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Abstract. The Duplication graph DG of a graph G, is obtained by inserting

new vertices corresponding to each vertex of G and making the vertex adja-

cent to the neighbourhood of the corresponding vertex of G and deleting the
edges of G. Let G1 and G2 be two graph with vertex sets V (G1) and V (G2)

respectively. The DG - vertex join of G1 and G2 is denoted by G1 t G2 and

it is the graph obtained from DG1 and G2 by joining every vertex of V (G1)
to every vertex of V (G2). The DG - add vertex join of G1 and G2 is denoted

by G1 ./ G2 and is the graph obtained from DG1 and G2 by joining every
additional vertex of DG1 to every vertex of V (G2). In this paper we determine

the A - spectra and L - spectra of the two new joins of graphs for a regular

graph G1 and an arbitrary graph G2 . As an application we give the number
of spanning tree, the Kirchhoff index and Laplace energy like invariant of the

new join. Also we obtain some infinite family of new class of integral graphs
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1. Introduction

All graphs described in this paper are simple and undirected. Let G be a graph
with vertex set V (G1) = {v1, v2, · · · vn}. The adjacency matrix of G, denoted by
A(G) = (aij)n×n is an n× n symmetric matrix with

aij =

{
1 if vi and vj are adjacent

0 otherwise

Let di be the degree of the vertex vi in G and D(G) = diag(d1, d2, · · · dn) be the
diagonal matrix of G . The Laplacian matrix is defined as L(G) = D(G) − A(G).
The characteristic polynomial of A(G) is defined as fG(A : x) = det(xIn−A) where
In is the identity matrix of order n. The roots of the characteristic equation of A(G)
are called the eigenvalues of G. It is denoted by λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).
It is called the A - Spectrum of G. The eigen values of L(G) is denoted by 0 =
µ1(G) ≤ µ2(G), · · · ≤ µn(G) and it is called the L - Spectrum of G. Since A(G)
and L(G) are real and symmetric, their eigen values are all real numbers. A graph
is A - integral, if the A - spectrum consists only of integers [4, 14]. Two graphs
are said to be A - Cospectral if they have the same A - spectrum.
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The characteristic polynomial and spectra of graphs help to investigate some
properties of graphs such as energy [8, 16], number of spanning trees [18, 9, 17],
the Kirchhoff index [2, 5, 11], Laplace energy like invariants [7] etc.

The first result on Laplacian matrix was discovered by Kirchhoff, which appeared
in a paper published in the year 1847 is related to electrical network. There exists
a vast literature that studies the Laplacian eigen values and their relationship with
various properties of graphs [12, 13]. Most of the studies of the Laplacian eigen
values has naturally concentrated on external non trivial eigen values. Gutman
et al. [16] discovered the connection between photoelectron spectra of standard
hydrocarbones and the Laplacian eigen values of the underlying molecular graphs.

In the first section we define DG - vertex join and DG - add vertex join of
two graphs and discuss some important results, which are found essential to prove
the results given in the subsequent sections. In the third section we find the A -
spectrum and the L - spectrum of the new join and prove some related results. As
an application, we find the number of spanning trees, Kirchhoff index and Laplacian
- energy like invariant. Fourth section contains a discussion on some infinite family
of integral graphs.

2. Preliminaries

In a paper published in 1973 on duplicate graphs, which appeared in the Journal
of Indian Mathematical Society, Sampathkumar [10] defined duplicate graphs. Let
G be a graph with vertex set V(G) = {v1, v2, ..., vn} . Take another set U =
{u1, u2, ..., un}. Make ui adjacent to all the vertices in N(vi), the neighbourhood
set of vi , in G for each i and remove the edges of G only. The resulting graph is
called the duplication graph of G and is denoted by DG . The following result tells
us an easy way to find the determinent of a bigger matrix using the determinant of
relatively smaller matrices.

Proposition 2.1. [1] Let M1,M2,M3,M4 be respectively p × p, p × q, q × p, q × q
matrix with M1 and M4 are invertible then

det

(
M1 M2

M3 M4

)
= det(M1)det(M4 −M3M

−1
1 M2)

= det(M4)det(M1 −M2M
−1
4 M3)

where M4−M3M
−1
1 M2 and M1−M2M

−1
4 M3 are called the Schur complements of

M1 and M4 respectively.

Let G be a graph on n vertices, with the adjacency matrix A. The characteristic
matrix xI −A of A has determinant det(xI −A) = fG(A : x) 6= 0, so is invertible.
The A - coronal [6], ΓA(x) of G is defined to be the sum of the entries of the matrix
(xI −A)−1. This can be calculated as

ΓA(x) = 1Tn (xI −A)−11n

Lemma 2.2. [6] Let G be r - regular on n vertices. Then

ΓA(x) =
n

x− r



Since for any graph G with n vertices, each row sum of the Laplacian matrix
L(G) is equal to 0, we have

ΓL(x) =
n

x

Lemma 2.3. [6] Let G be the bipartite graph Kpq, where p+ q = n. Then

ΓA(x) =
nx+ 2pq

x2 − pq

Proposition 2.4. [15] Let A be an n × n real matrix, and Js×t denote the s × t
matrix with all entries equal to one. Then

det(A+ αJn × n) = det(A) + α1Tnadj(A)1n.

Here α is a real number and adj(A) is the adjugate matrix of A.

Corollary 2.5. [15] Let A be an n× n real matrix. Then
det(xIn −A− αJn×n) = (1− αΓA(x)) det(xIn −A).

Definition 2.6. Let G1 be a graph on n1 vertices and m1 edges. G2 be an arbitrary
graph on n2 vertices The DG − vertex join of G1 and G2 is denoted by G1 t G2

and is the graph obtained from DG1 and G2 by joining every vertex of V (G1) to
every vertex of V (G2).Where DG1 is the duplication graph of G1

Definition 2.7. The DG − addvertex join of G1 and G2 is denoted by G1 ./ G2

and is the graph obtained from DG1 and G2 by joining the additional vertices of
DG1 corresponding to the vertices of G1 with every vertex of V (G2).

Figure 1 : C4 tK2



Figure 2 :C4 ./ K2

3. Spectrum of G1 tG2

Theorem 3.1. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2 be
an arbitrary graph on n2 vertices. Then, the Characteristic polynomial of G1 tG2

is
fG1tG2

(A : x) = (x2 − n1xΓA2
(x)− r2

1)
n2∏
i=2

(x− λi(G2))

n1∏
i=2

(x2 − λi(G1)2)

Proof. The adjacency matrix of G1 tG2 is

A =

 0 A1 Jn1×n2

A1 0n1
0n1×n2

Jn2×n1 0n2×n1 A2


where A1 and A2 are the adjacency matrix of G1 and G2 respectively and J is a
matrix with each entries 1.

The Characteristic polynomial of G1 tG2 =

fG1tG2(A : x) =

∣∣∣∣ xIn1
−A1 −J

−A1 xIn1
0

−J 0 xIn2
−A2

∣∣∣∣
= det(xIn2 −A2) det S

where

S =

(
xIn1 −A1

−A1 xIn1

)
−
(
−Jn1×n2

0

)
(xIn2 −A2)−1

(
−Jn2×n1

0
)

=

(
xIn1

−A1

−A1 xIn1

)
-

(
ΓA2

(x)Jn1×n1
0

0 0

)



=

(
xI − ΓA2(x)Jn1×n1 −A1

−A1 xI

)
det S = det(xI) det

(
(xI − ΓA2

(x)J − A2
1

x

)
= xn1 det

(
xI − ΓA2

(x)J − A2
1

x
)

)
= xn1 det

(
xI − A2

1

x
− ΓA2

(x)J

)
= xn1 det

(
xI − A2

1

x

)(
1− ΓA2

(x)ΓA2
1

x

(x)

)
G1 is r1 - regular and the row sum of A2

1 is r2
1

ΓA2
1

x

=
n1

x− r21
x

=
n1x

x2 − r2
1

det S = xn1det
(
xI − A2

1

x )
)(

1− n1x
x2−r21

ΓA2(x)
)

= det(x2I −A2)
(
x2−r21−n1xΓA2

(x)

x2−r21

)
Hence
det(xI −A) = (x2 − n1xΓA2

(x)− r2
1)
∏n2

i=1(x− λi(G2))
∏n1

i=2(x2 − λi(G1)2)
�

Corollary 3.2. Let G1 be an r1 - regular graph on n1 vertices, G2 be r2 - regular
graph on n2 vertices. Then the A− Spectrum of G1 tG2 consists of

(i) λi(G2) , for i = 2, 3, ..., n2

(ii) ±λi(G1) , for i = 2, 3, ..., n1

(iii) Three roots of the equation

x3 − r2x
2 − (n1n2 + r2

1)x+ r2
1r2

Proof. If G2 is r2 - regular then

ΓA2(x) =
n2

x− r2

We get
det(xI −A) = (x3 − r2x

2 − (n1n2 + r2
1)x+ r2

1r2)

n2∏
i=2

(x− λi(G2))

n1∏
i=2

(x2 − λi(G1)2)

�

Corollary 3.3. Let G1 be an r1 - regular graph on n1 vertices, A − Spectrum of
G1 tKn consists of

(i) 0, repeats n2 times
(ii) ±λi(G1) , for i = 2, 3, ..., n1

(iii) ±
√
n1n2 + r2

1



Corollary 3.4. Let G1 be an r1 - regular graph on n1 vertices. A− Spectrum of
G1 tKpq consists of

(i) 0, repeats p+ q − 2 times
(ii) ±λi(G1) , for i = 2, 3, ..., n1

(iii) Four roots of the equation

x4 − (pq + r2
1 + n1p+ n1q)x

2 − 2pqn1x+ r2
1pq

3.1. Laplacian Spectrum of G1 tG2.

Theorem 3.5. Let G1 be an r1 - regular graph on n1 vertices and m1 edges. G2

be an arbitrary graph on n2 vertices. then,

fG1tG2
(L : x) = x(x2 − (n1 + n2 + 2r1)x+ r1(2n1 + n2))

n2∏
i=2

(x− n1 − µi(G2))

n1∏
i=2

(x2 − (2r1 + n2)x+ n2r1 + r2
1 − λi(G1)2)

Proof. The Laplace adjacency matrix of G1 tG2 is

L =

 (r1 + n2)I −A1 Jn1×n2

−A1 r1I 0n1×n2

−Jn2×n1
0n1×n1

n1In2
+ L2


where L2 is the Laplacian adjacency matrix of G2

The Laplacian Characteristic polynomial of G1 tG2 = fG1tG2(L : x)
= ∣∣∣∣ (x−r1−n2)In1

A1 J

A1 (x−r1)In1 0

J 0 (x−n1)In2
−L2

∣∣∣∣
Using proposition 2.2 we will get
fG1tG2

(L : x) =
det((x− n1)In2

− L2) detS

where

S =

(
(x− r1 − n2)In1 A1

A1 (x− r1)In1

)
−
(
J
0

)
((x− n1)In1

− L2)−1
(
J 0

)
=

(
(x− r1 − n2)I A1

A1 (x− r1)I

)
-

(
ΓL2

(x− n1)Jn1×n1
0

0 o

)
=

(
(x− r1 − n2)I − ΓL2

(x− n1)J A1

A1 (x− r1)I

)
det S = (x− r1)n1det

(
(x− r1 − n2)I − ΓL2(x− n1)J − A2

1

x− r1

)
By corollary 2.7

det S = (x− r1)n1det
(

(x− r1 − n2)I − A2
1

x−r1

)
(

1− ΓL2
(x− n1)Γ A2

1
x−r1

(x− r1 − n2)

)

= det
(
(x− r1 − n2)(x− r1)I −A2

) (
1− ΓL2

(x− n1)Γ A2
1

x−r1

(x− r1 − n2)

)



Since G1 is r1 regular graph, the row sum of
A2

1

x−r1 is
r21
x−r1

Therefore

Γ A2
1

x−r1

(x− r1 − n2) =
n1(x− r1)

x2 − (2r1 + n2)x+ n2r1

1− ΓL2
(x− n1)Γ A2

1
x−r1

(x− r1 − n2) = x(x2−(n1+n2+2r1)x+r1(2n1+n2))
(x−n1)(x2−(2r1+n2)x+n2r1)

Hence

fG1tG2
(L : x) = x(x2 − (n1 + n2 + 2r1)x+ r1(2n1 + n2))

n2∏
i=2

(x− n1 − µi(G2))

n1∏
i=2

(x2 − (2r1 + n2)x+ n2r1 + r2
1 − λi(G1)2)

�

Let t(G) denote the number of spanning tree of the graph G, the total number
of distinct spanning subgraphs of G that are trees. The number of spanning trees
of the graph describe the network which is one of the natural characteristics of its
reliability. If G is a connected graph with n vertices and the Laplacian spectrum
0 = µ1(G) ≤ µ2(G), · · · ≤, µn(G) then [17]

t(G) =
µ2(G)µ3(G)....µn(G)

n

Corollary 3.6. Let G1 be an r1 - regular graph on n1 vertices and G2 be an
arbitrary graph on n2 vertices.Then

t(G1 tG2) =
r1(2n1+n2)

∏n1
i=2(n1+µi(G2))

∏n2
i=2(r21+n2r1−λ2

i (G1))

2n1+n2

Proof. By Theorem 3.5 the roots of fG1tG2
(L : x) are as follows

(i) 0
(ii) n1 + µi(G2) for i = 2, 3, ..., n2

(iii) Two roots say x1 and x2 of the equation x2− (n1 +n2 +2r1)x+r1(2n1 +n2)
(iv) Two roots say xi1 and xi2 of the equation x2−(2r1+n2)x+n2r1+r2

1−λi(G1)2

for i = 2, 3, ..., n2

For case (iii) x1x2 = r1(2n1 + n2)
For case (iv) xi1xi2 = n2r1 + r2

1 − λi(G1)2, i = 2, 3, ..., n2

Then

t(G1 tG2) =
r1(2n1+n2)

∏n1
i=2(n1+µi(G2))

∏n2
i=2(r21+n2r1−λ2

i (G1))

2n1+n2

�

Another Laplacian spectrum based on graph invariant was defined by Liu and
Liu [3] called the Laplacian - energy - like invariant.

The Laplacian - energy - like invariant(LEL) of a graph G of n vertices is defined
as LEL(G) =

∑n
i=2

√
µi

Corollary 3.7. Let G1 be an r1 - regular graph on n1 vertices and G2 be an
arbitrary graph on n2 vertices. Then Laplace - energy - like invariant

LEL =
(
n1 + n2 + 2r1 + 2

√
r1(2n1 + n2)

)1/2

+
∑n2

i=2

(
n1 + µi(G1)2

)1/2
+
∑n1

i=2

(
2r1+n2+

√
r21+n2r1−λi(G1)2

r21+n2r1−λi(G1)2

)1/2



Proof. Using the Theorem 3.5 and Corollary 3.6 we have
√
x1 +

√
x2 =

(
x1 + x2 + 2

√
x1x2

)1/2
=
(
n1 + n2 + 2

√
r1(2n1 + n2)

)1/2

1√
xi1

+ 1√
xi2

=
√
xi1+

√
xi2

2
√
xi1xi2

=
(
x1+x2+

√
x1x2

xi1xi2

)1/2

=

(
2r1+n2+

√
r21+n2r1−lambdai(G1)2

r21+n2r1−λi(G1)2

)1/2

Hence the required result is obtained using the formula for LEL. �

Klein [5] propounder of resistance distance defined electric resistance in network
corresponding to the considered graph as the resistance distance between any two
adjacent nodes is 1 ohm. The sum of the resistance distance between all pairs of the
vertices of a graph is conceived as a new graph invariant. The electric resistance is
calculated by means of the Kirchhoff laws called kirchhoff index.

Kirchhoff index of a connected graph G with n(n ≥ 2) vertices is defined as

Kf(G) = n

n−1∑
i=1

1

µi

Corollary 3.8. Let G1 be an r1 - regular graph on n1 vertices. G2 be an arbitrary
graph on n2 vertices.Then

Kf(G1tG2) = (2n1+n2)
[
n1+n2+2r1
r1(2n1+n2) +

∑n2

i=2
1

n1+µi(G2) +
∑n1

i=2
2r1+n2

r21+n2r1−λi(G1)2

]
Proof. Using Theorem 3.5, Corollary 3.7 and the formula for Kirchhoff index we
obtain the required result. �

3.2. Spectra of DG− addvertex graph.

Proposition 3.9. Let G1 be an r1 - regular graph on n1 vertices and G2 be an
arbitrary graph on n2 vertices then G1 tG2 and G1 ./ G2 are A - Cospectral

Proof. We can prove that the characteristic polynomial of G1 t G2 and G1 ./ G2

are same. �

Proposition 3.10. Let G1 be an r1 - regular graph on n1 vertices and G2 be an
arbitrary graph on n2 vertices then G1 tG2 and G1 ./ G2 are L - Cospectral

4. Infinite Families of Integral Grapha

The following properties give a necessary and sufficient condition for DG−vertex
join and DG− addvertex join of G1 and G2 to be integral.

Proposition 4.1. Let G1 be r1 - regular graph on n1 vertices and G2 be r2 - regular
graph on n2 vertices. G1 tG2 ( respectively G1 ./ G2 ) is an integral graph if and
only if G1 and G2 are integral graphs and the roots of x3−r2x

2−(n1n2 +r2
1)x+r2

1r2

are integers.

In particular if G2 = Kn (totally disconnected) then r2 = 0 then G1 t G2

(respectively G1 ./ G2) is integral iff G1 is an integral graph and n1n2 + r2
1 is a

perfect square.



Figure 3 : K4 tK4 with spectrum {−5,−13, 04, 13, 5}

Proposition 4.2. Let G1 be r1 - regular graph on n1. G1 t Kpq ( respectively
G1 ./ Kpq ) is an integral graph if and only if G1 is an integral graph and the roots
of x4 − (pq + r2

1 + n1p+ n1q)x
2 − 2pqn1x+ r2

1pq are integers.
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