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Abstract

Drawing mainly from Hestenes’s New Foundations for Classical Me-

chanics ([2]), this document presents, explains, and discusses common

solution strategies. Included are a list of formulas and a guide to nomen-

clature.

“Find the point of intersection of the line (x− a) ∧ u = 0 and the

plane (y − b) ∧B = 0.”

1

http://quelamatenotemate.webs.com/
https://www.linkedin.com/groups/8278281


1 Nomenclature and other comments

• Lower-case Greek letters (e.g, α, β, γ) represent scalars.

• Bold, lower-case Roman letters (a, b, c etc.) represent vectors.

EXCEPTION: The bolded, lower-case “i” is the unit bivector.

• Bold, capitalized Roman letters (B, C, D) represent bivectors.

EXCEPTION: The bolded, upper-case “I” is the pseudoscalar for the

dimensionality of GA in use. When necessary, it is subscripted with that

dimensionality. For example, I4 is the pseudoscalar for 4-dimensional GA.

However, “I2” is represented by the bolded, lower-case “i”, and “I3” is

represented by the non-bolded, lower-case “i”.

• As noted above, the non-bolded, lower-case “i” represents the 3D GA

pseudoscalar.

• Upper-case, non-bolded Roman letters (A,B,C) represent multivectors.

2 GA formulas and identities

The Geometric Product, and Relations Derived from It

For any two vectors a and b,

a · b = b · a
b ∧ a = −a ∧ b

ab = a · b + a ∧ b

ba = b · a + b ∧ a = a · b− a ∧ b

ab + ba = 2a · b
ab− ba = 2a ∧ b

ab = 2a · b + ba

ab = 2a ∧ b− ba

To clarify: When a vector a lies

within the plane defined by B,

a ∧B = 0; ∴ aB = a ·B. In

that case, Ba = −aB because

B ·a = −a ·B. This is why (as

we’ll see later) ia = −ai in 2D

GA.

For a vector v and a bivector B,

aB = a ·B + a ∧B

B · a = −a ·B
B ∧ a = a ∧B

For a vector v and the bivector a ∧ b,

v · (a ∧ b) = (v · a) b− (v · b)a.

(a ∧ b) · v = (v · b)a− (v · a) b.

For any bivector a ∧ b,

[a ∧ b]
2

= (a · b)
2 − a2b2 = −‖a ∧ b‖2.

Definitions of Inner and Outer Products ([1] , p. 101.)

The inner product

The inner product of a j -vector A and a k -vector B is
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A ·B = 〈AB〉k−j . Note that if j>k, then the inner product doesn’t exist.

However, in such a case B ·A = 〈BA〉j−k does exist.

The outer product

The outer product of a j -vector A and a k -vector B is

A ∧B = 〈AB〉k+j .

Relations Involving the Outer Product and the Unit Bivector, i.

For any two vectors a and b lying within the plane of the bivector i,

ia = −ai
a ∧ b = [(ai) · b] i = − [a · (bi)] i = −b ∧ a.

See also the earlier comments regarding a ·B = −B · a.

Some properties of the pseudoscalar In ([1], p. 105)

In
2 = (−1)

n(n−1)/2
.

In
−1 = (−1)

n(n−1)/2
In.

For vector v and pseudoscalar In,

vIn = (−1)
n−1

Inv.

Equality of Multivectors

For any two multivectors M and N ,

M = N if and only if for all k, 〈M〉k = 〈N〉k.

Formulas Derived from Projections of Vectors

and Equality of Multivectors

Any two vectors a and b can be written in the form of “Fourier expansions”

with respect to a third vector, v:

a = (a · v̂) v̂ + [a · (v̂i)] v̂i and b = (b · v̂) v̂ + [b · (v̂i)] v̂i.
Using these expansions,

ab = {(a · v̂) v̂ + [a · (v̂i)] v̂i} {(b · v̂) v̂ + [b · (v̂i)] v̂i}

Equating the scalar parts of both sides of that equation,

a · b = [a · v̂] [b · v̂] + [a · (v̂i)] [b · (v̂i)], and

a ∧ b = {[a · v̂] [b · (v̂i)]− [a · (v̂i)] [b · (v̂i)]} i.

Also, a2 = [a · v̂]
2

+ [a · (v̂i)]2, and b2 = [b · v̂]
2

+ [b · (v̂i)]2.

Reflections of Vectors, Geometric Products, and Rotation operators

For any vector a, the product v̂av̂ is the reflection of a with respect to the

direction v̂.

For any two vectors a and b, v̂abv̂ = ba, and vabv = v2ba. Therefore,

v̂eθiv̂ = e−θi, and veθiv = v2e−θi.

A useful relationship that is valid only in plane geometry: abc = cba.
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Here is a brief proof:

abc = {a · b + a ∧ b} c
= {a · b + [(ai) · b] i} c
= (a · b) c + [(ai) · b] ic

= c (a · b)− c [(ai) · b] i

= c (a · b) + c [a · (bi)] i
= c (b · a) + c [(bi) · a] i

= c {b · a + [(bi) · a] i}
= c {b · a + b ∧ a}
= cba.

3 The Equations, and Their Solutions

Unless stated otherwise, the unknown in each equation is x.

3.1 Find the point of intersection of the lines x = a + αu

and y = b+ βv.

We’ll solve this problem by identifying the values of scalars α and β for the

vector p to the point of origin. First, we write

p = a + αpu = b + βpv,

where αp and βp are the values of α and β for the point of intersection p,

specifically . Next, we use the exterior product with v to eliminate the β term,

so that we may solve for αp:

(a + αpu) ∧ v = (b + βpv) ∧ v

∴ αp = [(b− a) ∧ v] (u ∧ v)
−1
.

An alternative solution for αp,

starting from

(a+ αpu)∧ v = (b+ βpv)∧ v:

αpu ∧ v = (b− a) ∧ v;

αp [(ui) · v] i = {[(b− a) i] · v} i;

∴ αp =
[(b− a) i] · v

(ui) · v

=
(b− a) · (vi)

u · (vi) .

Similarly, we solve for βp by using the exterior product with u to eliminate the

α term:

(a + αpu) ∧ u = (b + βpv) ∧ u

∴ βp = [(a− b) ∧ u] (v ∧ u)
−1

= [(b− a) ∧ u] (u ∧ v)
−1
.

3.2 Solve the simultaneous equations a ∧ x = B, c · x = α,

where c · a 6= 0. ([2], p. 47, Prob. 1.5)

A straightforward solution method is to write x as the linear combination x =

λa+µc. From there, we use the given information to derive a pair of equations
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for the scalars λ and µ:

x = λa + µc;

a ∧ x = B = µa ∧ c;

c · x = α = λc · a + µc2,

etc. A similar problem was treated at length in [3] as a vehicle for introducing

and examining several GA themes.

3.3 Equation: αx+ a (x · b) = c ([2], p. 47, Prob. 1.3)

Our first impulse might be to obtain an expression for x∧b, in order to combine

it with x·b to form the geometric product xb. Instead, we’ll derive an expression

for x · b, which we will then substitute into the given equation;

αx + a (x · b) = c;

{αx + a (x · b)} · b = c · b;

αx · b + (a · b) (x · b) = b · c;

(α+ a · b)x · b = b · c;

∴ x · b =
b · c

α+ a · b
.

Now, we substitute that expression for x · b into the original equation:

αx + a

(
b · c

α+ a · b

)
= c;

x =
1

α

[
c− a

(
b · c

α+ a · b

)]
.

3.4 Equation: αx+x ·B = a , where B is a bivector. ([2],

p. 47, Prob. 1.4)

For comparison, see the problem

αx+ b× x = a,

in Section 3.5

Following [2], p. 675, our strategy will be to obtain an expression for x ∧ B

in terms of known quantities, so that we may then add that expression to

x ·B (= a− αx) to form an expression (again in terms of known quantities)

that is equal to the geometric product xB. The key to the solution is recognizing

that (x ·B)∧B = 0. One way to recognize this is by factoring B as the exterior

product of some two arbitrary vectors u and v that lie within the plane that it

defines:

[x ·B] ∧B = [x · (u ∧ v)] ∧ (u ∧ v)

= [(x · u)v − (x · v)u] ∧ u ∧ v

= (x · u)v ∧ u ∧ v − (x · v)u ∧ u ∧ v

= 0.
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Next, we make use of the relation we’ve just found (i.e., (x ·B) ∧B = 0)

by “wedging” both sides of the given equation with B:

αx + x ·B = a

(αx + x ·B) ∧B = a ∧B;

αx ∧B + 0 = a ∧B;

∴ x ∧B =
1

α
(a ∧B) .

The equation to be solved:

αx+ x ·B = a.

Now, we’ll return to the equation that we are to solve. By adding x∧B to the

left-hand side, we’ll form the term xB.

αx + x ·B + x ∧B = a +
1

α
(a ∧B)︸ ︷︷ ︸
=x∧B

;

αx + xB = a +
1

α
(a ∧B) ;

x (α+ B) = a +
1

α
(a ∧B) ;

x (α+ B) (α+ B)
−1

=

[
a +

1

α
(a ∧B)

]
(α+ B)

−1
;

x =

[
αa + a ∧B

α

] [
α−B

α2 + ‖B‖2

]
︸ ︷︷ ︸

=(α+B)−1

;

=
α2a− αaB + αa ∧B − (a ∧B)B

α (α2 + ‖B‖2)

=
α2a− αa ·B − (a ∧B)B

α (α2 + ‖B‖2)
.

−aB + a ∧B = −a ·B.

Checking that solution by substituting it into the given equation raises

some instructive points. We’ll begin by making the substitution, and some

initial simplifications:

αx + x ·B = α

{
α2a− αa ·B − (a ∧B)B

α (α2 + ‖B‖2)

}
+

{
α2a− αa ·B − (a ∧B)B

α (α2 + ‖B‖2)

}
·B

=
α3a− α2a ·B − α (a ∧B)B + α2a ·B − α (a ·B) ·B − [(a ∧B)B] ·B

α (α2 + ‖B‖2)

=
α3a− α (a ∧B)B − α (a ·B) ·B − [(a ∧B)B] ·B

α (α2 + ‖B‖2)
. (1)

Here, we see a useful, common

maneuver: (a ·B) ∧B = 0, so

(a ·B) ·B is in fact (a ·B)B.

Similarly, when (a ·B) ·B = 0,

(a ·B) ∧B is (a ·B)B.

Let’s look, now, at some of the terms in the numerator. First, the product

a ·B is a vector. The geometric product of a vector v and bivector M is the

sum v ·M+v∧M . Therefore, the geometric product of the vector a·B and the

bivector B is (aB) ·B = (a ·B) ·B + (a ·B) ∧B. We’ve already established

that (a ·B)∧B = 0 . Thus, (a ·B) ·B = (a ·B)B. Making this substitution
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in Eq. (1),

αx + x ·B =
α3a− α (a ∧B)B −

=α(a∧B)·B︷ ︸︸ ︷
α (a ·B)B− [(a ∧B)B] ·B

α (α2 + ‖B‖2)
.

Next, we note that

α (a ∧B)B + α (a ·B)B = α (a ·B + a ∧B)B

= α (aB)B

= −αa‖B‖2.

Therefore,

αx + x ·B =
α3a + αa‖B‖2 − [(a ∧B)B] ·B

α (α2 + ‖B‖2)
.

Finally, let’s look at the denominator’s term [(a ∧B)B] ·B . The product

(a ∧B)B evaluates to a vector; specifically, it’s a scalar multiple of the com-

ponent of a that is normal to B. (In [2]’s words, of “a’s rejection from B”, p.

65.) Thus, [(a ∧B)B] ·B is the inner product of the vector (a ∧B)B and the

bivector B. For that reason,

[(a ∧B)B] ·B = 〈[(a ∧B)B]B〉1

=

=−‖B‖2︷︸︸︷
B2 〈a ∧B〉1

= 0.

Using that result, we can write

αx + x ·B =
α3a + αa‖B‖2 −

=0︷ ︸︸ ︷
[(a ∧B)B] ·B

α (α2 + ‖B‖2)

= a.

3.5 Equation: αx+ b× x = a. ([2], p. 64, Prob. 3.10)

Note this problem’s resemblance

to that presented in Section

(3.4).

Even though the familiar cross product (“×”) is not part of GA, [1] and [2]

spend considerable time on that product for contact with the literature that

uses conventional vector algebra. In GA terms, the product u × v (which

evaluates to a vector) is said to be the “dual” of the bivector a ∧ b, and is

related to it via

u× v = −iu ∧ v.

Therefore, the equation that we’re asked to solve can be rewritten as

αx− i (b ∧ x) = a , or

αx + i (x ∧ b) = a.
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As [2] notes (p. 47), in such a problem we should try to eliminate one of the

terms that involves the unknown. How might we do that here? We know from

conventional vector algebra that b×x evaluates to a vector that’s perpendicular

to both x and b. Therefore, [i (x ∧ b)] ·b should be zero. Let’s demonstrate that

via GA, bearing in mind that [i (x ∧ b)] · b is a dot product of the two vectors

i (x ∧ b) and b :

[i (x ∧ b)] · b = 〈[i (x ∧ b)] b〉0
= 〈[i (xb− x · b)] b〉0
= 〈ixb2 − (x · b) ib〉0
= 0,

because the product of i with any vector evaluates to a vector. Now, using the

fact that [i (x ∧ b)] ·b = 0, we can obtain an expression for x ·b from the original

equation:

αx + b× x = a

αx · b + [b× x] · b︸ ︷︷ ︸
=0

= a · b

∴ x · b =
a · b
α

.

Whenever we can obtain an expression for x · b readily, we should consider

trying to obtain one for x ∧ b as well. In the problem on which we’re working,

we can obtain one from our “translation into GA” of the given equation:

αx + i (x ∧ b) = a

i (x ∧ b) = a− αx
−ii (x ∧ b) = −i (a− αx)

x ∧ b = αix− ia.

We may be concerned that the expression that we just obtained for x ∧ b

contains x itself. That might be a problem, but let’s find out: let’s add our

expressions for x · b and x ∧ b, and see what happens.

x · b + x ∧ b =
a · b
α

+ αix− ia

xb =
a · b
α

+ αix− ia

xb− αix =
a · b
α
− ia

xb− xαi =
a · b
α
− ia.
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A reminder:

“i” is I2, but “i” is I3.

For any vector v,

iv = −vi, but iv = vi.

In that last line, we used the fact that ix = xi. Proceeding,

x (b− αi) =
a · b
α
− ia

x =

[
a · b
α
− ia

] [
b + αi

α2 + b2

]
︸ ︷︷ ︸
=(b−αi)−1

=
(a · b) b + α (a · b) i− αiab + α2a

α (α2 + b2)

=
(a · b) b + αi (a · b)− αi (a · b + a ∧ b) + α2a

α (α2 + b2)

=
(a · b) b− αi (a ∧ b) + α2a

α (α2 + b2)
.

3.6 Find the “directance” d from the line (x− a) ∧ u = 0

to the line (y − b) ∧ v = 0. ([2], p. 93, Prob. 6.7)

In this solution, we’ll see many

places where the symbol for a

vector (for example, p) is used

ambiguously, to refer either to

the vector itself, or to its

endpoint. In each such instance,

we rely upon context to make

the intended meaning clear. On

a related theme, Hestenes’s

observations ([2], p. 80) on the

correspondence between vectors

and physical space are highly

recommended reading.

As [2], p. 93 tells us, “The directance from one point set to another can be

defined as the chord of minimum length between points in the two sets, provided

there is only one such chord.” Reference [2] solves the present problem from a

very “algebraic” point of view. In contrast, the solution presented here uses our

visual capacities to help us. First, we’ll look at two coplanar lines (Fig. 1) that

have the directions u and v, and intersect in some point p.

Figure 1: L1 and L2 are coplanar lines that have the directions u and v, re-

spectively, and intersect in some point p .

Now, let’s examine a parallel plane (Fig. 2) through the point p′ (= p′ + d),

where d is a vector perpendicular to both planes. Through p, we’ve also drawn

the line L3, which is parallel to L2. We’d almost certainly conclude, intuitively,

that d is the directance from L1 to L3. However, let’s demonstrate that our

intuition is accurate, using GA.

Consider the distance between an arbitrary point q along L1, and an arbi-

trary point s along L3. Writing those points as q = p+λu, and s = p+d+γv,
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Figure 2: The plane shown in Fig. 1 plus a parallel plane that contains the

point p′ (= p + d), where d is some vector perpendicular to both planes. The

line L3 is parallel to L2, and passes through the point p′. In the text, we show

that d is the directance from L1 to L3.

the square of the distance between them is

‖ (p + d + γv)− (p + λu) ‖2 = ‖d + (γv − λu) ‖2

= d2 − 2d · (γv − λu) + (γv − λu)
2
.

Because d is perpendicular to both u and v, it is perpendicular to any linear

combination thereof. Therefore, the dot-product term is zero, making the square

of the distance between q and s equal to d2 + (γv − λu)
2
. That quantity is

minimized when γ = λ = 0; that is, when the the points q and s are p and p′.

Thus, the directance is, indeed, the vector d shown in Fig. 2. Now, we

need to find out how we can determine d given that L1 = (x− a) ∧ u = 0 and

L3 = (y − b) ∧ v = 0. Let’s see what insights Fig. 3 might offer.

From that figure, we can see that d is the “rejection” (in the words of [2],

p. 65) of the vector b−a from the plane containing L1. That rejection is equal

to [(b− a) ∧B]B−1, where B can be any positive bivector that has the same

orientation as the plane. One such bivector, clearly, is u ∧ v. Putting all of

these ideas together,

d = [(b− a) ∧ (u ∧ v)] (u ∧ v)
−1
.

3.7 Find the point of intersection of the line (x− a)∧u = 0

and the plane (y − b) ∧B = 0. ([2], p. 93, Prob. 6.6)
Here, we use the fact that

(x− a) ∧ u = 0 if and only if

x− a is a scalar multiple of u.
One simple way to solve this problem is to write the line’s equation as x =

a + λu. Now, let p = a + λpu be the point of intersection. Then, from the
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Figure 3: The same lines and planes as in Fig. 2, plus a point a along L1 and a

point b along L3. Given these points, we can now write that L1 = (x− a)∧u =

0 and L3 = (y − b) ∧ v = 0. The text explains that d, the directance from L1

to L3, is the “rejection” of the vector b− a from the bivector u ∧ v.

equation for the plane,

(a + λpu− b) ∧B = 0,

from which

λpu ∧B = (b− a) ∧B,

λp = [(b− a) ∧B] (u ∧B)
−1
,

and p = a +
{

[(b− a) ∧B] (u ∧B)
−1
}
u.

That result probably reminds us of the one presented in Section 3.6 , so

let’s seek a geometric interpretation of our solution. For example, Fig. 4 .

Why the negative sign? Because

the vertical displacement λu⊥

from a to p is in the direction

contrary to (a− b)⊥.

From that figure, we can deduce that the “λp” in λp = [(b− a) ∧B] (u ∧B)
−1

must be the ratio (with appropriate algebraic sign) of the lengths of the vectors

(a− b)⊥ and u⊥. Let’s work with that idea a bit:

λpu⊥ = − (a− b)⊥ ;

λp (u ∧B)B−1 = − [(a− b) ∧B]B−1;

λp (u ∧B) = [(b− a) ∧B] ;

∴ λp = [(b− a) ∧B] (u ∧B)
−1
,

which agrees with the answer that we obtained algebraically.
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Figure 4: Point p is the intersection of the line (x− a) ∧ u = 0 and the plane

(y − b)∧B = 0. The vector u⊥ is perpendicular to that plane, and is equal to

(u ∧B)B−1. Similarly, (a− b)⊥ is equal to [(a− b) ∧B]B−1 .

3.8 Solve for x: (a− x)−1 (b− x) = λeθi = 0. ([2], p. 96,

Prob. 6.22)

Here, the fact that (a− x)
−1

= (a− x) /‖a − x‖2 is unhelpful. Instead, we

proceed as follows:

(a− x)
−1

(b− x) = λeθi

b− x = λ (a− x) eθi

xλeθi − x = λa− b

x = (λa− b)
(
λeθi − 1

)−1
= (λa− b)

[
λe−θi − 1

2 (1− λ cos θ)

]
.

3.9 Assuming that we know ‖v0‖, but not v0’s direction,

determine t given that g ∧ r = t (g ∧ v0) and r =
1

2
gt2 +

v0t. ([2], p. 133, Prob. 2.1)

See also the problem presented

in 3.10.

This problem is from [2]’s treatment of constant-force problems; specifically,

t is the time of flight of a projectile that will land at point r if fired at velocity

v0.

Because we know ‖v0‖, a reasonable first move is to make that quan-

tity appear, somehow, by manipulating the given equations. Perhaps counter-
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intuitively, we’ll start from g ∧ r = t (g ∧ v0) rather than from r =
1

2
gt2 + v0t:

(g ∧ r)
2

= [t (g ∧ v0)]
2

(g · r)
2 − g2r2 = t2

[
(g · v0)

2 − g2v02
]
.

Are we making progress? We’ve obtained a v0
2 term, but we’ve also intro-

duced an unwanted quantity: g ·v0. However, using the other equation that we

were given, we can obtain an expression to substitute for g · v0:

g · r = g ·
[

1

2
gt2 + v0t

]
∴ g · v0 =

g · r − 1

2
g2t2

t
and

(g · v0)
2

=
(g · r)

2 − g2t2g · r − 1

4
g4t4

t2
.

Making the substitution, then simplifying, we arrive at the quadratic equa-

tion (in t2)

1

4
g2t4 −

(
g · r + v0

2
)

+ r2 = 0,

from which

t2 =
2

g2

{
v0

2 + g · r ±
[(
v0

2 + g · r
)
− g2r2

]}
, and

t =
√

2

g

{
v0

2 + g · r ±
[(
v0

2 + g · r
)
− g2r2

]}1/2
.

3.10 Given a, c, ‖b‖, and β, solve the equation αa+βb = c

for α.

See also the problem presented

in 3.9. Extending these two

problems a bit, we can see that

if we had to solve for x in the

equation f = g + x, and knew

g and ‖f‖, but not f ’s

direction, we might consider

forming the square of ‖f‖ by

one of the following maneuvers:

• ‖f‖2 = ff = f (g + x);

• ‖f‖2 = (f)2 = (g + x)2;

• ‖f‖2 = f · f = f · (g + x) .

We begin by squaring both sides of αa + βb = c to produce a ‖b‖2 term:

α2a2 + 2αβa · b + β‖b‖2 = c2,

Next, we “dot” both sides of αa+βb = c with a to produce an expression that

we can substitute for the unwanted quantity a · b:

a · (αa + βb = c) = a · c;

αa2 + βa · b = a · c;

∴ a · b =
a · c− αa2

β
.

After making the substitution, then simplifying, we obtain a quadratic in

α:

a2α2 − (2a · c)α+ c2 − β2b2 = 0;

∴ α =
a · c±

√
(a · c)

2
+ a2 (β2b2 − c2)

a2
.
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4 Additional Problems

Several problems are solved in multiple ways in [3]-[12].
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