gµν =Gc
µνT

c

Dµ =∂µ + iκAcµT c (31)

where κ is an arbitrary parameter, So the Gµνmay now be written as

Gµν = Vµ,ν − Vν,µ + iκ [V µ, V ν ] (32)

In previous paper,[40] we have already discussed the gauge invariant angular momentum op-

erator of dyons. It has already been argued that this angular momentum is not rotationally

symmetric. Hence the commutation relations do not show the proper commutation algebra. So,

we have modified the gauge invariant and rotationally symmetric angular momentum operator

for dyons by including the extra term

µij ~r
r

 named as residual angular momentum term. The

commutation relation demand an additional term µ2ij
2mr2

in the Hamiltonian, which possesses the

higher symmetry similar to that of pure Coulomb Hamiltonian [40, 41]. So our generalized an-

gular momentum, which is gauge invariant and rotational symmetric, depends on the magnetic

coupling parameter (µij). Without this extra term the angular momentum operator does not sat-

isfy SO(3) commutation relation. In the higher dimensional case(i.e. non-abelian) the modified

angular momenta for quantum Hall system may now be written as i.e.

Λab =xa (∂b − iT cAcb)− xb (∂a − iTAca) + r2F cabT c (∀a, b = 1, 2, 3, 4, 5)

=xa (∂b + àb)− xb (∂a + àa) + r2F cabT c (33)

where àa = −iT cAca, àb = −iT cAcb gauge potential and F cab is the non abelian field strength due
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to the existence of non abelian dyons . Equation (33) may also be written as

Λab = xa (Db)− xb (Da) + r2F cabT c = Jab + r2F cabT c (34)

where xadenote coordinates on S4 where a, b = 1, 2, 3, 4, 5 and x2a = 1, c = 1, 2, 3 denote the

three SU(2) spin components and also denoted the space index on the three dimensional orbital

space. Let us define the Dirac matrices for S4 as

γµ =

 0 σ̄µ

σµ 0

 , γ5 =

 1 0

0 1

 (35)

γab = −1

2

[
γa, γb

]
(36)

γµν =

 σµν 0

0 σ̄µν

 , γµ5 = i

 0 σ̄µ

σµ 0

 (37)

As such equation (34) represented the conserved angular momentum on SO(5). Where we

have introduced the coupling term àa which is responsible for gauge field strength. Here the

partial derivative(∂a) has been replaced by covariant derivative (Db) for the development of gauge

formulation. Here T c are the usual Pauli spin matrices for SU(2) group associated with isospin in

isotropic spin space which is non abelian in nature. In equation (34) the third term r2F cabT c (non-

abelian ) is analogues to the rotational symmetric term µij
~r

r
like the angular momentum [40] for

abelian gauge theory. So this term r2F cabT c may now be identified as the gauge invariant as well

as rotational symmetric angular momentum terms. The SO(5) group is the group of orthogonal

transformation in the five dimensional real vector space. It has 10 symmetry generators. A

four dimensional sphere can be embedded in the five dimensional Euclidean space through the

relation x2a = 1. Since a orthogonal transformation preserves the length of a vector, the SO(5)

group is the symmetry group of the four dimensional sphere. Like wise, the SO(4) group is the

group of orthogonal transformation in the four dimensional real vector space. It has 6 symmetry

generators and its Lie algebra is isomorphic to the direct sum of two SU(2) Lie algebra. Further

more, the SU(2) group is the group of unitary transformations in the two dimensional complex

vector space. It has 3 symmetry generators and its Lie algebra is isomorphic to the SO(3) group,

which is the group of orthogonal transformations in the three dimensional real vector space.
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Here SU(2) group determines the coupling between the particles and the background monopoles

potential.

As such, the Hamiltonian for generalized theory of four dimensional quantum Hall effect on
S4 (SO(5)) may now be written as

H =
1

2Mr2

∑
a<b

| Λab |2 (38)

which is further reduced to the following expression after making certain restrictions i.e.

H =
1

2Mr2

∑
a<b

(
Λ2
ab −R4F2

ab

)
=

1

2Mr2

∑
a<b

(
Λ2
ab − 2I (I + 1)

)
(39)

The angular momentum equation (33 and 34) thus satisfy the SO(5) following well known com-
mutation relation [17] of angular momentum operator i.e.

[Λab, Λcd] =i (δacΛbd + δbdΛac − δbcΛad − δadΛbc) (40)

5 Energy eigen values for four dimensional quantum Hall

effect

In general, SO(5) irreducible representation is labeled by two integers (P, Q), with P > Q >

0. For such representation, the Casimir operator may be written as are given by

C (P, Q) =
∑
a<b

Λ2
ab =

P 2

2
+
Q2

2
+ 2P +Q (41)

while the dimensionality formula is deduced as

d (P,Q) = (1 +Q) (1 + P −Q)

(
1 +

P

2

)(
1 +

P +Q

3

)
(42)

For a given I , the two integer is related as P = Q + 2I. So the energy eigen value of the
Hamiltonian (39) for a given I, may be then expressed as

En (P = Q+ 2I, Q) =
1

2Mr2
(C (P = Q+ 2I, Q)− 2I (I + 1)) (43)

which may further be reduced as

En =
1

2Mr2

(
P 2

2
+
Q2

2
+ 2P +Q− 2I (I + 1)

)
=

1

2Mr2
(
Q2 +Q (2I + 3) + 2I

)
(44)
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while the degeneracy d (P,Q) is obtained by the irreducible representation[13, 14, 15, 39] of the
SO (5). Here Q plays the role of landau level index. If we put Q = 0 , we get the lowest landau
level energy,

E =
1

2Mr2
(2I) =

P

2Mr2
(45)

So the ground state, which is the lowest SO(5) level for a given I , is obtained by putting
Q = 0 and consequently the lowest state has d (P, 0) = 1

3!
(P + 1) (P + 2) (P + 3) fold degeneracy.

Therefore, the dimensionality of SU(2) representation is associated with the magnetic flux in
dyons. Accordingly the states with Q > 0 are separated from the ground state by a finite energy
gap.

6 LLL Eigenstates for four Dimensional quantum Hall effect

We may now easily construct the second Hopf (S7 − S4)extending the one imaginary unit of

complex algebra to three imaginary units (e1,e2,e3) of quaternion algebra for which the Pauli spin

matrices are connected with quaternion element e0 = I, ei = −iσi, Likewise, the second Hopf

map is realized as

xa =ψ† (γa)ψ (46)

where a = 1, 2, ...5 and ψ is the four component quaternionic spinor defined as

ψ =


ψ1

ψ2

ψ3

ψ4

 (47)

satisfying the normalization condition ψ†ψ = 1. It should be noted that quaternionic group is

isomorphic to SU(2) group . As the generalization of the three Pauli matrices to five SO(5)

Dirac matrices Γa, it should satisfying the Clifford algebra.

{
γa, γb

}
= 2δab (48)

where the given matrices are described as quaternion i.e.
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γ1 =

(
0 e1

−e1 0

)
=⇒

(
0 −iσ1
iσ1 0

)

γ2 =

(
0 e2

−e2 0

)
=⇒

(
0 −iσ2
iσ2 0

)

γ3 =

(
0 e3

−e3 0

)
=⇒

(
0 −iσ3
iσ3 0

)

γ4 =

(
0 1

1 0

)
, γ5 =

(
1 0

0 −1

)
. (49)

So the second Hopf spinor may be expressed as

 ψ1

ψ2

 =

√
1 + x5

2

 ϕ1

ϕ2

 ,

 ψ3

ψ4

 =

√
1

2 (1 + x5)
(x4 + xiei)

 ϕ1

ϕ2

 ; (50)

where ϕ1, ϕ2 is the first Hopf spinor and ei = −iσi. In this case, the normalized lowest Landau

level(LLL) [39] is written as

< ψ, ni | m1,m2,m3,m4 >=

√
P !

m1!m2!m3!m4!
ψm1
1 ψm2

2 ψm3
3 ψm4

4 (51)

with integers m1 +m2 +m3 +m4 = P . So the form of the single particle wave function described

in equation (51) helps us to calculate the many-body wave function. So the simplest case has

also been obtained for N = d(P, 0), (N particle density ), when the lowest level is completely

filled. In this case, the filling factor is describes as ν ≡ N
d(P,0)

= 1 , this result corresponds to the

integer quantum Hall effect. While for the case of fractional quantum Hall effect the many body

wave function is written like Φm = Φm (x1, ........xN) with odd integer m, and then the filling

fraction ν = d(P,0)
d(mP,0)

≈ 1
m3 , leading to fractional quantum Hall effect. Therefore the degeneracy

of the lowest SO(5) for fractional quantum Hall effect is describes

d (mP, 0) =
1

3!
(mP + 1) (mP + 2) (mP + 3)→ 1

6
m3P 3 (52)
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7 Discussion

We have concluded this paper by discussing the eigen states of four dimensional quantum Hall

system. Thus the second Hopf map(S7 − S4) has been constructed for division algebra by replac-

ing the one imaginary unit of complex algebra to three imaginary units (e1,e2,e3) of quaternion

algebra connected well with Pauli spin matrices. So we have discussed the second Hopf map for

our quantum Hall system(QHE) by equation (46), which is realized in terms of four component

quaternion spinors given by equation (47). As such, we agree with Zhang et al that an incom-

pressible quantum spin liquid involves N fermions for which the simplest case is described by

SO(5) group of quaternions. The SO(5) Dirac matrices has been discussed by equation (49)

and accordingly the Hopf spinor are discussed in equation (50). The normalized lowest Landau

level(LLL) for four dimensional quantum Hall system has also been described in equation (51).

It is shown that for N fermions for N = d(P, 0), (N particle density ), as investigated when the

lowest level is completely filled, for which the filling factor becomes unity (an integer). So our

result resembles with the result Zhang et.al [14, 15], K. Hasebe [39] corresponding to the integer

quantum Hall effect, while the case of fractional quantum Hall effect where the many body wave

function Φm = Φm (x1, ........xN) with odd integer m, corresponding to legitimate fermionic wave

function in the lowest SO(5) in terms of quaternion. Therefore the degeneracy of the lowest

SO(5) level in this case given by equation (52). While the particle number still N = d(P, 0) and

the filling factor turns out to be ν = d(P,0)
d(mP,0)

≈ 1
m3 and is inversely proportional to third power

of odd integer m. Here it should be noted that as the correction functions for m = 1 case can

be computed exactly, it is plausible that the m > 1 case has similar correlations, for an incom-

pressible liquid. However, the effective parameters need to be rescaled properly in the fractional

case. This incompressible liquid supports fractionalized charge excitation with charge m−3. Such

a state may be described by a wave function of the form Φm−1Φh( where Φh is the wave function

of the integer case). So it may be concluded that the four dimensional Hall system provides a

macroscopic number of degenerate states and at appropriate integer or fractional filling fractions

this system forms an incompressible quantum liquid.
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