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Abstract: We summarize how the Lorentz Force madioserved in classical electrodynamics
may be understood as geodesic motion derived bymming the variation of the proper time
along the worldlines of test charges in externaleptials, while the spacetime metric remains
invariant under, and all other fields in spacetimenain independent of, any rescaling, i.e., re-
gauging of the charge-to-mass ratio g/m. In orfiterthis to occur, time is dilated or contracted
due to repulsive and attractive electromagnetienattions respectively, in very much the same
way that time is dilated due to relative motiorspecial relativity and due to gravitational fields
in general relativity, without contradicting the liveorroborated experimental content of
standard electrodynamic theory and both special gederal relativity. As such, it becomes
possible to lay an entirely geometrodynamic fourtafor classical electrodynamics in four
spacetime dimensions, in which mechanical motiom$ abjects are merely promoted into
canonical motions and objects in accordance withi-established local symmetry principles.
Further, when we consider the self-interactionsdfvidual leptons understood to be responsible
for the magnetic moment anomalies, and upon id@ngjfa universal relation between time and
energy whereby all forms of energy dilate (or caoty time regardless of their kinetic or
interaction origin, it is shown how these magnetioment anomalies which are quintessential
hallmarks of quantum field theory, both measure angbirically validate electromagnetic time
dilation, and are a direct and immediate conseqeeotlocal abelian and non-abelian gauge
symmetries.
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1. Motivation, Purpose and Historical Background

The equation of motion for a test particle alongendesic line in curved spacetime
specified by the metric intervaf°dr? = g,, dX' dX with metric tensorg,, was first obtained by
Albert Einstein in 89 of his landmark 1915 papdriftroducing the General Theory of Relativity.
The infinitesimal linear elementlz = ds/ ¢ for the proper time is a scalar invariant which is

B
independent of the chosen system of coordinategkewlise the finite proper timq:JAdr

measured along the worldline of the test partideMeen two spacetime evetsandB has an
invariant meaning independent of the choice of doates. Specifically, the geodesic of motion
is stationary, and results from a minimizationld# variational equation

o:5jfdr. (1.1)

After carrying out the well-known calculation omgilly given by Einstein in [1], the particle’s
eqguation of geodesic motion is found to be:

¢ df o dX
i ar maa Y &2

with Christoffel connection defined (denoted™) by -I'* , =4 g* (aagw -0,9,, -0, gay)

and the relativistic four-velocity by* = dx* / dr .

The geodesic (1.2) can also be viewed in altereatyet equivalent way. In curved
spacetime, DBﬁ/DrE(ax”/ar)a;V B’ defines the “derivative along the curve” for any

contravariant vectoB”, using gravitationally-covariant derivatives, B’ =90,B°+I'” B and
the chain rule. So wheB” = u”, then, in view of (1.2), we may also write:

B
Bu? ¢, w = (o s )= L Krs )= irs wi=0. (13
Dr dr or FIat% dr dr a

This has exactly the same content as the geodgsatien (1.2). But given thadu” / dr =0
describes Newtonian inertial motion when the getional connectiorfﬁw =0, we may think of

Du” / Dr =0 above as describirgpvariantly-inertialmotion in the presence of gravitation. This
is what gives gravitational geodesics their coliatjuharacterization as “straight lines,” or more
precisely, “inertial lines” in curved spacetime.

Just as ordinary derivatives, :(a/ at,EI) are replaced by gravitationally-covariant
derivativesd., in curved spacetime, so too in gauge theory orgidarivativesd, are replaced
by gauge-covariant or “canonical” derivativas, =d, —igA,, whereq is the electric charge
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strength andA, is the gauge field / vector potential, and wheeeuse®, rather than the often-
employedD, to distinguish symbolically from th@ of gravitational motion in (1.3). Motivated

by the geodesic nature of gravitationally-covariamdtion for which Du” / Dr =0 rather than
du’/dr=0 and how this motion stems directly from the rephaent of ordinary with
gravitationally-covariant derivatives, the purposé this paper is to summarize how
electrodynamic Lorentz Force motion is likewise dggic motion which iganonically-inertial
described bydu” / D1 =0, which stems directly from the canonical derivasivof gauge theory.
As will be shown, this comes about as a consequehberetofore unrecognized time dilations
and contractions which occur any time two matdr@lies are electromagnetically interacting. It
will also be shown how in quantum electrodynamiksse time dilations directly give rise to the
observed lepton magnetic moment anomalies.

Finding a geometrodynamic foundation for electraiyics limited to four spacetime
dimensions has been of great interest yet defikdiso for almost a century. The Special Theory
of Relativity [2] together with Minkowski’s famougroclamation [3] that “from now onwards
space by itself and time by itself will recedempletely to become mere shadows and only
a type of union of the two will still stand indapdently on its own,” first established the geometr
unification of space and time that now underlidso@lphysics. With the General Theory [1],
Einstein soon thereafter applied Riemannian gegntetintroduce curvature to spacetime and
found that gravitation including motion in a gratibnal field could be fully explained on this
entirely geometric foundation, giving birth to whatVheeler would later coin as
“geometrodynamics.” [4]

After the General Theory established that the Rmeema&urvature was simply a

measuremenR’,, B, =[0,,,0., | B, of degree to which derivatives at any given spameevent

in are non-commuting when operating on any foutee®,, it was natural to try to explain
electrodynamics in a similar way based on spacetumeature. Hermann Weyl's gauge theory —
which will be central to this paper — is perhapsiinost important of these efforts, and has become
the foundation for our modern understanding noy aflelectrodynamics, but also of the weak
and strong interactions which are non-abelian exéers of electrodynamics. Although “gauge”
is a historical misnomer from when Weyl first triechsuccessfully in [5], [6] to explain

electrodynamics by imposing a symmetry under lg@algetransformationsy — ¢' =&y

rescaling the magnitudef a wavefunction, Weyl did eventually find, castly in [7], that
electrodynamics is indeed the natural consequehoepmsing a locaphasesymmetry under a

magnitude-preserving redirectian — ¢' =Uy ="y of the wavefunction in a complex two-

dimensional phase space established by the panagfetecosA +i sifA. Apropos to curvature,

this “gauge” theory established that the electramesig field strength bivectoF* — like R,
— measures the degree to which gauge-covarianatieesd, =0, —igA, were non-commuting.
This is why F* is often referred to as the “curvature” tensblowever, the field strength only

bears an imaginary relatiagF* ¢= i[@”,@”]¢) to the gauge-covariant derivatives, and so this is

not areal curvature as is that dR” aw- INdeed, it was because the incorrect re-gaugirthe
wavefunction allowed this curvature to be real like curvature of Riemann, that Weyl adhered
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so long to a “gauge” rather than a “phase” tramsfdron. But this was not in accord with observed
natural reality.

During the same era when Weyl was developing géugery, Kaluza [8] and Klein [9]

did succeed in explaining the Lorentz force lavadgpe of geodesic motion owing to spacetime
curvature that remained real, and even gave a gecragplanation for the electric charge itself.
But this came at the cost of adding a fifth dimendb spacetime and curling that dimension into
a very tiny cylinder. While theoretically-attragti as a geometrodynamic theory, Kaluza-Klein
has not become universally accepted becauseasrefi a fifth dimension which does not appear
to have been observed and likely never could bergbd. For his part, Einstein also pursued a
geometrodynamic theory of electrodynamics until ¢hel of his life, but he too was never fully
satisfied with his or anybody else’s results.

To date, a century later, finding a geometrodyndmundation for even classical — much
less quantum - electrodynamics remains elusive, #drete certainly is no theory of
electromagnetism which rises to the level of pugengetry embodied in either the Special or the
General Theories of Relativity. Using settled andepted gauge theory as a foundation, the goal
of this paper is to bring a century of work purguina geometrodynamic foundation for
electrodynamics to a successful conclusion, by eamhj for electrodynamics, the pure
geometrization that the Special Theory of Relatigithieved for relative motion and the General
Theory of Relativity achieved for gravitation.

2. A Brief Note about Signs and Sign Conventions

The dilation and contraction of time whenever arghd body is placed into an
electromagnetic potential and the connection af thielectromagnetic interaction energies and to
the lepton magnetic moment anomalies will be a &umeintal finding of this paper. But because
electromagnetic interactions can be attractiveequlsive unlike gravitation which is always
attractive, a fundamental question will arise wketfor Coulomb interactions between two
charges, electrodynamic time dilation occurs betwide and therefore repelling chargesr
betweeropposite and thereforatracting charges Note that one or the other but not both of these
possibilities could be true, because two like-eleat-charges repel while two like-gravitational-
charges (masses) attract. While one may havecameeption about which of these possibilities
is true (we will find that time dilates from thet@naction of two like-thus-repelling charges and so
contracts for electrical attraction between unidkerges), the answer to this question depends
upon, and can only be answered definitively by, twbecertain interaction and energy signs are
positive or negative, and by how these signs enterthe overall theoretical development. So
before we begin, it is important to take a momentréview certain sign conventions and
requirements.

In natural unitsc=1, the Lorentz force law which we shall study hetdeagth, is
du’/dr=+(q/ n) P, d. Specifically, if one adopts a sign conventiominich a test chargg

in the mixed electromagnetic field” =g, F* is taken to be positive and the proper potential
@ of the gauge fieldA” =(g A) in the field strengthF** =9”A” -9“ A® is also taken to be
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positive, then when using a timelike metric signatdiag(r7,, ) =(+1- 1~ 1~ } in the flat
spacetime limitg,,, =77, this Lorentz force law requires a positive ovesadh. We may see this
using a Coulomb interaction at rest, as follows:

Combining all of the foregoing we may writk’ / dr = +( g/ rr)(nmnf’”ar K-9a, K) i
for the Lorentz force. At rest we may sét=0 and A" =(¢A)=(¢,0), so for the space
components we obtaiu*/ dr =+(q/ n)r7,y70,¢ . Then we takeg =+k.Q/r to be a

positive proper Coulomb potential for a positiveise charge, wherek, =1/ 47, =y, | 41

is Coulomb’s constant. So if we place the positjweto this potential the electrostatic interaction
energy will begq =+k,Qqg/ r, which grows smaller as the separatidretween the two positive

charges is increased. Because the test chargaatiltally tend toward a lower energy over a
higher energy, this tells us that this interaci®mepulsive. Consequently, commensurately, we

must have a positively-signedu® / dr >0 for the acceleration, with a vector direction pivig
toward greater space separation, emerge from thentoforce law. So let us make sure it does.

If, for example, we align the radial separatiomaldhez axis so tha(x, y, 2 =(0,0,1),
then along this radius the Lorentz force law will ielg
du’/ dr =+( o/ M)7g7° 09,0 ==(1/ Mo ® 9 k Q4 ), viad,(1/r)=~1/r>. Now, at this
juncture, we will haver,y7** =-1 irrespective of whether we choose a timelike sigrea
diag(/yw) =(+1-1-1- ) or a spacelike signaturediag(nw) =(-1+1+ 1+ )} for the
Minkowski metric tensor, becauggy7* = -1 either way. So in either case, the Lorenz foage |
will reduce to du®/ dr =(1/ m)( k Qq ?) d, with the sign now boiling down to that of
u® =dt/ dr. With this(x, y, 2) =(0,0,r) alignment, the required repulsive result now beesm
du®/dr >0.

Now we must choose our metric tensor signatureusedhat consistently throughout. In
all cases, the flat spacetime line elementds’ = ¢ dr* =77, d% d%. For a timelike signature

with g, dx dxX = dX+ dy+ dz= df, the time intervalds’ = czokzz( ¢ dt- dr?). If we are

studying the time evolution of material bodies nmgvivithin the light cone, then it is generally
preferable to use a timelike signature, becauseestt with dx =0, the metric reduces to
dr? = dt*. Then, while we still have the choice of settolmy dt =+1 upon taking the square root,

it makes no sense to aligir other than withdt so that these both measure the same time
progression, and we therefore siat/ dt=1. On the other hand, if we are studying two spkeel
separated events outside the light cone at the saprdinate time, then it is preferable to use a
spacelike signature, because at the same time inated with dt =0, the metric reduces to
ds’ = dr’. Then, although we may choose eitherdsE + dr when taking the square root, we
likewise align the coordinate length with the profength sodr/ds=1 and these both measure
the same length in the same direction. But it aldlo be seen that were we to choose a spacelike
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signature, then at rest the metric would reduceltd=—dt*, and that one would then have
dr = idt, requiring the Lorenz force to have an imaginzéql m) F’_« term. So though

optional, it is preferred to choose a timelike sigme. Once we do so, all else must be done
consistently with this.

So to keep all terms real in the Lorentz force ciweose a timelike signature, which means
that after alignmend7 / dt=1, so that the Lorentz acceleration given all ofdbeventions recited

here finally becomesiu® / dr = (1/ m)( k Qg 7). For the(x, y, 2 =(0,0,r) alignment, this is a
radial accelerationi®r /dz7? =(1/ m)( k Qu/ r2) . Given thaQ andq are both positive, this yields
the required repulsive motiai‘r /dr? >0, properly corresponding with the repulsive intgien
energygq =+k Qq/ r that lessens with increased separation betweempasiive (like-signed)
chargexQ andg. Obviously, if eitheQ or g but not both is a negative charge, then the intena
energy will go over topq - —k.Qq/ r, growing smaller with reduced charge separatiam|en

the motion becomes the attractigér/dr®<0. Both of these are consistent with electrical
attraction between unlike charges. Finally, beedhis will become important in the development
to follow, we again note the widely-known and dgepindamental empirical fact that for
gravitation like charges attract, while for eleatagnetism like charges repel.

PART |: CLASSICAL GEOMETRO-ELECTRODYNAMICS

3. Geometro-Electrodynamics and Time Dilation and Gntraction: An
Overview

To begin development, if a test particle, to whiadhnow ascribe a mass> 0, also has a
non-zero net electrical charggez 0 and the region of spacetime in which it subsitds &as a

nonzero electromagnetic field strengti® # 0, then the equation of motion is no longer given by
(1.2), but is supplemented by an additional ternictvitontains the Lorentz Force law, namely,
with a positive sign for the reasons and with tiga sonventions already discussed:

d'X _df _ o, dt dk, g
= = - +—
dr? dr Wodr dr m

B
-

dk
FA—=-T* uu +—1, F* 3.1
W= (3.1

In the above, the field strengf* containing the electric and magnetic field bives® andB

is defined as usual blF#* =90” A -9 A? in relation to the gauge potential four-vecidt. The
above force law is of course a well-known, wellrotworated, well-established law of physics.

Given that the gravitational geodesic (1.2) is\w=t from the variational equation (1.1),
the question arises whether there is a way to lfgl) from the same variation as in (1.1), thus
revealing electrodynamic motion to also entail iglgs moving along geodesic paths in four
spacetime dimensions. Conceptually, it cannotreel other than that this would be a desirable
state of affairs. But physically the difficultysts in how to accomplish this without ruining the
integrity of the metric and the background fieldsspacetime by making them a function of the
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charge-to-mass ratiQ/ m. This ratio is and must remain a characteridtibe test particle alone.
It is not and cannot be a characteristic of the tfementdz , or the metric tensog,, , or the
gauge fieldA”, or the field strengtF#® which define the field-theoretical spacetime baokgd
through which the test particle is moving. And, baittom, this difficulty springs from the

inequivalenceof the “electrical mass” (a.k.a. chargg)and the inertial masm, versus the
Newtonian equivalence of gravitational and inentiass. In (3.1), this is captured by the fact that

m doesnot appear in the gravitational tern‘fﬁwu”u”, while the q/ m ratio doesappear in the

electrodynamic Lorentz Force term that we rewrit¢g/ m) F°_uf in natural units withc =1.

This difficulty may also be seen very simply if wempare Newton’s law with Coulomb’s
law. In the former case we start with a fofees -GMm/ r* (with the minus sign indicating that
gravitation is attractive) and in the latté =—k Qqg/ r* (for which we choose an attractive
interaction to provide a direct comparison to giaion), whereG is Newton’s gravitational
constant and the analogoug is Coulomb’s constant. If the gravitational fiefdtaken to stem

from massM and the electrical field from chardgg then the test particle in those fields has
gravitational masm and electrical mass But the Newtonian forc& = ma always contains the
inertial massn. So in the former case, because the gravitat@malinertial mass are equivalent,

the accelerationa=F/m=-GMm/ mf=- GM/ ¢ and these two masses cancel, giving
—Fﬁwu"u” without any mass in (3.1). But in the latter ca$ise acceleration

a=F/m=-kQq mf=-(d m k@ ¥ because the electrical and inertial masses are not

equivalent, hencéq/ m) F# U containing this same ratio in (3.1). Here, theiarois distinctly

dependent on the electrical and inertial magsasim of the test particle. And as aresult, different
chargeqy with different massem starting with the exact same initial velocity lag texact same
position may all be moving through the exact sarmekfround fields and yet have different
observable motions.

So, were we to pursue the conceptually-attractiva @f understanding electrodynamic
motion as the result of particles moving througlacgtime along geodesic paths, with the
variational equation (1.1) applying to electrodymamotion just as it does to gravitational motion,

the line elementdr would inescapably have to be a functidn(q/ m) of g/ m. This in turn
would appearto violate the integrity of the line elemedr as well as the metric tensgy,, in

c’dr? = g,, dX' dX, because these would aéem to belependent upon the attribugandm of

the test particles that are moving through the sfpme background. Were this to be reality and
not just seeming appearance, this would be phygicapermissible.

Consequently, despite there being many known d@vivaof the Lorentz Force law, there
does not, to date, appear to be an acceptablengootithe Lorentz Force law in the variational
B
equation0= 5IA dr which would reveal electrodynamic motion to bedg=ic motion just like

the familiar gravitational motion. And this is laese it has not been understood how to obtain
electrodynamic motion from a minimized variationil@lsimultaneously maintaining the integrity

6
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of the field theory such that the metric and thekiggound fields do not depend upon the attributes
of the test particles which may move through tHesdds. This, in turn, is because electrical mass
is not equivalent to the inertial mass, which cawudifferent test particles to move differently even
when they start out with the exact same positioigsnaotions in the exact same background fields,
in contrast to the Newtonian equivalence of grantal and inertial mass from which all particles
respond identically in the same gravitational backgd.

So, when a first test particle with electrical mgssd inertial masm is placed in a field
F#", and a second test particle with electrical mgisand inertial massn' of a different ratio
q /m# g/ mis placed at equipotential in the same fi€lff with the same initial conditions for

each, there are observably-different Lorentz Fonocgions for these two different test charges
even though they are at equipotential. Were wieytdo derive this motion from (1.1) the line

elementdr would have to be a mathematical functidn(q/ m) of g/ m, yet to maintain the

integrity of the field theory the line elemedr would also have to be physically independent of
g/ m, which may seem paradoxical. Nevertheless pbssible to have a line which is a function

of q/ m, from which the variational equatiob= Jﬁdr does vyield the combined gravitational

and electrodynamic equation of motion (3.1), yet#hich the line elemerdr , the metric tensor
g,,, the gauge fieldA”, and the electromagnetic field strengti® are all independent of this

g/ m ratio. Specifically, close study reveals thas {@radox may be resolved by recognizing that

as measured by periodic signals emitted by thectemtges acting as geometrodynamic clocks,
time does not flow at the same rate for these ésbdharges in very much the same way that time
does not flow at the same rate for two referenaenés in special relativity which are in motion
relative to one another

In particular, in the absence of gravitation wigh), =77, and Fﬁw =0, the first test
particle will have a Lorentz motion given by:

dzxﬂ :_q Fﬁ”d_)g

dr? m'™ car

(3.2)

which also contains a set of coordinat€s Now usually it is assumed that for the secomst te
particle the motion is given by this same equaf®), merely with the substitution af - ¢

andm - m; that is, by:

dx" _d Fﬁad_)g

=— } 3.3
dr? rri”"” car (3.3)

The particular assumption here is that there ichmenge in the measurement of time, i.e., the
periodicity of emitted signals, when (3.2) is reqagd with (3.3); and more generally the assumption

is that the coordinate intervadk’ in (3.3) is identical to thelx’ in (3.2). Yet, it is impossible to

B
have both (3.2) and (3.3) emerge through the vandl = JIA dr from the same metric element
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dr, and simultaneously maintain the integrity of fied theory, unless the coordinates are
different, whereindx’ in (3.2) isnot identicalto what must now bex’ - dX? # dX in (3.3).

In fact, the very physics of having electric charge electromagnetic fields induces a
change in coordinates as between these two tegieshwith differenty’ / i # g/ mr, very similar

to the coordinate change via Lorentz transformatioduced by relative motion. As a result, the
electrodynamic motion of the second test charggvisn, not by (3.3), but by:
2B }
d )(2 :EHUGFMK .
dr* ni cdr

(3.4)

Here, x? in (3.2) andx? # X’ in (3.4), respectively, are two different setscobrdinates. Yet,
they are interrelated by a definite transformatiost importantly, this results tme itselfbeing
measured differently as between these two setsoofdmates, making time dilation and
contraction as fundamental an aspect of electradics as it already is of the special relativistic
theory of motion and the general relativistic theofrgravitation. In fact, what is really happegin
— physically — is that the placement of a charganielectromagnetic field isducing a physically-

observable change of coordinate§(g/ m - x?(d/ M in the very same way that relative
motion between the coordinate systexf{v) and x°(V) of two different inertial reference

frames with velocities andV' induces a Lorentz transformatiofi(v) - X?(V) that relates the

two coordinate systems to one anotherdfidr® =7, dx'(y) d( y=n,, d¥(y d%( 'y, with an

invariant line elemendr® = dr'* and the same metric tensgy, =7, in either reference frame.

As it turns out, the line element that yields 3tbm (1.1), including electrodynamic
motion, which element is quadratic dt , is:

c?dr? = gw(dX’ + 4 ¢ AJ( dc+—L o %\j: g9 40 ", (3.5)
mcC mcC

Above, we have defined a gauge-covariant coordimageval Dx* = dx’ +( g/ mg¢ d A, again

with a canonicab to distinguish from the gravitationBlin (1.3). And it will be seen that upon
multiplying through bym? / dr? this becomes:

dx* g dX g ( q J( q A}
m’c = m—+— A || m—+— A= +— Al ‘pr— A= gr'n. 3.6
g"”(drc](drc]g“bc i A (3.9
This, it will be recognized, is the usual relatibipsm’ ¢® = g, /7' between the rest massand
canonical energy-momentum’ = p* + gX’/ ¢, with the ordinary mechanical / kinetic energy-
momentum continuing to be denoted py = mdx'/ d. To make certain there is no confusion,
it is to be noted that some authors continue to psé¢o denote the canonical momentum when



Jay R. Yablon, September 26, 2016

there are charges and gauge fields present. \Watfpreferable to employ the different symbol
' to avert confusion. Insofar as terminology, walkbonsistently refer tqp” = mdx'/ d as

the mechanical momentynand to 77 = p# + gX'/ ¢ as thecanonical momentum The gauge
interval Dx* = dx’ +( g/ mg¢ d A defined in (3.5) is then seen to be merely a testant of the

gauge-covariant derivative®, =0, —igA, and canonical momenta* = p* + gAX’/ ¢ which
emerge from gauge theory and relate to one anotilderd, -~ p, andi9, < 7, and in
particular, which emerge from the mandate for Igzalge (really, phase) symmetry.

Now, the line element (3.5) is clearly a functiong/ m and so has thappearanceof
depending on the ratiq/ m. But this is only appearance. For, when we ntaggthe second
test charge with the second ratjd m # g/ r in the exact same metric measured by the invariant

line elementdz and moving through the exact same fiefjs and A“, this metric gives:
Carr=g [ de+ 9 o & ( dv +- 9 g Aj: D %D "%, 3.7
g‘“’( mc j mc A 3.7)

with DX* = dx* +(d/ m¢ d A. Mostimportantly, witrdr' = dr andg;, = g,, and A* = A’

the metric and the background fields remain comeplebhdependent of the mass and charge of the
test particle. So despittr being a function of theg/ m ratio, thisdr = dr’ as a measured proper
time element is actuallywvariant with respect to the/ m ratio. To ensure thishe differences
between differeng/ m and q'/ n are entirely absorbed into the coordinate transiation

x* - X*, which as we shall see is quite analogous to theetz transformation of special
relativity. So the counterpart to (3.6) now becomes:

U 1%
dx* , d /xj( L Aj: g, (3.8)
dr ¢ dr c

m?c = gw( m

with an invariantdz and unchanged background fielgs, and A“ in the face of different and
differentq and differentq/ m.

In fact, this transformatiorx” - X* is definedso as to keepmr =dr' invariant, and
O, = g;w and A“ = A* and by implication the field strength bivectef® = F'#* all unchanged,
just as Lorentz transformations are defined so asdintain a constant speed of light for all irerti
reference frames independently of their state aiano That is, combining (3.5) and (3.7), this
transformationx” — X* which results in time dilations and contractiassjefinedby:

2dr?=g [ d¥+ L o & || dx+-L @ Al= d&iuw}(did"}..
car g“”( +mc j( +mc j 9( +rhc X+|’ncr (3:9)
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Consequentlydr = dr' is a function of charge and massn yet is invariant with respect
to the same, and there is no inconsistency. Lid@wthe fieldsg,, = g,, and A“ = A* are

independent of the charge and the mass of thgp&estle, because again, everything stemming
from the differentq/ m ratios is absorbed into a coordinate transformatio . X*. Thus, while
“gauge” is a historical misnomer for what is realtyariance under locaghasetransformations

W - ¢ =Uy ="y applied to a wavefunctiog , we see in (3.9) that the line elemetit
truly is invariant under what can be genuinely edlare-gaugingof the g/ m ratio. And from
(3.6) and (3.8), we see that this symmetry is yaadkt new. It is merely a restatement of the usual
relationshipm?®c® = g, /7'’ between rest mass and canonical momentum. Tibigdy, “gauge”

theory really is a “gauge” theory, but it is tlh¢ m ratio not the wavefunction that is re-gauged.

As aresult, each and every different test partiakeies its own coordinates, all interrelated
so as to keem7 invariant, andg,, , A“ and F# unchanged. The coordinate transformation

interrelating all the test particles causes tirie t to dilate for electrical repulsion between like-
charges and to contract for electrical attractioettveen opposite charged-or a test particle

placed at rest into a background poten#¥l= (¢ A) =(¢,0) where g is the proper potential,
this time dilation or contraction is measured yimensionless rati@t dr =y, that integrally
depends upon the magnitude of the likewise-dimenesss ratio qg/mcé of proper
electromagnetic interaction energyy to the test particle’s rest energyc¢. This in turn
supplements the ratiodt/ dr =, =1/m for motion in special relativity and
dt/ dr =y, =1/@ for a clock at rest in a gravitational field, aassembles them into the overall

product combinatiordt/ dr =,y v, governing time dilation and contraction when &livation
and gravitational and electromagnetic interactiamspresent.

For gq@/ mc <<1, and for a repulsive Coulomb forcE =k ,Qqg/ r*, the interaction
energiesk,, = _[m F..[dr =+k Qq/ r (see (10.14) infra) which diminish with increasegaration
between the charges are related to these electrmtiagime dilations in a manner identical to

how the kinetic energ¥e, =4 mV is contained inmmc®y, = mé/«1- v/ ¢ 0 mé+1 mk for

nonrelativistic velocitiess << ¢ in special relativity (11” symbol denotes approximate equality).
In fact, the actual expression for the electroméigrm®ntribution to the time dilation is

dt 1
=—=——— —[l+qg /mc. 3.10
also shown in thgg / m¢é <<1 “weak” interaction approximation. This will beicitly derived
in (10.11) infra, from the transformation defined(B.9). And for a Coulomb proper potential
@ =+k,Q/ r for a repulsive electrical interaction, this jig, :1/(1— kQq/ mé r) see (10.12)

10



Jay R. Yablon, September 26, 2016

infra. So the combined time dilation factdt/ dr =y, )y, mentioned earlier, employing the
Schwarzschild  metric  with g,,=1-2GM /cr thus the gravitational factor
=1/4/04,(r) O1+GM /c*r in the weak field Newtonian limit (where the Reigs-Nordstrém

metric termGk.Q’ / ¢'r> may clearly be neglected), produces an overaliggnehich, in the low

velocity, weak-gravitational and weak-electromagniateraction limit, is derived at (10.23) infra,
namely:

dt _ qkQ)(,, GMY(, 1V
E= mc2 —méyemygyVD m(’:(1+ cer(l C2rj(1+ czj

Qq 1kqu\; GMm 1GMm\;+ GM k Qq, 1 GMng%'
r 2 c?r r 2 cx r cr 2ct ct

(3.11)

—mcz+;m\?+ e

What we see here, in succession, are 1) the resfjemc, 2) the kinetic energy of the mass

3) the Coulomb interaction energy of the chargedand) the kinetic energy of the Coulomb
energy, 5) the gravitational interaction energthefmass, 6) the kinetic energy of the gravitationa
energy, 7) the gravitational energy of the Couloamergy and 8) the kinetic energy of the
gravitational energy of the Coulomb energy. Itlsar that this accords entirely with empirical
observations of the linear limits of these samegas.

Importantly, unlike gravitational redshifts or b#lefts which are a consequence of
spacetime curvature, these electromagnetic tinaialiisdo not stem directly from curvature
They only affect curvature indirectly through arnyaoges in energy to which they give rise,
because gravitation still “sees” all energy. Hemm¥&Vey!'s ill-fated attempt from 1918 until 1929
in [5], [6], [7] to base electrodynamics omal gravitational curvature in the same way as

gravitation is viaR”, B, = [a;v,aw] B, made clear that electrodynamics did not origirfiete

real spacetime curvature in four dimensions. Thisisduse Weyl's initial attempt was rooted in
invariance under a non-unitary local transformatign- ¢' =€**y which re-gauges the
magnitude of a wavefunction, rather than under thmrrect transformation
W - ' =Uy ="y with an imaginary exponent that simply redirebts phase. Specifically,
the latter correct phase transformation is assediatith animaginary, not real, curvature that

places a factor =+—1 into the geodesic deviatioB*f* / Dr*> when expressed in terms of the
commutativity of spacetime derivatives Vi ¢= [CD” @”]qo So at best, electrodynamics

can be understood on the basis ah@hematically-imaginary spacetime curvaturi€aluza [8]

and Klein [9] do of course provide an explanatiasdd on real curvature, but at the cost of adding
a fifth dimension. And so the time dilation and tagtion that we suggest here to provide a four-
dimensional geometrodynamic understanding of eddgtiamics, is much more akin to the time
dilation of special relativity than it is to theayitational redshifts and blueshifts of general
relativity. It may transpire entirely in flat spetone, and real spacetime curvature only becomes
implicated indirectly, when the energies addedrtd reach sufficient magnitude beyond their
linear limits shown in (3.11) to curve the nearpgcetime.

11
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Also importantly, the similarity of the ratiagg / m¢ andv?/ ¢® as the driving number in
Vor :1/(1— a% /mcz) and y, =1/4/1-Vv* /¢*, respectively, is more than just an analogy. dast

v<c (a.k.a.mv < mé) is a fundamental limit on the motion of mategabluminal particles, so
too, it turns out thagg < mc is a material limit on the strength of the intdi@e energy between
a test chargg with masaninteracting with the sources of the proper potdry. This transpires
by requiring particle and antiparticle energiesatoways be positive and time to always flow
forward in accordance with Feynman-Stueckelbengrthier, it turns out that wheg =k ,Q/ r is
the Coulomb potential whereby this limit become®q/ r< mé (a.k.a.r >k, Qq/ mé), we find

that there is a lower physical limit on how cloa® tinteracting charges can get to one another,
thereby solving the long-standing problem of how ciccumvent ther =0 singularity in
Coulomb’s law.

To be sure, these electromagnetic time dilations aminiscule for everyday
electromagnetic interactions, as are special ettt time dilations for everyday motion. So
testing ofdt/ dr changes for electrodynamics at the classical nsaopic level may perhaps be
best pursued with experimental approaches sinul#éndse used to test relativistic time dilations.
As a very simple example to establish a numericherark, consider two bodies with charges
Q=9g=1C (Coulomb) separated by=1 m (meter). In this event, the Coulomb interaction
energy has a magnitudeQq/ r=k =1/47E,=8.89% 18 (Joules). Yet, if the test particle
which we take to have the chargéas a rest mass =1 kg (kilogram), then the electrodynamic
time dilation factor contained in (3.11) js, O1+k_/ ¢ =1+ y, / 47= 1+ 10" = 1.00000C. This

is a very tiny time dilation for a tremendously ggedic interaction. The release of this much
energy per second would yield a power of approxahya8.897 GW (gigawatts), which roughly

approximates seven or eight nuclear power plantgughly four times the power of the Hoover
Dam, or the power output of a single space shlatlach, or the power of about seventy five jet
engines, or that of a single lightning bolt. Fosgecial relativistic comparison, consider an
airplane flying one mile in six seconds, versugtigrhich travels a bit over one million miles in

six seconds. Herey/ c010° and the time dilation ig;, =1/+/1-v* /¢ 11.00000000000C.

So in fact the exemplary electrodynamic time dilatiis substantially less miniscule than this
exemplary special relativistic dilation. Howevardaily experience where one encounters watts
and kilowatts not gigawatts, these time dilatiorailal be of similar magnitude.

Experimentally, to test for these electromagnefietdilationsy, = 1/(1— kQq/ mé r)

embedded in (3.11), one would compare the detepeibdicity of otherwise identical,
synchronized geometrodynamic clocks or oscillatwhéich are then electrically charged with
different g/ m ratios, and then placed at rest into the proptamiial ¢ . Or more generally, these

would be measured by electrically charging othesvidentical clocks and then placing them into
the potential to have differing dimensionleggy / mc ratios, then measuring their relative

oscillatory periods. Given tha&k,Qq/ mé r is a ratio of the electromagnetic interaction gyer
k.Qq/ r, to the total rest energmc of the test particle which is dominated by nucleaergy,

12
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the time dilation or contraction is seen to be @iy what may qualitatively be thought of as the
ratio of the electromagnetic energy to nuclear gnef the test charge. This is why, for example,
the benchmark ratio reviewed in the last paragrapko very small even for such a large
electromagnetic interaction of billions of Joules.

While such macroscopic experiments to detect thest®magnetic time dilation are
certainly of interest, the question also arisestirethere arenicroscopicexperiments which can
be performed upon individual test charges, sut¢hesharged leptons, to detect this time dilation.
As we shall study in depth in Part Ill of this pagéis time dilation is directly responsible fiwet
lepton magnetic moment anomali@svhich are well-known to arise from repulsive QE&fs
interactions internal to an individual lepton asamdcterized by Feynman loop diagrams.
Moreover, those anomalies in provide direct, alyeadhilable empirical validation that time is
dilated as a result of repulsive electromagneteractions. And, as to the question whether time
dilates for repulsive interactions or for attraetiones which was introduced with the note about
signs and sign conventions in section 2, the faat the observed leptapfactorsg =2+ 2a> 2

as opposed t@ =2-2a< 2 is a direct consequence of electromagnetic tirtadioin occurring
for repulsive interactions between like charges atwactive interactions between unlike charges.

One may erroneously conclude that the foregoingréttesal approach, if it is to have any
observable consequences, must be a proposal faltemative to standard electromagnetism,
which of course has passed many experimental testsry high precision (e.g., the magnetic
moments of the electron and muon). But it is notadternative; it is a non-contradictory
supplement which, when applied to individual legoactually explains the lepton magnetic
moment anomalies as a consequence of the timéodiltitat occurs because of repulsive lepton
self-interactions in QEDThese result do not contradict known observatiorsny way Rather,
all of the usual results of classical and quantieateodynamicéncluding the observed anomalies
may be expressed in relation to the measuremedithefas observed by comparing the periods of
charged geometrodynamic clocks in a variety ofurirstances, to which the energies are related

by E=mé(dt/ d) in (3.11). So what becomes new — but is not ealittory to known

observations in any way — is this generalized aaktinkage between time and energy for what
turns out to be all type of energy from all soureesl origins, and the connection of the time
dilation to the lepton magnetic moment anomalies.

In sum, to be able to obtain equation (3.1) favgational and electrodynamic motion
from the minimized proper time variation (1.1) invay that preserves the integrity of the metric
and the background fields independently of thiem ratio for a given test charge and thereby

achieves the conceptually-attractive goal of undeding electrodynamic motion to be geodesic
motion just like gravitational motion all in foupacetime dimensions, we are required to recognize
that repulsive electrodynamic interactions inhdyerdilate and attractive electrodynamic
interactions inherently contract time itsed§ an observable physical effecthis is identical to
how relative motion dilates time, and to how gratrdnal fields dilate (redshift) or contract
(blueshift) time. In this way, it becomes possituéhave a spacetime metric which — although a
function of the electrical charge and inertial magsest particles — also remains invariant with
respect to those charges and masses and partyonlitirirespect to a re-gauging of the charge-to-
mass ratio. This preserves the integrity of tiedédftheory, and establishes that electrodynamic
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B
motion is in fact geodesic motion which satisfies minimized proper time variatidbh= 5IA dr

from (1.1). Moreover, this connects observed a@eer@f motion, and of gravitational and
electrodynamic interactions, as well as the magnetioment anomalies, all to the
geometrodynamic measurement of time. As a reguliecomes possible to lay an entirely
geometrodynamic foundation for classical and quanlectrodynamics in four spacetime
dimensions.

In the next section we shall review in detail gékalsow (3.1), which includes gravitational
and electrodynamic motion, is deductively deriviexhf minimizing the action (1.1) using the line
element (3.5) and the related equation (3.6) fercdmonical energy-momentum. As we shall see
in (4.4), this derivation produces an additionaktén the Lorentz force that is not gauge-invariant
and thus leaves an unobservable ambiguity in tlysigél motion. To address this, as reviewed
in section 5, it is necessary to impose two coadgion the gauge field. The first condition fixes
the gauge field to the Maxwell Lagrangian in lidutlee often-imposed Lorenz gauge, but still
leaves some residual ambiguity in the gauge fieldhe second condition fixes the additional
Lorentz force term to zero, thereby removing theaiming gauge ambiguity. Then, in section 6,
we reformulate the former Lagrangian-based gaugeition in terms of the Maxwell action. In
sections 7 and 8, respectively, we use these ganrghtions to uncover a covariant scalar equation
for power, and a scalar field equation for eneigy,fin the presence of both gravitational and
electrodynamic interactions and sources. In essegections 4 through 8 directly explicate the
derivation of the Lorentz force (3.1) from the nmmzed variation (1.1) and the immediate
consequences of this in terms of required gaugedigonditions and resulting power and energy
flux equations. Section 9 then reviews how timkatain is derived in Special and General
relativity, as the basis for showing in sectionpt8cisely how the time dilation and contraction
summarized above, as well as the time / energyioalé3.11), are derived by simply requiring the
metric line element must to invariant and the backgd fields in spacetime to remain unchanged,
under a re-gauging of the electrodynamic chargexss ratiogq/ m.

In Part I, starting with an introduction in sext 11, we turn to Quantum Electrodynamics
and the lepton magnetic moment anomalies. In @ecli2 we first derive several ratio
relationships between canonical and mechanicalctshjeuch as the canonical momentum
' = p" +gA'/ c and the mechanical momentupf. We then show how when applied to the
repulsive Coulomb interaction between two bodiethveharges equal to that of the charged
leptons, separated by the Compton wavelength ofbtidy taken to be the test charge, the
electromagnetic time dilation factgg,, = dt/ dr 01+ a /27 comes to depend upon Schwinger’s

one-loop contributiorag =a/ 277 to the lepton magnetic moment anomalies, seer#fra. This

raises the question whether these are in fact abete Recognizing that because of Heisenberg
uncertainty one may not really talk about the “sapan” between two individual leptons or the
position of a single lepton in other than a staiddtway, section 13 carefully and systematically
demonstrates leading to (13.16) infra, how thetedelgnamic self-interaction contributiorsg,,

to the lepton magnetic moment anomalies reallyaaexactmeasure of the electromagnetic time
dilation, such thay, =dt/dr =1+ a,, = g,/ 2 for each lepton type.
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But the complete observed anomaly a,, + &, + g,,4 alSO contains comparatively-

small contributions from electroweak and hadrowid-mteractions. Given thaE = m¢ dt/ o

by this point has been shown to apply to enerdiesation and of gravitational interaction and of
electromagnetic interaction, we surmise in secfidnthat this must really be a generalized,
universal connection between time and energy wlydisies “sees” all energy just as gravitation
“sees” all energy. In other words, any changénatotal energy of a material body, irrespective
of the nature or origin of that energy change, rhaste a commensurate effect on the rate at which
periodic signals used to measure time are emitteehwhat body is used as a geometrodynamic
clock. As a result, we are then able to accountte electroweak and hadronic contributions,

leading in (14.1) infra to the relatiop,,, = dt/ dr =1+ a= g/ 2 between the time dilation and the

complete magnetic moment anomalies from all couatiily self-interactions. In section 15 we
use the foregoing to calculate the bare massemobf & the thee charged leptons, and review how
the Compton wavelengths of the leptons establidtissical diameters” for the lepton probability
densities which may well be empirically measurafsdea means for providing experimental
validation of these results. Section 16 castelbdetromagnetic time dilation into a recursive form
and shows that this leads to a direct connectidha®004 DeVries formula for the fine structure
constant, which formula remains valid to date witbkperimental errors but has heretofore never
been afforded a physical explanation. Finallytisecl7 contains concluding remarks.

4. Derivation of Lorentz Force Geodesic Motion fromVariation
Minimization

The foundational calculation to derive (3.1) irdihg the Lorentz force from the
minimized variation (1.1) begins with the spacetimegtric c>dr? = g,, dX' dX which is multiplied
through by m* and turned into the free particle energy-momentetation m*c*= g, ¢ §§
containing the mechanical momentysfi = mdx’'/ & . This in turn is readily turned into Dirac’s
(iy*a, —m)y =0 for a free electron in flat spacetime making usg ={y*.y’} . Then, we
simply use Weyl's well-known gauge prescription [Which transforms the mechanical
momentum to the canonical momentupf - 77 = p + gX'/ ¢ thus the energy-momentum
relation tom?*c® = g, 777" in (3.6), and the ordinary derivatives to gaugeacmnt derivatives
d, - 9D,=0,-igA, and thus Dirac’s equation (d)y”@y —m)(// =0 for interacting particles. All
of this emerges by requiring “gauge” symmetry undbe local phase transformation
¢ - ¢ =Ug=6€""¥g acting generally on the scalar fielgs= ¢ of the Klein-Gordon equation
and the fermion fieldgp =¢ of Dirac’s equation, redirecting phase but preisgrymagnitude.
This is all well-known, so it is not necessary &gail this further. The point is that the relation
m’c’ = g, 771" in (3.6) is easily derived from the metrédr?® = g,, dX' dX using local gauge

symmetry, and that nothing more is needed to farttie starting point to minimize the variation
and arrive at the combined gravitational and etetyinamic motion (3.1).

Starting with (3.6) and dividing through b’ ¢, we form the number 1 as such:
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dx* g X g, d, )b, Ak, YU
1= g‘“’(cerrm(?Aj( +m&Aj gﬂv( C+ m?CA(’j( g rﬁcAj W , (4.1)

which “1” will be useful in a variety of circumste@s. The above includes the mechanical four-
velocity u¥ = dx’/ dr and a canonical four-velocity defined by =u” + X'/ mc. From here,
we work in natural unit€ =1 and use dimensional rebalancing to restarely after a final result.

The first place that “1” above will be useful is(1.1), where, distributing the expression
after the first equality while absorbingy,, into the electrodynamic term indices, we write:

gt dx d¥  .q, df g
0=3[ (Ydr= 5] dr [ 9oy 2Tn;}?+_/¢}/£j . (4.2)

From here, we carry out the variational calculatiehich deductively culminates in:

a1 dx dx
~9,, 2% +2(3,9,, -0,0, 9,9, ) -
0=5["dr=[ sxar 9w g+ 5 ”g:XJ ”19”;2 %) o ar (4.3)
q o
90 A -0 A) 2 A

Going from (4.2) to (4.3) is straightforward. Tio line contains the same result usually obtained
for gravitational geodesics, and is the resulteitisg q=0 in (4.2). This is the calculation

Einstein first presented in 89 of [1], and does metd to be reviewed further. The terms on the
bottom line emerge as a direct and immediate caresexg of starting with the canonical energy-

momentum relatiomn®c® = g, 777" rather than the ordinary mechanicadc® = g,, ¢ 5, which

is to say, the bottom line is a result merely ohdeting local gauge symmetry. Some specific
guides to note when performing the detailed catmrianclude: a) we assume no variation in the

charge-to-mass ratio, i.e., thé(q/ m) =0, over the path fromA to B; b) applied to gauge field
terms, the variations obtained using the chain ruee OJA =0x70,A and
5(AUA") = 5x”aa(Az, A"); c) we also use@lA / dr=d, Adf/ d@; and d) there is an integration-
by-parts in the calculation. This integration-tgHs produces a boundary term
jfd ( Abdx") = ( Ad %)‘i =0 that can be eliminated, and for the remaining tearses the sign

reversal appearing id, A, -0, A,.

Now, for material worldlines, the proper tintr #0. And between the boundaries/at
andB the variationdx’ 0. So the large parenthetical expression in (4.@%tnbe zero. The
connection is of course given by =19 (aagw -0,9, -0, gau) and field strength by

F.,=0,A,—-0,A =0,A -0,A. So withcrestored, this enables us to extract:
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d2x? dx¥ dx q dg 1 (2.]
=—rf 2 24 ApF Z4= 1 55(A A). 4.4
dr? Wdr dr m “cd 2 mé (A” ) *.4)

This clearly reproduces (3.1) and includes the htrdorce motion alongside the gravitational
geodesic, all obtained from the minimized variaii:2). Therefore, (4.4) does represent geodesic

motion, although when contrasted to the Lorentziondgt contains an additional tergf (AJA")
that we shall shortly review in depth.

As with (1.3), we may view (4.4) in an alternatiaieit equivalent way that highlights
how Lorentz motion plus the extra term is now mgegekonsequence of local gauge symmetry:

It is well-known how imposing gauge symmetry spawresheuristic rule®, — 9, =0, —igA,

and p“ - = p’+gA'/ c for gauge-covariant derivatives and canonical nmme and
m’c=g, ¢ g - nmé= gn“n for the energy momentum relation. Here, refertmgl.3),
we see another heuristic rule which emerges insliegkwith these others, namely:

DU _ df o _ DI g 14
— =— 4T VW o AP="—=— - AFF W= 9°(A KX |=0. 4.5
Dr dr " or Dr nmc 7 2nté (A’ ) (#.5)
In the absence of gravitation we may write this as:
d v _dd ¢ 1 4

AU Qs w29 50(a K)=0. 4.6
dr  9r dr mc 7 2mé (A& ) 9

In the abovedu” /D1 symbolizes the gauge-covariantaanonical accelerationwhich
is rooted in the further heuristidx’ — Dx' = d¥'+( ¢ m§ @ A defined at (3.5). And more

generally, using the boldfacge notation whenever there are both gravitationaleladtrodynamic
fields, we have usedA” =9u” /9r=0 to denote thegravitationally- and gauge-covariant
acceleration, which we shall refer to collectivaly the “canonical acceleration.” The canonical
equationdu? /D7 =0 in (4.5) states that treanonical acceleratiolis gravitationally-covariant
and gauge-covariant, which we shall refer to gdlyees “canonical covariance.” Yet, when

shown in terms afmechanicafour-velocitiesu” = dx‘ / dr , themechanical acceleratiooontains
the geodesic motion of gravitation and the Loreiotze motion of electrodynamics. In the
absence of any charge or electromagnetic potentiafield (4.5) reverts back to

Du”/Dr=du’/ dr+* , U’ 4 =0 for gravitationally-covariant motion (1.3). Inetfabsence of

gravitation (4.5) reduces to (4.6) for the canoltyeeovariant Lorentz force alone. And in the

absence of both gravitation and electromagnetismatwémains is merelylu’ / dr =0 for the
Newtonian inertial motion governed by special iiglgt alone. From this view, all classical

physical motion is inertial and geodesic beca®s¥ / D1 =0; the motion is simplganonically-
inertial with regard to any gravitational curvatuf' B, :[a;v,aw] B, and any (imaginary)

gauge curvatureqF””¢:i[@”,@”]¢). What we observe physically are canonical motions
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growing out of the application of local symmetryingiples to the Newtonian equation
du” / dr =0 for mechanical inertial motion.

All of the above provides a conceptually-compelliigw of classical physical motion.
However, (4.4) yields a terra"}(AaA") which is not ordinarily a part of the Lorentz fertaw.
And in fact, this term needs to be removed for empirical reason and two theoretical reasons:

The empirical reason is that this term is not pdrthe well-established, well-corroborated.
universally-observed Lorentz Force law (3.1). Tirst theoretical reason is that the motion cannot

depend upon a terrﬁﬁ(AUA") which in turn depends upon and changes as a amdti the

unobservable local phagg(t,x). Specifically, the gauge transformatigh, - gA = gA -0,A
would introduce the phase into (4.4) and thus leéréeobservable motion ambiguous and in
violation of gauge symmetry. The second theorktiEason is that by removing this term, (4.4)
now does fully describe the Lorentz motion as gsemdeotion, which is conceptually attractive.
So the question arises whether there is some égaral basis upon which this term does in fact
get removed in the physical world.

A simple fix would be to modify the metric (3.5) Bubtracting out the second-order term
with A, A’, and to then start the variation of (4.2) on thsi® of:

2
Cdr?=dx DX -——3— &2 A A =( dx+— g j( o+ o %j—i d A% (4.7
XX~z a4 Xt @4 pl m%gA()
When turned into the number “1” as in (4.1) andhtheed in the variation as in (4.2), it is clear
that this will result in (4.4) but without the eatterm aﬁ(AJA") because the source of that term
is subtracted out of (4.7). So the result is tbeehtz force plus gravitational motion, precisely,
desired. However, this approach loses some counakegirength, because the Lorentz force does

not emerge simply from applying local gauge symgnaird the heuristic rules which emerge from
this symmetry as reviewed in equations (4.5) ané)(4 Now the rule becomes: apply gauge

symmetry,and then take the extra step subtracting off theA A’ term to get a desired result.
Occam's razor would in this circumstance compdbugee if this second step can be eliminated,
and whether the terrd” (A, A’) can be removed from (4.4) in some other, morerabway.

As we shall now see in sections 5 through 8, tkisaderm in (4.4), and the process for its
prospective removal from (4.4), is intimately cooteel with gauge fixing, Maxwell’s electric
charge equation, the electrodynamic Lagrangian aotibn, electrodynamic and gravitational

power, and the sourc8" in Einstein’s field equation for gravitation.

5. The Lagrangian Gauge and the Geodesic Gauge, a@@nonically-
Inertial Motion
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To study the extra terdy’ (AUA”) in (4.4), we start with Maxwell’'s equatial¥’ = 4., F*

for the electric charge density. Via the usualrespionF* =9 A’ —0* A" =97 A -9” K for
the field strength we write this in terms of theuge fields as1” -9,0? A’ +9°9,, A" =0. But

we donotuse the Lorenz conditiod,, A" =0 to fix the gauge; rather for now we leave thisrter
as is. We then multiply this Maxwell equation thgh by A;, thus writing the scalar equation:

A I - AD.,07 K+ AP0, K=0. (5.1)

For the second term above we have,d.,0° A =9, A9 X —6;0( AQ® ﬁ(’) , using the product
rule. We may also form the identitf,0? A” = 19° ( A, A?). Using both of these in (5.1) yields:

A +0,A0" K -10,0°( A K)+ Ad®d, A=0. (5.2)

The second term?;aAﬁa”Aﬁ =d, Aﬁa"A(? =3 s F”, and with this, the first two terms are

equivalent to minus the electrodynamic Lagrangiamstty, AﬁJ/’ +5 Fp F% =-£__. Therefore,
(5.2) is simply:

-10,0° (AN )+ K00, K =L,,. (5.3)

Again, this is an alternative way of saying thlaﬁtJﬁ = A0, F* , which is a four-dimensional
scalar product of Maxwell’'s charge equation with tauge field. Note that,0.,A" =9 ,0., A’
because the gravitationally-covariant derivativaoy scalar is equal to the ordinary derivative of
the same. As is easily seen, withidno” (AﬂAﬁ) the first term above contains the extra term
0? (AUA") that appeared in (4.4). And the second term amith, A” which in the Lorenz gauge

is fixed to d.,A" =0. The latter is a covariant scalar condition whiemoves one degree of
freedom from the gauge field” .

Now, because photons which comprise the gauge diddnassless, we are mequired
to used A" =0 as we would be if photons were massive. Inste@dare permitted to fix the

gauge directly to the physical Maxwell Lagrangigrsketting:

A0, N =L, (5.4)
This is also a covariant scalar gauge conditiorctivinemoves one degree of freedom, so it would
be a suitable replacement for the Lorenz gauge.obBaous reasons we shall refer to this as the

“Lagrangian gaugé If we were to impose this condition, then asoasequence of combining
(5.4) with Maxwell’'s equation represented via (5¥8¢ would also find that:
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9,0 (A,A)=0. (5.5)

Therefore, at the very least, ﬂwr-gradienta;ﬁa"(ﬁhA") of the termaﬁ(A,A”) would become

zero. The question now is: may we and should veptithe Lagrangian gauge (5.4), and also, the
stronger condition thad” (AUA") =0 itself?

Were we to impose the conditicﬂ*i’(AUA") =0 and thus add further constraint beyond

(5.4), then (5.5) would still remain true and thws compatible with the Lagrangian gauge
condition (5.4). And all of this would remain coatible with the scalar representation (5.3) of

Maxwell's equation inAﬁJﬁ = A0, F? . So there is no apparent conflict or contradictigth
any standard electrodynamics that arises fromngedf (A, A7) =0. But it is also well-known

that a covariant scalar gauge condition such ad ¢nenz gauged.,A” =0 or the Lagrangian
gauge of (5.4) still leaves some residual ambiguithhe gauge field, which ambiguity still needs
to be removed. The question is how we do so.irged’ (A,A") =0 would be an even stronger
constraint than (5.5), because this would cleaybhegze out some further ambiguity. The question

now is whether this would remove just enough ambyda eliminateall residual ambiguity, while
simultaneously not over-determining the resultsnyyosing too much constraint.

This brings us back to (4.4). As noted in theageaph prior to (4.7), a gauge
transformation gA, - gA = gA-9d,/A applied to (4.4) would leave the physical motion

ambiguous because of the extra teﬂﬁ(A,A"). Further, there is no way to completely remove

this ambiguity without removing this term entirelyhe weaker condition (5.5) which via (5.3) is
a proxy for the Lagrangian gauge (5.4), which imtis a substitute for the Lorenz gauge, would
remove all traces of this extra term from thied-derivativeexpression that would result were we

to taked.,d*x” / dr? by applyingd., to (4.4). But there would still remain some amitigat the
second derivative which is (4.4) because of whaipkas when we apply the transformation
gA, - gA = gA-0,/A. Therefore, to removall ambiguity from the physical motion, we do

need to apply the stronger conditidﬁ(A,A") =0. Once we do so, all of the remaining ambiguity

is removed from the physical motion of (4.4), ameltesult is no more and no less than the Lorentz
force law. And because the Lorentz force law thitee is entirely symmetric under the gauge
transformationgA, - gA = gA -0,/ , we are assured that not only have we removezhgiiical

ambiguity by settingd” (A,A") =0, but also that we have not removed too much anilgiga as

to over-determine the physical result. Rather, \weehprecisely determined the physical result
with no residual ambiguity and nothing over-detered and no inconsistency with standard
electrodynamics. This includes assurance frondérevation (5.1) through (5.5) that there is no

contradiction whatsoever with Maxwell's equatidlf =d.,F% . And, this ensures that the
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Lorentz motion must be locally gauge invariant, ethieven standing alone with no other
considerations is sufficient justification for inging 8* (AJA”) =0 as a gauge condition.

Therefore, we shall now formally take the following steps First, to covariantly remove
one degree of freedom from the gauge field, wel $ixalhe gauge using the Lagrangian gauge

condition Aﬁaﬁa;nA" =L,, of (5.4). This isin lieu of applying the Lorenz gauge condition
d.,A” =0. Second, to remove any additional ambiguity fthengauge field, we shall impose the
condition:

m

9o’ (A,A)=0 (5.6)

on the four-gradient of the scalar quanffy’A”. The d'Alembertian of this scalar will then also
be zero as shown in (5.5), which is fully compailblith Maxwell’'s electric charge equation

JA = a;aF"ﬁ. By imposing both conditions (5.4) and (5.6), tasult in (4.4) now reduces to:

2 B
aX s O X, G, dX (5.7)
dr Wodr dr m ca

Now we arrive at is the Lorentz force law togethéth the gravitational geodesic equation of
motion, precisely. Note, because we now hﬁéﬁa;a A" = L£__, that the additional use of the

Lorenz gauged.,A” =0 is not permitted imposing this condition would causé,, =0 and
thereby over-determine the physical results.

Now, the Lorentz force law has been derived framminimized variatiorD = ijdr of
(1.1) starting at (4.2) by merely requiring locabige symmetry and, true to Occam's razor, nothing
more. The extra terrd” (A,A”) has been removed not by the unnatural fix of (Au) rather by

the natural solution of fixing the gauge to enyinedmove any ambiguity from the physical motion
without over-determination. Following all of thigl.5) reduces to:

B
T T T

and the combined Lorentz and gravitational accaterdruly is geodesic motion.

Specifically, the motion (5.8) is inertial in badigravitationally- and canonically-covariant
manner. As a shorthand, we shall refer to this @onically-inertial motiol¥ This is a

generalization of Newtonian inertial motiah/’ / dr =0 to the circumstance where gravitational
and electromagnetic fields are present and theptasicle has a charggthat interacts with the

electromagnetic fieldsF” . Now, instead of a mechanical motiau’/ dr =0, we have a
canonical motiondu” /9r =0, while the mechanical motiodu” / dr #0. Given that (5.6)
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producesdu” /D7 =0 in (5.8) which is an equation of gravitational drmtentz geodesic motion,

we shall refer to (5.6) as thgéodesic gaugecondition. Note also that the two gauge condisio
(5.4) and (5.6) are necessary and sufficient tay®.7) a.k.a. (5.8). But, by starting with (5.6)
alone, one immediately deduces (5.7) as well a5).(5And (5.5) via (5.3) which embeds
Maxwell’s equation, yields (5.4). So from a simpleew, the Lagrangian gauge (5.4) is a corollary

of the geodesic gauge (5.6) combined with MaxweltjsationJ” = a, F% . So by imposing the
geodesic gauge (5.6), and by simply having MaxwedtjuationJ” = a;aF”ﬁ, we also have the

Lagrangian gauge. Finally, note again that the&agian gauge (5.4) precludes the Lorentz gauge
because that would forcé, =0 and so over-determine the physical results.

The foregoing (5.8) is yet another example ofdkeeral heuristic rule that when gauge
fields and charges are present, mechanical matiod®bjects are promoted to canonical motions
and objects, with the canonical motions and objeetsving in the same way as their counterpart
mechanical motions and objects do in the absendbeofjauge fields and charges. Thus, for

example, the mechanicéily“aﬂ —m)z// =0 is inherited by Dirac’s canonicély”@y —m)(// =0;
while the mechanical energy relatiom’c®= g, g § is inherited by the canonical
m’c’ = g, 77 of (3.6). Here, in the absence of gravitatiorg thechanicaldu” / dr =0 is

inherited by the canonicabu” /97 =0 for the Lorentz force, which is to say, from (4if)
geodesic gauge:

du? - DU - df __qF/;Jua:

0. (5.9)
dr Pr dr mc

This is simply (5.8) without gravitational fields.
Now, let us explore some further significant résuthich arise from the Lagrangian gauge

(5.4) and the geodesic gauge (5.6). As notedeatitidl of the previous section, these results relate
to the electrodynamic Lagrangian and action [thengr already seen in the Lagrangian gauge

Aﬁaﬁa;aA" =L . of (5.4)], electrodynamic and gravitational powand the source3*’ in

em

Einstein’s equation.
6. The Electrodynamic Action in Lagrangian Gauge

It is very illustrative to rewrite the Lagrangigauge (5.4) using the product rule as
Lon=A0,0,K =0,(N0,K)-0,Kd, K, (6.1)

and then obtain the electrodynamic actigp :I d' ... Once inside the action integral, we may

set Id“xaﬂ(A”a;a A(’) =0 via the boundary conditiory;(t,x) =0 at the extremunt,x = oo
What we then end up with is an action:
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Sn=[ L, =-[d 2, Ko, A=~ d {0, P, A+T", B, A, (6.2)

noting also thal “_, :ac,«/—g/«/—g whereg is the metric tensor determinant. In flat spaneti
with d,/—g =0, this becomes the very simple action:

Sn=[d =] d Xo, A). (6.3)

It will be seen that (6.3), containing—a(agA”)z, is analogous to th&: gauge conditions, which

are ordinarily written a®, = —(aaA”)zlz.{. However, (6.2) and (6.3) are not local condiion

they are global because they represent an integegilthe entire volume of the four-dimensional
spacetime.

Once working with the action, we are but a stepyaft@am Quantum Electrodynamics,
which is generated through the path integratZ%g:J' DA” exp(iSem /h). As usual, we may

obtain the electrodynamic actioSem=j d“><% '9)( g“vaga”—a”aV) A-J A) starting with
AJP+LF FP =L

i B .m- Note that this has no expressly-appearing gawitally-covariant

derivatives, because of the cancellations that oeta F% =0“Af —0* A" =9° A —-0* X .
However, there is an implicit gravitational terngchauseJ?” :a;aF""}. This is the exact origin

starting at (5.1) of th@., appearing in (6.1) and (6.2). Then we use Gaunsstagration to path
integrate as usual. But the upshot of (6.2) ielicus that:

Sz [ o1 A P00 -00) p- 3 A= o, A ere, W, B 64

This provides a second expression for the acti@edban employing the Lagrangian gauge (5.4),
which as pointed out after (5.8) is a corollaryhd geodesic gauge plus Maxwell's equation.

So (6.4) above is a direct consequence of thedragan gauge (5.4). But the more general
condition of which (5.4) thus (6.4) is a corollary,the geodesic gauge conditiOﬁ(A,A”) =0

of (5.6) to which we now turn. This condition lsatb a relation for electrodynamic and
gravitational power, and to a direct connectiorhviite source3 " in Einstein’s equation.

7. The Electro-Gravitational Power Equation

We now study the effect of the geodesic gauge tiomd(5.6) on the canonical energy-
momentum relation (3.6). We first return to (3.&hich, with indices summed and witt=1,
we expand without commuting the left-right orderioigthe momenta and the gauge fields, to

obtain M =p, @+ 9gA f+ gp A+ § A2 The reason we refrain from commuting is to
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highlight that were we to combine the two middlerts intogA, I’ + qp, A =2 gA f we would
need to commutg_ and A’ which needs to be done with care given the Heisentommutation
relation [ JE B] =—in0, B for any field B(t,x) which is a function of the spacetime coordinates.

And as to the time component, we would also wartetanindful of the Heisenberg equation of
motion [HO,O] =-ihd,O for an operatolO with no explicit time dependence, together with

relationship H, /) = p,|¢) between the Hamiltoniat, operator and the observable energy
p, = E which contains its eigenvalues. Thus, even ifwege to commute the energy with the
time component of the potentid’ = ¢ thus setting[ Py AO] =0, we would still have to recognize

that p, A’ = A p - 9, A and thus include a term of the forriid A’ , if not —ind A’ if it was

our desire to move beyond classical physics andumtcfor the quantum mechanical non-
commutativity.

For present purposes, to be completely general, ugt use the relationship
[pg, A"] =-ino A’ ak.a.p,A=A F —hd, A covariantly extended into the time dimension,
recognizing that we may always restrict this tesgace components by settipg,, A’ | = 0, thus
d,A’ =0, and may additionally ignore quantum effects ehfiby setting[ I A‘] =0, thus the
space divergencéd, A’ =0[A =0. Therefore, we start by writing (3.6), with=c =1, as:

m=p i +204 6+ 4 A A- ia, A (7.1)

The final termd A’ arises from the commutativity just discussed,magt be removed or ignored
under the circumstances just discussed.

Now, let us take the covariant spacetime gradiptof the above. The rest mass is
invariant, so its four-gradiert ;m=0,m=0. Therefore, after reduction we obtain:

0=p,d,p" +P AP+ ahd, B+ @,( AA)-3 0, A (7.2)

Now we apply the geodesic gauge (5.6), so the &EMA") =0, ( A A(’) =0 isremoved. We
may also use the field strength to replatgA, =F; +0,A;. Additionally, p? =mu is the

ordinary mechanical momentum, so we can divide mutwhereby p’ — u’ throughout the

contravariant momentum terms in the above. Thegregating the field strength term on the left,
(7.2) becomes:

qFu7 =-p0,Uf ~qAd, 0~ @, Aft+1 ( d fv,0, A (7.3)
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We of course recognizgF,,u’ as a variant of the Lorentz force term in (3.The net effect of
the geodesic gauge (5.6), is to have removed thestd, A’ of second order in the gauge field.

Now, we wish to express the terms on the rightelation to the passage of proper time,
that is, as derivatives along the curve, see @8l (4.7). For the next-to-last term in (7.3) we

may substitute d,,A,u” =dA/ d—-T'"; Ad derived using the gravitationally-covariant
derivative and the chain rule. So also v@gpagA” =0,0,A”, (7.3) advances to:

AF,, U7 = - p,0, 1 — qAd., f — q‘zirh q,, Aﬂ+% (d yo,0, (7.4)
As to the remaining terms, we now multiply b§ = d¥’ / dr throughout, giving us alﬁa;ﬁu"in
the first two terms after the equality. Then weynsmilarly derive and then substitute
u’d.,u” = df / dr+7, o . Alsowriting p, = my, for the remaining mechanical momentum,
and seeing that the terms Wifﬁgﬂﬂ,uﬁu” cancel identically, and using the chain rule ia final
term u’9,0, A =(d/ dr)o, K/ =0, dA/ d, with renamed indices anki=c =1 restored, we
now have:

q y q d/ q . dA o q dA
AE W my, +- ,g — T i{=-m ti ‘u+— —a,—. 7.5
c wH = ( ) a ¢ o w Y mc’ d (7.5)

This (q/c) F,,u“U term on the left is a scalar number, and it hasedsions of power.

So this is an expression for electrodynamic ansgigrgonal power. However, becausg, is an

antisymmetric tensor, this term vanishes identycallherefore, moving all of the mechanical and
gravitational terms to the left and keeping thecttelynamic terms on the right, we may
consolidate to:

mu, du JUYU | ==
dr g

g d 1
—E(,e,uff)+E —9 —. (7.6)

It is easily seen that when the right hand sidetess zero in the absence of electrodynamics, the
left hand side contains the gravitational geodesation (1.1). The final term may also be
vanished by setting =0, i.e., in the classical limit. In terms of spacet coordinates with all
terms expanded, and isolating all the acceleraéons on the left, another way to express this is:

(md_x(”_g jdx" [m-a

X dX g
Yo o6d cd)d 2 me’ d

AJdXU s Llp_Gp IR (7.7)
dr?
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In the absence of gravitation, we merely Eé};u =0. And if we neglect the non-commutativity
discussed in the first paragraph of this sectiobantwe may set =0 to vanish the final term.

Now let us see how the Lagrangian gauge (5.4) nects to Einstein’s equation and
gravitational curvature.

8. The Electro-Gravitational Energy Flux Field Equation

As already reviewed, by fixing to the Lagrangiauge Aﬂaﬂa;a A" =L, of (5.4)in lieu
of the Lorenz gaug@., A” =0, Maxwell's equation]” = a;aF”ﬂ also constrains us to require the
relation 6;[,6" (A, A") =0 of (5.5). The stronger geodesic gal&j‘e{,&b A") =0 of (5.6) was used

to remove the remaining gauge ambiguity from theagiqn of motion (4.4), or (4.5), thereby
producing the combined gravitational and Lorentecdolaw of motion (5.7). This raises an
interesting question: if we want to explore the aoipon the equation of motion of the weaker

condition 6;[,6" (A,A”) =0 which is required for compatibility with Maxwell'squation, then it
is clear that this can be done by taking the cawaigradiend ., of the original equation of motion

(4.4) from before we imposed the stronger conditib(b.6). What makes this interesting is that
this ties together the sources in both the Eingtgumtion for gravitation and Maxwell’'s equation
for electric charges, as we shall now see.

FsF? =-L

em?

Mindful that AﬁJﬁ +3Fp we start by taking the covariant gradight of

(4.5), and then applying (5.3) which stems from Mal's charge equation, to obtain:
Pu” Du”

9..A”=9. =0.
8 fpr # Dr

_Eqa;ﬂ(lzﬁaug)-'-%(ﬁem_Aﬁa/i‘a:a A"):O_ (8.1)

To be clear, the above, via the development laidfiam (4.2) to (4.5), is a direct deductive
B
consequence of taking the variatiOrF JJA dr based on the canonical mass-energy-momentum

relation m*c® = g, 77" of (3.6) in combination with Maxwell’s charge edjoa J# =a;[,F”ﬂ.

No additional assumptions are used to obtain (&rid,in particular, no gauge conditions have yet
been imposed on (8.1).

First, let us focus on the terﬁ)ﬂDuﬁ/ Dr. Using the expressioR?, B, :[6;V,6W] B,

which relates the Riemann tensor to the degreehiohagravitationally-covariant derivatives do
not commute when operating on an arbitrary vect®y, from which we deduce

R%,u, = R,y =[d,,0,| ¢ for the velocity four-vector”, it is easily seen that:

0

B
Uy [axva ﬁ] LI a*aa =000, + 10,0, 6 - B ti1.(8.2)

a—— = 6 —6
2 Dr or £ or
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So the Ricci tensor which is part of the Einstegnation -«T, =R, -3 g,, R and thus related
to the energy tensaor,, which is the source of gravitation, is seen t@betained in (8.1). This

is especially direct using the inverse foRy, =« (T, -3 g, T).

Next let us insert (8.2) into (8.1) and also expdarms while applying Maxwell’s
J, :a;ﬁFﬁd. With some index renaming, this now yields aacabjuation:

o Af=9 DY i p -9y waa o d+ 0.9 d-3 Fo g
B B DT v m o B HZ B ag”.p

m : (8.3)

2

+r?1_(£e’“_ A3 ,0., A")=0

2

Here, we find both gravitational sources ), = —K(TW -3 0 T) and electric charge sources

Hod, :a;ﬁFﬁg (with g, =1/€£,* balancing dimensionality) all as part of the salyaamical
equation. Now, to eliminate the entire second bh€8.3), we impose the Lagrangian gauge
condition Aﬂaﬂa;a A" =L, of (5.4) which covariantly removes just as muatettom from this
equation as does the Lorenz gawgeA” =0. Again, the Lagrangian gauge is a corollary @f th
geodesic gauge and Maxwell's charge equation. g atso writed, 0, ,u” =d,0,u" because
d,u” is a scalar. We also multiply the above throughmh while noting thatmR,, U’ U has
dimensions of energy per area i.e. energy flux. th'é@ restore so as to give all terms this same
dimensionality, while mindful thak =87G /¢* and ,£,> =1. And, we make explicit use of

R, = —K('I;N -3 0. T) while isolating all sources on the left. With aflthis, these sources are

now seen to bring about motion via the differengiqliation:
KT, mud +3cTmy G+uy, q) U= th, 9, "v mad, "w( /q)c’@., 7. (8.4)

This is a combined differential equation for thexgtational and electrodynamic motion of

material bodies with a four-velocity’. Because all terms have dimensions of energyyes,
i.e. energy flux, we recognize this to be a scatergy flux equation.

In general one may find it helpful to keep this &gen in the form of (8.4). To the extent
one wishes to be more explicit about the derivativevolved in (8.4), we may expand using

d,u’=0,u"+I“ " and the like. So the first term after the eqyast

md, U9, W = m, Wd, G +2r¥ mea, U+’ I mu (8.5)

14 14
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a

For the next termg,u” =0 by the chain rule, so we hawgu’ =I"_u”.
M, =0,4-9/y-9=%(1/9)d, g, this next term in (8.4) is:

Noting as well that

_ s oy dx 9 (119g d¥
M99, = mdd, (I, )= Tar ox (E_gaf er

1 1(dgj2 1d’g 1dg X
=—m|-—=|=| += + =
2 g®\dr gdr? goX do?

(8.6)

Placing (8.5) and (8.6) into (8.4) and also expagdhe F’_d..u’ term, we then obtain the final
expanded form of the energy flux equation:

—KkT,mu'd +3xTmy G+, q) U
=md,uo,u +2r“, mdo, i+re r’ mt : (8.7)

a

2 2
—lmiz(@J +1' m_ld_zg+_l m_lﬂ dz )5 __q ngar Lj’__q—ﬂm FTJ v
2 g°\dr 2 gdr© 2 goX o c c

In regions of spacetime where there is no gravigathatter, i.e.in vacug we setT, =0 and

T =0 above, and then solve for the motion, given ohky probability density contained in the
time component ofl, = p,u, :Zygw . In the further absence of electrodynamic souveeset
J, =0 so the entire top line of the above equation be&sonero.

One interesting way to use (8.7) is to remove adrgy sources except for the Maxwell-
Poynting electromagnetic field energy tensor WHEMIWOCZTW =-F, Fo, +4 9. Fop F% with
dimensional balancing, wit,e,c° =1. This tensor of course has no trace, which iateel to

why electromagnetic fields travel at the speedgiftland photons are massless. So when this is
the only energy present — and recognizing thaethes gy still gravitates and thus affects the raetri

and the spacetime curvature — then, with the saerce £,cqJ, f isolated on the left, and with

the constants reorganized via/ 47,c* = G/ 2rrc'k, to display the embedded rati®/ k, of
Newton’s to Coulomb’s constant, (8.7) becomes:

Hodd, U7
" a G G
=md,ua, 0 +2r* mdo, u+(l‘ ”ﬂrﬁ"”_ch“ke £, P’VJ md n+m B mu 4-(8.8)
2 2
—lm%(ﬂj s iptdig, 1,100 dX ap s ¢ o g g
2 g°\dr 2 gdr© 2 go a c c

An equation free of electrodynamic source charfes tesults from setting, =0 in the above.
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It is important to keep in mind that (8.7) may deived directly from the known Lorentz
force law (3.1) as represented in (5.8), even hadet obtained this from the minimization of the
action (1.1). This is because (8.7) is simplydhacetime gradierdt , applied to (5.8) as starting

at (8.1), and because (5.8) is true whether oneabbtain it from a variation. But the motivation
to operate on the Lorentz force law in this way esrfrom the fact that when we do obtain the

Lorentz force from a variation, Maxwell's equatici® :a;aF"”’ together with the Lagrangian
gauge A0,0., A" =L, of (5.4) mandate the gauge conditi@qjaﬁ(A,A"):O, which is a

m

corollary of the geodesic gaugié’(AaA") =0 of (5.6). So when we study the impact of this
weaker corollarya;ﬁaﬁ (A, A") =0 on the Lorentz force, the result is the energy field equation
(8.7). When we impose the stronger conditMr(A,A”) =0, the result is the Lorentz force itself.
What is important about (8.7) and (8.8) is thatytipait the energy source tensdéy, or the

spacetime curvatur® , (as chosen for best convenience in any given tzlon), directly into
the dynamical equation for energy flux right alodgsof the electrodynamic sourcés.

Having now reviewed how the combined gravitaticarad Lorentz motion (3.1) is derived
from the variational equation (1.1), and the reggiigauge conditions and the immediately-
consequent power and energy flux equations, westmw how to derive the electrodynamic time
dilation and contraction summarized in sectiom8|uding how the time dilation (3.10) and the
key energy relation (3.11) are derived. Againaasminder, this is all premised on requiring the
line element to remain invariant and the backgrofields in spacetime to remain unchanged,
under a re-gauging of the electrodynamic chargexss ratiog/ m.

PART Il: DERIVATION OF ELECTRODYNAMIC TIME DILATION

9. Review of Time Dilation in Special and General Eativity

As a comparative baseline for deducing the effettslectromagnetic time dilation and
contraction, we begin in this section by brieflyieaving the connection between time dilation and
kinetic and potential energies in the Special amshédal Theories of Relativity, paying close
attention to the signs of various terms. In thetsection we then extend this known development
to demonstrate a heretofore unknown electrodynaomnection to time dilation and contraction.

In Special Relativity, where the metric tensoihiattof flat spacetimeg,, =7, , we begin
with the metricc®dr? =1, dxX dX. Using a timelike signaturg,, = (1, —1) consistent with the
conventions reviewed in section 2, and givex” :(cdt d() and the squared velocity
Ve = (d)%‘/ dt)( dx / d) , this is easily restructured using the chain inie:
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1 dx*d¥  1(dR dR dk dkx) 1( d¥ dx d f 2
= _ | — - - = — | — 2——— =| — —_—— . 91
1= o ar 6( &« o o d] é[ d) (C dt dj ( zj (1 ch ®.h

Then, selecting the positive square root wherdbydr =1 at rest in accord with the conventions
reviewed in section 2, this yields the time dilatfactor:

dt 1 1V (92)

Y= —=———— Ol+=—>1,

dr  J1-v?/c? 2¢

also shown in th&/ << € non-relativistic limit. Physically, we associat&ith the time coordinate
measured by aabserverin her or her own reference frame, and we assoc¢iavith the proper
time of anobservedeference frame moving at velocityelative to the observer. Operationally,
the observer will measure the time coordinatsing a geometrodynamic clock at rest in his or he
“laboratory” which clock “ticks” at some periodiate, and also will measure lay, a second set
of “ticks” coming from an identical clock situat@athe frame that is moving at relative velocity
v. Because the successive ticks of any clock mayrowith great rapidity in the case of a very
accurate clock but will never be infinitesimallypseated, for all practical purposes (9.2) will be

measured byAt/A7=1/+/1-Vv* /¢® > 1, which will always be greater than 1 for any rietat
velocity v>0. Because the elapséit of the observer’s clock at rest will always excelee
observed elapsefdiT coming from the identical albeit moving clock, tbevill be more ticks tolled
by the rest clock than from the moving clock ovay @iven interval. Therefore, time in the
moving frame will be observed to be in “slow motibre., dilated, i.e., redshifted, in relation to
time measured in the rest frame.

As to energy, we multiply (9.2) through bbpc® to obtain the total energy:

dt mé 1
E=mly,= mé—=———-o-= mé+ E= B+ FE0 nfr= m. 9.3
W T e TR TS 3

In a central result of the Special Theory of Relati[2] by which the rest energlg, = m¢ of any
material body with mass was first discovered in [10], this is equal at leglocities to the rest
energy E, = mc plus the Newtonian kinetic enerdy, 02 mV. It is important to note that

although any periodic signals emitted by objecthexmoving frame will be observed via (9.2) to
have redshifted toward lower energies, the objecthat frame will likewise increase their total
energy by supplementing their rest energy withreetc energy via (9.3). One may understand
this somewhat counterintuitive result by thinkinfgtloe moving body as having “stolen” energy
from the signals it emits and plowed that intoatgn increased kinetic energy. One may also
understand this more mundanely by the simple egpgal fact that a faster-moving body can do
more work with its kinetic energy than a slower-nmgvbody or a body at rest.

Turning to the General Theory of Relativity, onérs with the line element
c’dr? = g,, dX' dX, with the gravitational field represented by thetric tensorg,, . At any

infinitesimal location in spacetime the Minkowskigent space is of courgg, = (1, —1) , using

30



Jay R. Yablon, September 26, 2016

the sign conventions previously reviewed. To isothe effect of gravitation from that of motion
upon the measurement of time, we place a geometamaig clock at rest in the gravitational field,

dx‘ =0, so the line element become&dr? = g,,dX d¥= g, ¢ df, which easily rearranges to
dt*/dr?=1/g,. When taking the square root we continue to hgepwositive root, so that

dt/drzl/\/g - 1in the limit whereg, -7, , again consistent with sign conventions
previously reviewed. Then, we make use of the Sehsgchild solution for a static, spherically-
symmetric gravitational field, for whiclg,, =1-2GM /& in the vicinity of a gravitating mass
M. Showing also the weak-field limit for which theNewtonian potential
®/c?=(gy~1)/2=-GM/ ¢, the gravitational time dilation factgr, for M >0 is:

dt ! ! GM 19>1_ (9.4)

@ J1-2GM /ch c?

As in (9.2)t is measured in the frame of an observer outsideythvitational field (or in a field
that is negligible in comparison to the fieldMf, and7 originates from a clock under observation
(e.g., from a geometrodynamic body that emits @opear light signal) which is situated in the
gravitational field oM. Once again, now witht / A7 =1+GM / ¢r > 1, over any finite interval
there will be more ticks emitted from the obsersalock than from the clock in the gravitational
field of M. This is why spectral lines of oscillators nds sun or near distant stars are redshifted.

As to energy, starting now with (9.4), we againltiply through by m¢, wherem is the
mass of a test particle placed into the field/of This yields a total energy:

mc,2

E=mcy, = mé

=l O

M mé-o mp E

(9.5)
GMm

r

=mc +

In the top line above, we have a similar resulivaglo in the case of motion. Although the body
in the gravitational field emits redshifted lighitwvreduced energy via (9.4), that energy is again
“stolen” and plowed into what is now an increaseavgational potential energy of that body.

However, the Newtonian gravitational potentim:cz(goo—l)/Z:—GM/r IS a negative

number, with opposite sign from the kinetic energhhis means that a test particle of mass

placed into this potential, naturally moving towardtate of lower energy, will seek to get closer
to M, consistent with gravitation always being attraeti This results in an interaction energy
dm=-GMm/ r which does diminish as the separatigrows smaller. So even though the mass
in (9.5) gains energy in the gravitational fielde inegatively-signed gravitational potential energy

E, U®m=-GMm 1 is subtractedfrom the rest energy in (9.3), yielding an ovenatirease in

the actual observed, usable energy of the testlgariTo make sense of this, consider for example
that a body near the surface of the sun weighstaébbtimes as much as it does near the surface
of the earth. Therefore, it carries 27 times axhngravitational potential energy at a given
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separation from the sun’s surface as it does asdh®e separation from the earth’s surface. So,
notwithstanding that any light signals from the patkar the sun are redshifted, this is a real,
measurable, increase in the energy available &drlibdy to do work.

An important point of distinction between gravibat and electromagnetism already
previewed in the various signs in (9.5), is thaviational interactions aralways attractive,
which attractive interaction occurs betwdie charges In contrast, electromagnetism can be
attractive or repulsive, with attraction betweasnike chargesand repulsion between like charges.
So it is also helpful in preparation for examinglgctrodynamic time dilation and contraction, to
express all of the above in terms of the attractiadial Newtonian gravitational “force”

F, =-GMm/ r*, in which the minus sign is responsible for thetee direction of gravitational
attraction. This is consistent with the positiignsused in the section 2 discussion of sign
conventions to express that the Coulomb repulsietwdéen two like-charges must yield a

positively signedd®r /dr? >0 for the Lorentz acceleration. Relating the dédimntegral over
of this attractive force to the terelGMm/ r appearing in (9.5) yields:

['F =] -SMMgr = G:V'”*_ =+ Gr'v'm: ~om=-E, =-[" 0. (9.6)

e
Note the offsetting reversal of the integration idaries and sign in the final expression above.

Finally, before proceeding to study electrodynatime dilation and contraction, when the
test charge is in a gravitational field and is afsmotion, we may simply multiply the two time
dilation factorsy, and y, together, whereby from (9.2) and (9.4), we obtain:

dt GM] l V GM+ 1V G|V| (97)

&L= of1+ “2 [1+_ -
We= le/c\/_ cr 2c2 cr 2¢ cir

If we again multiply through by the rest enengy’ of the test particle, we obtain:

dt _ mc 0 m€:+ e CMI GMm_1 GMm
1-Vv?/c? /goo 2 r 2 cir

In successive terms above, in the linear limit.sge: 1) the rest energy of the test mass, 2) the
kinetic energy of the test mass, 3) the potentiakgy gained by the test mass because it is in the
gravitational field, which is equal to minus thegagve gravitational potential energy, and 4) the
kinetic energy of this gravitational interactioreegy. It will be seen that these are the firstpsel,

fifth and sixth terms of (3.11). Because this adsowith what is empirically observed, and in
particular yields the kinetic energy of the gratidaal energy which is required to completely
account for all energy when there is both motiod gravitation, this validates the technique of
multiplying these two time dilations together totaibh a combined time dilation, and of then

multiplying through bymc to obtain the overall energy and the various typiesnergy that

o
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contribute to this overall energy. This also ekshles a direct connection between time and energy
whether kinetic or potential, which will become y@émportant in the development to follow.

Now we turn to deducing the electrodynamic timlatain and contraction reviewed in
section 3, and to deriving the relationship (3.iéjween time dilation and energy. To begin, we
return to (3.9) which states that the line elemgntmust be invariant, and the metric tengpy

and the gauge fieldd” [the latter now subject to the Lagrangian and gsmdgauge conditions
(5.4) and (5.6)] must be unchanged, under a reggab., re-gauging off/ m - d/ m. Thus, it

is (3.9) whichdefineghe coordinate transformatiotf — X* which leads to electrodynamic time
dilation and contraction. Now we show exactly hibvg occurs.

10. Electrodynamic Time Dilation and Contraction, and Time-Energy
Relations in Special and General Relativity and Elgrodynamics

As noted earlier, the number “1” constructed iri)4s useful in a variety of circumstances.
One of those circumstances was to derive the Lprimte from a variation starting at (4.2).
Another such circumstance is for the derivatiorlettrodynamic time dilation and contraction.
The starting point for this derivation is (3.9) whimaintains the invariance df = dr’ and leaves

the background fieldg,, , A“ and F*” unchanged under are-gaugiggm - d/ m# ¢ nof
the charge-to-mass ratio. We then turn (3.9) ihéosame “1” which appears in (4.1) by dividing
through c*dr? thus obtaining:

dx* ¢ dx q . d¥’ o] dx q
1=g, | 2+ || 2y A wl=g | 2 D | 2y A K
g"“(cdr mé J( cd me ] g“”( cd % ]( ad 'nfc
ut Qg v, 9 o q : q
= — A —+— A |= —t— X || —+ A . 10.1
g’”(c m¢ j( c mé J g””( c Mt J[ c % (10.1)
L unur L uy
ecc e oc

This shows how the invariant number “1” in (4.19rtsforms under g/ m - d/ m re-gauging,

and also includes both the mechanical four-velogtty= dx’ / dr and the canonical four-velocity
U#=u”+(q/ mg A and their “primed” counterparts. Note that we nrgfgr U# =U"# from

the final line, which means the canonical velodgtynvariant under aj/ m - d/ m rescaling.
Only the mechanical velocity is changed.

Now, let us turn to the Lorentz contraction facgpe=1/+/1-v* /¢* and the ordinary four-
velocity v”/c:(l,v/c) used to describe motion in special relativity. tWg,, =7, and
diag(/yw) = (1,—1) in accord with sign conventions review in sectint is easily shown and

well-known thatnw(yvv”)(yvv")/ ¢ =1 by mathematical identifywhich is another “1.” In
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special relativity without any electromagnetic naigtions, the mechanical relativistic four-
velocity u” =y, V' so that this “1” in natural units is given by tlaeniliar 77, u“u” = u, U = ¢=1
using c=1 units. But as we see in (10.1), when there aret®lmagnetic interactions, the “1” in
flat spacetime is instead formed by the scalarpecog, U“U" =U U° = ¢® =1 which employs

the canonical four-velocity U*. Comparing the identitys,, (yvv”)(yv\/’) =& with
n,J*U" =c? contained within (10.1), we are able to infer:

U#=yv-. (10.2)

And if we make use of the fact thet” =u” +(q/ mg A and u” =dx*/ dr then this may be
extended to:

U=+ L= (10.3)
mc a mc

which may be conversely rewritten in terms of thdireary mechanical velocity as:

u =

(i{_);/'I:U#_HqCAﬂ:yVVH —FqCA(’. (10.4)
Now we turn to the gauge potentié&t = (@ A). Ordinarily, withu” = y, ¥, this is written
in terms of the proper (rest) potentigl as A“ = gu”/ c=gy, '/ ¢, employing the mechanical
four-velocity u”, because at rest wit, =1 and v/ c=(1,0) this will produce A" =(¢,0).
However, as we see in (10.2), in the presenceeaftreimagnetismU* = y,v, and from (10.4)

u’ =y -(q/ mg A. So to ensure that we continue to h#e=(g,0) at rest in the potential,

we must now relate the gauge potential to the prgoeential and to the motion using the
canonicalfour-velocity, such that :

AN =qU”c=qy V' c. (10.5)

Were we to continue to us&” =gu”/ c, then we would haved =gy, v/ c—( ! mé) A
which is a recursive expression &' and which becomesgV = (%,O)—(q%/ mé) A at rest,
rather than simply¥ =(g,0). Note also that\ = gU* / c= A* =g U"*/ c because&) ¥ =U"*
as pointed out at (10.1). S& =¢gU*/c in (10.5)mustbe the relation betweeA” and motion

relative to the proper potential, to enforce theeasial requirement that the background field
AY = A* must be unchanged undegam - d/ m rescaling. This wouldot occur were we to

have A“ =gu” / c. So using (10.5) and* =U"*, we arrive from the middle line of (10.1) at:
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_g (Wi AUty agut) (4, g guiid, G au
1=g | L+ 4 i =g, | — BE— . (10.6
g‘”[ c mé c ]( ¢’ mé ) W T e ¢ ¢ mic ¢ (106)

Sowheng - d andm - i, the only other object that changegli¥' - dx” in the mechanical

four velocity u” =dx'/ dr -» U¥ = d¥'/ d@. Everything else is unchanged including the line
element dr, the gravitational fieldg,,, and the gauge fieldA” =gU”/c. With these

preliminaries, we are now ready to derive the etmgagnetic time dilation and contraction.

Generally, we will wish to compare periodic sighamitted by a geometrodynamic clock
which has a net charge of zero and so is neutraklation to signals from a geometrodynamic
clock with a nonzero net charge. So working frd®.6), we shall seq =0 to represent electrical

neutrality, and leave as it is to maintain a charged body, and therddgin:

u W U* U U d guf)(& . ¢ @u
1=g YUY Y (L, 98 %, 9 _ 10.7
v cC C v c C g”“( c mé c}( c mt ¢ (10.7)

The relationshipg,, WU = g, WU is true, becaus&)” =u” +(q/ mq A, so that when we
have a neutral bodg =0, the mechanical and canonical velocities are symous,U* =u”.
From the final equality in (10.7) we may infer tHat' =u'/ +(q'/ m 6)% . Rearranged to

isolate U# and also using)” =u* for the neutral body as well ag’ = dx’/ dr and likewise
u'# =dx*/ dr for the “primed” body, we deduce:

_ 1 dx*
1-dg/the d

dx":uﬂ:Uﬂ 1

dr “1-dg/mé

'u

(10.8)

The time component witt* =(ct x) andc divided out of the above is then seen to be:

dt 1 dt”

—= . 10.9
dr 1-dg/mé o (10.9)

Now, as with (9.2) for special relativistic moticand (9.4) for general relativistic
gravitation, we associatevith temporal oscillations from a neutral clocledso measure the time
coordinate for thebserver We also associate with oscillations such as the spectra of periodic
light signals coming from anbservedtest particle with massn and chargeq # 0 and time

elementdt’, in the potentialg #0. So as a consequence of the latter associatiomayeset

dr = dt”, thatis,dt'/ dr =1. This is an extremely important step, and the reatieuld carefully
review (9.2) and (9.4) to become convinced th& ih fact correct and consistent in (10.9) to
associate periodic signals from the neutral bodg periodic signals from the charged body with

dt and dr = dt'* respectively.We also posit for the moment that the charged/lvath m' and
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chargeq' is not in any gravitational fields, becaud®’ / dr would then deviate from 1 as a result
of the gravitational fields. Later, we shall reradhis restriction.

As a result of the foregoing, also with the weadiq'¢g << ni & limit, (10.9) becomes:

_dt 1 94
=—=—— [+ 10.10
Yo = Ur T 1-qd@/mé  mé (10.10)

This is how we derivelt/ dr and then define the factgy, , first introduced prior to (3.11), to be
the rate at which time ticks from a positively-sgnchargeq’ placed in a positively-signed
potential g and emitting periodic signals, in relation to homve ticks from a neutral clock of an

observer, in accordance with the sign conventiangewed in section 2. As a notational
convenience, sincdt/ dr specifies time measurements taken using sigrais fine neutral body
with =0, we drop the primes from the mass and chargerexdénote the above simply as:

_ dt 1 a4
=—-= 01+ : 10.11
dr 1-qg/mé mé ( )

yem

This now specifies how a neutral geometrodynanuoclkcused by an observer to measure a time
coordinatet, will “tick” in relation to an otherwise-identicascillator with charge and massn
in a proper potentiagg . As with (9.2) and (9.4), time measurements aarenbe infinitesimally

small, soAt/ At :1/(1— a% /mcz) is the practical operational representation of 1))

Now, let us consider the special case of a Coulpmber potentialg =k, Q/ r, thus an
electromagnetic potential energl,, = og = k.Qo/ r. As noted when we reviewed sign

conventions in the introduction, this describeseéattrically-repulsive interaction because the
energy of the test charge will diminish as the sajp@anr grows larger. Employing this in (10.11)
for Q>0 andq>0 now yields:

_ dt 1 k-Qq
=— = 1+ >1. 10.12
Yo =7 T 1- k.Qq/ mé r mé r ( )

Following the analysis at (9.2) and (9.4) for speand general relativistic time dilation, the abov
predicts thattime will dilate and signals will redshift for elgically-repulsive interactions
between like-chargesvhich will become detectable when the electronetigipotential energy

E.., = k.Qq/ r grows sufficiently large in relation to the reseegy mc® of the test charge. If we
flip the sign ofQ or g but not both to represent electrical attractidventwe will havey, <1,

which means that time will contract and that lightitted fromq will blueshift for electrically-
attractive interactions between like charges.
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Very consequentially, although it is well-known th@ame dilates for gravitational
attraction as reviewed at (9.4), in a striking contrast thélt be explored at length in the
development to follow, (10.12) reveals thiate contracts for electrical attractionAnother way
of saying the same thing is that time dilates fueractions betweetike-charges for both
gravitation and electromagnetism, but becausegdia®itational-charges (masses) attract and like-
electrical-charges repel, thieme effects are opposite as between attractivevigggon and

attractive electromagnetisniThis all is a result of the positive sign-ek,Qq/ mé rin the linear

limit of (10.12), and this is the main reason whg ave been so carefully-attentive to signs and
sign conventions from the start of this paper. eipimportant consequence of this result, will be
a connection to and empirical confirmation by thedmalous” lepton magnetic moments, to be
developed in part Ill of this paper.

Also of significance, if we apply Feynman-Stueclegtpto require that proper time for the
test particle always flows forward for particledaantiparticles alike such thakr >0, and we
require that the measurement of time in any otteané flows in the same direction whereby we

require dr / dt>0, then from (10.11) this means thb/t(l— a% /mcf) > 0. Because if any real
numberx >0 its reciprocall/ x > 0 also, this also means that qg / m¢ > 0 a.k.a.qg / m¢ <1

a.k.a. qqq)<m(,2. This now becomes a material limit on the strengf electromagnetic

interactions and particularly states that the axteon energy of a test charge in an electromagneti
potential is always less than the rest energyeftdht charge itself. And for a Coulomb interattio

this becomesl-k.Qqg/ mé r>0 which algebraically restructures intk.Qg/ mé r<1 a.k.a.

k.Qq/ r< mé and then intar >k Qq/ mé, thereby establishing a lower physical limit orwho

close two interacting charges can come to one anotAs mentioned in the section 3 overview,
this solves the long-standing problem of how theO singularity in Coulomb’s law is

circumvented in the physical world. This limitalsarsy,, =dt/ dr =1-k,Qqg/ mé <o from

ever growing to infinity for material particle eteamagnetic interactions, which is highly
analogous to the limitatiom < € for the motion of material particles.

As we did at (9.3) and (9.5), let us now multighy0.12) through by the rest energy
E, =mc of the test charge to obtain the total energy:

E=mcéy,, = me 9t - mc

== = kQq)_ 2 kQa
ar 1—kogmér Mot B B RS ”"{“ J g =-1.(10.13)

mé

In the lowest orderk,Qqg/ mé r<<1 limit this reveals the Coulomb interaction energy
E.., 0k.Qa/ r. Also, similarly to what we did at (9.6), we stanth a repulsive electrostatic radial

force F. =+k Qq/ r*, and relate this t&, k. Qqg/ r via:

Irm Femmr = J.:O"' kel’?qdr - Igchr ) -t IE'Qq: +m =7 Eem - _L: Fem[dr' (1014)

=r
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This likewise expresses the lowest order interacénergyE,, Jk.Qq/ r as an integral of the
Coulomb force. Note the reversal of the integraboundaries and sign in the final expression.

Very importantly, (10.13) reveals heretofore ungroged non-linear behaviors in
classicalelectrodynamic interactions which parallel the tioear behaviors already well-known
in special relativity for motion and general reléy for gravitation: In special relativity, asese

in (9.3), the Newtonian kinetic enerdy, =3 mV is merely the lowest-order term added to the rest

energy m¢ in the low-velocity v<<c limit where E=m¢/+1-V/ ¢ 0 mé+% mf. In
general relativity, as seen in (9.5) for the Sclasehild metric, the (negative) Newtonian
gravitational interaction energyE, = GMm/ r is merely the lowest-order term addedma’ in

the weak field2GMm/ r<< mé limit where m¢ /y/1-2GM/érd mé+ GMni . And in
(10.14) for electrodynamics, we now similarly revélaat the Coulomb interaction energy

E...=k.Qq/ r is merely the lowest-order term addednte® in the weak fieldk,Qq/ r<< m¢é
limit where mczl(l— k Qo mé )D me+ k Qff . But as the interactions grow stronger, even
in classical electrodynamics, we have non-line&ab®rs also. Let us review these more closely:

Mathematically, the linear Coulomb interaction gyearises from the fact most directly
seen in (10.11) and (10.12), that, =1/(1-x) O1+ x for x<<1 with x=k,Qq/ mé . So when

we multiply by mcin (10.13) we findm&y,, = mé/(1- y= mé+ E 0 nfer k Qg . But
this is just the lowest order limit. With the colete seriesl/(1-x) 01+ x+ X + X+ X' +
which converges for1l< x <1, we now deduce from (10.13) that:

—mcf( j_—kqu/r = mé— = mp—tem
dr 1-k,Qq/ mé r 1- X mé- E,

<A 1o R (2 o g [

where E,, =mc x= k Qg 1 denotes the first order linear term in tikg, << mcé “weak”

interaction limit. Agairthis is a form of non-linear classical electrodynaimehavior that appears
to have heretofore been unrecognizéd. present, the only non-linear electrodynamibdaors
which are known, are those arisinggonantumelectrodynamics as a result of Feynman “loop”

diagram calculations which cause the abelian diiletess interaction strengthr = €° / 47, c

(which approaches the numerical valueaf1/137.03599913 [11] at low probe energies) to
“run” toward increased magnitude as two chargesenduser together. These loop diagram
calculations are also used to explain the “anonsl®pton magnetic moments. It will be helpful
for when we begin to consider these anomalies iihipjao represent (10.15) wholly in terms of
dimensionless energy ratios, using the relation:

(10.15)

38



Jay R. Yablon, September 26, 2016

E Eero

em —

_ _ Eg/mé _ 1 1
m¢é mé-E, 1-E,/ mt 1- E,/ nfc

(10.16)

between the lowest order, linear interaction endfgy and the total nonlinear enerdgy,, .

We also note as pointed out before (10.13) th&q/ r< mé is a material limit on
electromagnetic interaction strength, and is ammalsgo the limitv<c a.k.a. mV < mé for
material particle motion in special relativity. Asich, the non-linear series obtained from
mcy,, = mtf/(l— )) with x =k Qqg/ mé r is naturally convergenbecause of the natural limit
x <1 just reviewed for repulsion, while for attractismich merely flips the sign, itig>-1. As

we shall show in Part Il of this paper, the namelr behaviors in (10.15), (10.16) may also be
used to explain, and are confirmed by, the leptagmetic moment anomalies.

Next, similarly to what we did at (9.7), let us Itiply together the special relativistic time
dilation factor reviewed at (9.2) with the electyadmic factor found at (10.12) and also show the
low-velocity limit to obtain the combined time dilan factor for a test charge in relative motion:

dt 1 1 1V K qu
—= = O 1+=— || 1+ : 10.17
ar e J1-v2 /2 1-k.Qq/ mé r [ 2 é}( mé ( )

Then, multiplying through bync*, we obtain the total energy of motion and elegtrazoic
interaction:

e _ 1 1 _:|.V_2 k.Qq
E=md & MCY,Yer = ME J1-v2 /& 1-k Qq/ mé - ”ﬁ{1+ 2 éJ(H mé J (10.18)
kQq, 1kQq,

r 2 c’r

=mc2+% my +

Here, in succession, we see 1) the rest enardy 2) the kinetic energy of the mass 3) the
electrical interaction energy of the charged masd,4) the kinetic energy of the electrical energy,
which are precisely the first four terms of the leayergy relationship (3.11).

Now let’s turn to gravitation. One would surmiszsed on (9.7) that all we need to do to
include gravitation is extend the time dilationttado bedt/ dr =y, v v, which is in fact correct.

But because the gravitational dilation (9.4) steits a metricc’dr® = g, dX' d% while the metric
used for electrodynamics is (3.5) in the fowhdr? = 9,2 XD X with the gauge-coordinate
interval Dx* =dx’+( g/ m¢ d¢ A, we need to be careful. Because the charged heasshe
associated coordinatesx”, we write the metric asc’dr’=g,dX*dx, with
DxX*=dX*+(d/ mg d¢ A. So usingA’ =g and dividing out the canonical time interval is
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ot' =dt’ +(q’/ m 6) d@. Then, taking the charged mass to be at rekeigtavitational field, the

metric becomex’dr® = g, DX x°, ak.a.dt'/dr=1//g,,. And, inverting the general-case
relation (10.9) prior to the specific-case imposiigit' / dr =1, we have:

dt' _ qe dt _ dg dt
L o1- = 10.1
ar ( meja— ¢ e d (10.19)

Therefore, using (10.19) int'/dr =1/,/g,, just obtained yields:

_1 oot dt, de_dt_dg dt, dp _ dt_dg dt dg dt_ d 55

9, dr dr nié dr hé d  me n wicrd ‘mcrd rd*

In the above, becaus®” =u” in the neutral frame, we have also used the faet t
A =gU* [ c=gu' [ c for which the time component i&° =p=gU°/c=gU’/ c=gd d.
So the electrodynamic terms offset and cancel,ingathe usual time dilation relationship
dt/dr :1/@ =y, for a particle at rest in a gravitational field.

So now, combining (10.20) for gravitational inttfans together with (10.11) for
electromagnetic interactions and (9.3) for motitwe, complete time dilation for all three is given
most generally by:

dt 1 1 1

ey = , (10.21)
dr ¢ 1‘%/”‘]6 \/l—VZ/CZ ‘,goo

For the special case of the Schwarzschild megjg=1-2GM /¢r and a Coulomb proper

potential ¢ =k.Q/r, and in the weak-field2GM /c’r<<1 and (q/ mkQ/ é r<<1, low
velocity v <<1 linear limits, this becomes:

T
dt _ _ Ol 1+ 1+— 1+—— [.(10.22
ar ST k.Qa/ mé ry1-v? /& V1- 2GM /@t ( m ¢ el 2 ¢ )

If we then multiply through by the rest enerfly = mc of the test charge, we find a total energy:

_ medt - akQ)(, GM)( 1V
E=mc o méy..V ¥, O m(’:(1+ z rj(l czrj(l czj

Qq 1kqu\; GMm 1GMm\%+ GM k Qq, 1 GMng%'
r 2 c?r r 2 cx r cr 2ct ct

(10.23)

—mc2+;m\7+ e
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This precisely reproduces, and is how we derivectintral energy relation (3.11) presented in the
overview of section 3.

Keeping in mind that the electrostatic interaction(10.23) is a repulsive interaction
between like-charges, we further represent thalfitimit in terms of the potentiald =-GM / r

and ¢=k.Q/ r and the potential energids, =®m and E, = ¢q as well as the kinetic energy
E =3 mV, also using the definite integrals in (9.6) and.{#), as follows:

ot qkQ)(;,CM\(,, 1V
E=mé e MYy o, O mé(“ (grj(l Czrj(l 2 czj

@ 1V E, _E, E,
_mcz(“EFj(l ?j£1+202j m6(1+ méj[l m(’:j(li_ m%). (10.24)

=mc2(1—m—1czj; F, j(1+—j F[drj(l+nin

These expressions (10.23) and (10.24) — and incpkt the combination of signs in these
expressions — are of fundamental interest, foraesshat we shall now review in depth. Most
importantly, these lead upon close study to a titennection with the lepton magnetic moment
anomalies, and a showing of how these anomaliestitate direct empirical evidence of

electromagnetic time dilation.

PART IlI: QUANTUM GEOMETRO-ELECTRODYNAMICS AND THE
LEPTON MAGNETIC MOMENT ANOMALIES

11. Electrodynamic Time Dilation and the Magnetic Moment Anomalies:
Introduction

It has been known since 1784 and thoroughly vedatlaver the more than two centuries
since, that Coulomb’s inverse-square law for etetatic interaction between two “electrical
masses” a.k.a. charges is entirely analogous totdtesvinverse-square law for the interaction
between two gravitational masses, with one import#fiference in sign: As between two like-

signed gravitational masses the Newtonian fdfge -GMm/ I* is attractive while as between

two like-signed electrical masses the Coulomb fdfge= +k Qq/ r* is repulsive. Likewise, it

has now been known for a full century that bothioroeind gravitation dilate time, but also with
one important difference in sign: Referring to.@4) in the nonrelativistic limit of low velocity
and the Newtonian limit of weak gravitational fig]d although the time dilations

dt/dr =1+3V*/ & >1 for motion anddt/dr =1+ GM/ & r>1 for gravitation both contain a
positive sign when expressed in terms of veloaity mass-over-distance respectively, they have
oppositesigns when expressed in terms of kinetic and pialeenergies asit/ dr =1+ E, / mé

in the former case and at/dr =1- Eg / mé in the latter. This of course is because kinetic

41



Jay R. Yablon, September 26, 2016

energy E, :%m\f always has a positive sign, but gravitational pbs energy
E, =Pm=-GMm 1 always has a negative sign so that lower energigstresult from two

relatively-static masses moving toward one anoiter,attracting, rather than moving apart, i.e.,
repelling. Simply put: kinetic energy is positieaergy, but masses in a gravitational field fall
down not up and so the gravitational interactioergy is negative.

Given the foregoing, even without deriving the ¢z force law from the variational
minimization (1.1) as has been done here, one neigfinipolate on general principle from special
and general relativity that perhaps there is tiratidn occurring when twalectrical masses
interact, which dilation follows the form of graaitonal time dilation that we now write as

dt/ dr =1+ GMm/ mé 1, where them in the numerator is the same as thé& the denominator
due to the equivalence of gravitational and inermiass. So in the same way that Coulomb’s law

follows Newton’s law, up to a sign we extrapoldtisto dt/ dr =1+ k Qg/ mé 1, which includes

the inequivalence of electrical and inertial maBat, were we to extrapolate this, there would stil
be an important question to answer as indicatethbyt sign in the latter relation: Does time
dilate for the electromagnetic interactioetween two like-chargess it does for gravitation? Or,
does time dilate for the electromagnetic interachetween two attracting-charges is does for

gravitation? This is a critical question, because the answer @aly be one or the other but not

both. And this question may be reframed simply by agkitnetherdt/ dr =1+ k Qg/ mé 1 with
a positive sign that dilates time, applies to eleal attraction, or to electrical repulsion.

Now, one might have the preconception — as dicathkor at first — that this time dilation
should occur in the presence of electrical attoacjust it does for gravitational attraction. But
this is a bias, and the question raised above oénlme properly answered by following the
mathematics carefully from start to finish. Andact, a very careful and deliberate study (which
is why we have paid great attention to signs thihoud) reveals thathis preconception is
incorrect In fact, for electromagnetism, as deduced atld)) time is dilated for interactions
between two like-charges as it is for gravitatimhjch meangime is dilated for electromagnetic
repulsion and contracted for electromagnetic attrag. This is not a trivial result: to incorrectly
answer this question about the veaection of the time-dilating interaction, even if everytbi
else is correct as to vectmagnitudewould be akin to predicting that mass will fall tather than
down in a gravitational field. Even if one coulagict the correct magnitude of the acceleration,
predicting that objects fall up would still be aomg answer. This is a sign that must be gotten
right. So let us review:

The prediction in (10.12) that time dilates foratestatic repulsion is rooted directly in
the derivation of the Lorentz force from the vaaat(1.1): by starting with the metric (3.5) which

easily becomes (3.6) and (4.1), we derive a Loréotze d’x’/ dr’=+(q/ n) ¥, d%/ cd

contained in (4.4) which becomes (5.7) once thalgsic gauge of (5.6) is applied. As reviewed
in section 2, for an electrostatic Coulomb inteiacthis will describe electrical repulsion when
Q andq both have the same sign. But as was also shawtingt at (10.1) which uses the same
metric (3.5), and working to (10.12), this repuésiateraction will dilate time. The bridge between

B
these two results — repulsive Coulomb force aratetil time — is the variatiod= JJA dr of (1.1).
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So this time dilation for electrical repulsion, @dtraction, becomes an important prediction of the
present theory, and one should look for ways inclhii can be verified, such as were discussed
at the macroscopic level following (3.11). But e\metter,one should look for ways in which this
electromagnetic time dilation between repelling rgfes might already be validated by what is
well-known And this brings us to the magnetic moments efiéiptons, i.e., the electron, and the
mu and tau leptons.

Specifically, as it turns out, these questions alimeraction sign and time dilation are
directly tied to quantum field theory because gational interactions between like-charges are
attractive as a result of the propagators for ogravitons, while electromagnetic interactions
between like-charges are repulsive as a resulhefpropagators for spin-1 photons, see, e.g.,
section 1.5 of [12]. And, as it also turns outd @s we shall demonstrate in the development to
follow, the reason the charged leptons in one-Bolpwinger order [13] have a magnetic moment

g-factor g = 2(1+a / 277) > 2 rather than a g-factog = 2(1-a / 277) < 2 is precisely because the

time dilation dt/ dr =1+ k Qqg/ mé r>1 applies to electrical repulsion rather than eleatr
attraction. If the time dilation occurred for eiécal attraction as it does for gravitational
interactions, then the first-order g-factor woulel 9 =2(1-a /27) and therefore less than 2.

(Again, a =€’ | 4rE hic is the running fine structure coupling which agguioes the numerical
value of @ =1/137.03599913 [11] at low probe energies.)

As now embark upon proving this connection, we tstaith the well-established
understanding that the magnetic moment “anomaligearfrom lepton self-interaction, and that
when a lepton self-interacts whether one consittesproblem classically or in quantum field
theory,this self-interaction is necessarily repulsiveo this understanding we add (10.12), which
tells us that two repelling charges dilate timénisTmeans that lepton self-interactions will dilate
time, so that this time dilation should be ablééoused in some way to measure the lepton self-
interaction which in turn gives rise to the magonetioment anomalies.

Classically, one would view a lepton as a negathv@rge and consider different parts of
the charge interacting with one another, and ofsmeach part will repel every other part. In
Quantum Electrodynamics, one extracts terms franp#th integral and associates each term with
a Feynman diagram which includes one or more s#faction “loops.” In the process the
magnetic moment anomaly is explained, yet one cdyiao an exact calculation up to the loop
orders that can be enumerated then calculatedoriBetaree or at most four loops, exact analytical
calculations become intractable. So if a direcppiag can be developed between the quantum
approach and the classical approach, then thaadhaspproach yields an advantage, because one
can use ordinary calculus to do exact analytidaltations that cannot be done exactly in quantum
field theory.

With all of this in mind, because lepton self-irgetion is inherently repulsive and so based
on (10.12) should cause time dilation, and becés®n self-interaction is also intimately and
inextricably intertwined with magnetic moment andies the task upon which we now embark
is to show that having a g-factgr> 2 rather than ay < 2 is also directly and inextricably tied to

time dilation being a result of electrically-repuks rather than attractive interactions. Thishis t
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electrodynamic equivalent of making certain we th&oally predict that masses will fall down
not up, and it ties together classical and quarglattrodynamics and reveals a universal relation
between time dilation and energy of all types andiims in a way that has not heretofore been
recognized.

12. The Canonical-to-Mechanical Ratio and the Lepto Magnetic Moment
Anomalies

We begin by combining (10.3) with (10.5) and reagingU* =u” +(q¢5/ mE) U to

isolateU #, also using the definition of,, =dt/dr in (10.11), to write the canonical velocity in
terms of the mechanical velocity as:

U=+ 3=+ B e =

— U=y , 12.1
mc mé 1- qg/ mt Ve (12.1)

most importantlyU# =y, u”. Likewise, multiplying through byn we may relate the canonical
momentums7 = mU” to the mechanical momentupt’' = mu’ by:

pe=mut=me+d = g+ 3 x=— 1 4oy 4, (12.2)
C C 1-ay / mé

most importantly, 77 =y, p“. This in turn means that the relativistic enenggmentum relation

(3.6) may be written in terms of the time dilatif@ctor y,, and the scalar produgi, p” of the
mechanical momentum as:

m'e = g,w( ﬁ'+% A’j( ﬁ+% AJ: o =mn’ =y’ p b (12.3)

Now, in naturalc =1 units, the relatiorrr = p* + gX’ between the canonical momenturfi and
mechanical momenturp” in (12.2) is well-known, wherein an extra teg&’ isaddedto p” to
arrive at 77. What is important about (12.1) through (12.3}hat this relation can also be
expressed by taking the mechanical objec¢tsand p* and simplymultiplying through by the
single time dilation factoy,,, to obtainU* =y, u* and 77" = y,..p".

In fact, we can summarize the ratio of the candmacthe mechanical objects in both (12.1)
and (12.2), and also the rati®/ m¢ of total energy to rest energy from (10.13), aBowing the
g << m¢ limit and the special case of Coulomb interactjdnysthe chain of ratio relations:

u u ;
Vo :ﬂ :i :U_ :CD_ = E = Canomc.:al = 1 = 1 01+ 9% =1+ KEQQ(124)
dr p* v 0¥ mé mechanical * @ /mt % kQg/nicr mMc mc
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In the above we have also used the heuristic oglatit” - 19“ and p” = i?. So from this
view, the electromagnetic time dilation factgg, =dt/dr is seen to equal the ratio of the

canonicalobjectsU#, 77 and E=mc¢ + E,_, to the respectiveechanicabbjectsu”, p* and
E,=mc¢. And it is seen that these ratios are spawneglgity applying a local gauge
transformation which causegd’ - 9, which are also shown in a similar ratid / 0#. It is also
important to see that the terak,Qqg/ mé r for the Coulomb energy contained after the final
equality above is the lowest order termyy,, for the limiting case where the Coulomb energy
k.Qq/ r<<mé. Keep in mind also from after (10.12), thgy <mc¢ and for Coulomb

interactionsk,Qq/ r< mcé imposes a natural material limit on the strengdtielectromagnetic

interactions between two charges, which is analsgouhe upper limit established by the speed
of light for material motion.

The possibility of a connection to lepton magnetmments first comes into view when we
ask how these time dilations manifest for individobharge quanta with the chargee of an

electron or a proton and related quanta such amthand tau leptons, where= € / 47 ic is

the running fine structure coupling. Of coursesasn as we start to talk about individual charge
guanta, e.g., electrons, it is not possible evegmintiple to specify an exact position or momentum
owing to Heisenberg uncertainty, which will be sdbed to deep examination in the next section.
Specifically, if we setQ = q=-e in (12.4) so each of the Coulomb charges hashhgge of an

electron and they are thereby repelling, and usingl/ 47z, and 7 =h/2m and the standard
Compton wavelengtil = h/ mc of the test particle, we first find that the kegnénsionless ratio:

ag _kQq_ €€ _ah _ h a _aA__A_ A _(g-2\4
= = = = a . (12.5)
m¢é mér 4m,mér mcr mc2r 27T r ror

In particular, an appearance is made &y=a/ m=2 .001BFB&4: which is Schwinger's
(subscript S) one-loop contribution to the anomalmagnetic moment of the electron, mu and
tau leptons [13]. And we then also make use ofagroximate fact thaag Da:(g—Z) /2,

whereg is the leptorg-factor anda is the empirically-observed anomaly, whetier g,, 8,, § is
for the electron or for the mu and tau leptons.

Then, if we insert (12.5) into (12.4) we obtain:

yo=b_canonical . 1 __ 1 @A 4,4 Dl+ai:1+(g_2ji.(12.6)
dr  mechanical ;_kQ4 ,_ a4 Zrr r r 2 )r
mcr 2mrr
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Then, in the circumstance (to be reviewed in detaithe next section) where the Coulomb
separation between the two lepton charges (whiamagises uncertainty issues that we shall also
need to consider) is equal to the Compton wavetengt., whenr = A, this simplifies to

_dt _ canonical _ 1

Vem=—2=

9
dr mechanical *a /Z

D1+%:l+as O1+a= (12.7)

_9
2 9,
where g, =2 is the Dirag-factor. So for an individual charge quantum,gtextromagnetic time

dilation — which is also the canonical-to-mechahiatio in (12.4) — turns out when we et A
, to be approximately equal to one-half of thtactor of all of the leptonsy,,, =dt/dr g/ 2,

up to the Schwinger one-loop order. The meansftihaach of the electron and the mu and tau
leptons (subscrid), there exists a set gf 14 very close to the Compton wavelength which will
make ., =dt/dr = g/ 2 for each lepton, exactly. This observation thpgt=dt/dr 0 g/2

when the separation of two, e.g., electrons is lemguthe Compton wavelength of the electron
(again which separation is subject to uncertaistyva shall review), raises the question whether
there might be a fundamental relation among theemesl lepton magnetic moments,
electromagnetic time dilation, the canonical-to-heatcal ratio, and lepton self-interaction.

So the question we shall now study in depth, istidrethe observed lepton magnetic
moment anomalies can in fact be understood asgrisiectly from electromagnetic time dilation
which is equal to the canonical-to-mechanical ratioparticular, we ask whether the ratio of the
observedy-factors g, =2+ 2q which contain the non-zero lepton anomabes g, a,, 3, to the
Dirac g-factorg, = 2, with the former regarded as canonical and therlas mechanical objects,

is in fact a direct measure and empirical confiiorabf a time dilation factodt/ dr intrinsic to
the repulsive self-interactions of the electron #r@lmu and tau leptons. As we shall now show,
the answer to this question appears to be affikati

13. “Canonical Co-Scaling” Directly Connecting Eletromagnetic Time
Dilation, Lepton Self-Interaction Energies, and Lepon Magnetic Moment
Anomalies

The Particle Data Group at [14] provides a veyralugh review of the muon anomalous
magnetic moment. Although the numeric data deweglap this review applies specifically to the
muon, the exposited theoretical principles for gsial apply equally to the electron and the tau
lepton. In the standard model, for a given leptbe,complete anomaly denoted in [14]&s

which we simply denote aa:(g—Z)IZ is generally divided into three parts, namely, QED

contributions, electroweak contributions, and hadraontributions. These are then summed
wherebya = a, + &, + a,,,» S€€ equation 4 and Figure 1 in [14]. This may &le written in

terms of theg-factor asg/2=1+a=1+3g,,+ g, + 3, Additionally, althougha has these

three contributions, it ig., which dominates the other two contributions byfar six orders of
magnitude. So for the muon, as reviewed in eqoat® 9, 11 and 13 which are added to arrive
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at equation 15 of [14], without showing the errard) we havea,., =116584718.9% 18", while

a,, =153.6x 10" anda, [LO +NLO] =7022x 10** are very much smaller. So up to parts per
10°, one may use the very close approximatdn 3o - IN the regard, we may denote component

electromagnetic contribution to thg-factor as gu,/2=1+a,,,. The same qualitative
considerations — though not the exact same numbapply to the electron and the tau lepton.

Now, three quark and lepton generations are ofsgmmpirically observed in nature, as
are the mediating bosoM** and Z* of electroweak interactions, as are protons androes
and other hadrons. All of these are required idigrgs in the anomaly calculations. But from a
theoretical standpoint, these ingredients only arise followthgee developments: First, while
electrodynamics which is being studied in this papanabelianinteraction, the weak and strong
interactions araon-abelian So before we can even talk about electroweakantions or hadrons
or their effects upon lepton self-interaction thetmally, we must introduce non-abelian
interactions generally. This is ordinarily donevsgy of Yang-Mills gauge theory [15]. Second,
once we have introduced non-abelian interactiomsmust know the specific non-abelian GUT
gauge group and the manner of its symmetry bredkeigeads to the specific ensemble of quarks
and leptons and hadrons that are empirically olesenv nature. Finally, relatedly, in deference
to Isadore Rabi’s famous quip “who ordered thatMofving the discovery of the muon, we must
also answer the still-unanswered question as tonaltyre replicates quarks and leptons into three
fermion generations distinguishable only by resssnaThese latter two questions have been
studied, for example, in [16] by this author.

Because this paper has focused on electrodynamtbe exclusion of weak and strong or
hadronic interactions, in this section we will cenh seek to connect the dominant
electrodynamics-based anomaly componagyt, to the canonical-to-mechanical time dilation
ratio y,,=dt/dr in the manner shown in (12.7). Based on whatjhstsbeen reviewed, this
result then would apply very closely becauséla,., up to our neglect of the further terms
agy ta,.4- In the following section we shall review how skeelectroweak and hadronic

contributions may be likewise included in this ceation to the time dilatiory,,, = dt/dr.

The electron, and the mu and tau leptons, ardbatrved and understood to be indivisible
elementary “point” particles without internal sulbsture. More precisely, insofar as we have
been able to discern to date using experimentalpewnt capable of resolving lengths on the
order of 1 Fermi and smaller, the leptons are iddgeint” particles, and there is no empirical
evidence that they have any substructure. Thimpsrtant, because in the early days of quantum
theory the notion was entertained that an eleatnaght be distributed with eharge densityp

just like the classical charge distribution conggirin the current four-vectal” = (,o,J) sourcing
Maxwell’'s charge equatiod” =d_F%. But it has long since been recognized that elastand

other leptons are observed as structureless paitities, and thap is aprobability densityfor

finding the structureless lepton at a given spaiadition when an experiment is performed to
detect the lepton. Thip is the time component of a conserved (continudisdc current
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J=yyry = (,o,J) with 0.,J* =0, and specifically, as is well-known, ®=p=¢y'y, given
W=y’ and n®=y%°=1. It is often said for linguistic communicatiorhat the lepton

wavefunctiony has an associated probability density=¢/'y , but that by the very act of
observing the lepton, we “collapse” the wavefuntso as to be found at a specific point position
observed somewhere in that density region. Sherdtscussion to follow, we must reggodas
the probability densityof the lepton, rather than as a classatarge densitywith the foregoing
understanding in mind.

The important point for the discussion to follow,that even thougtp is a probability

density and not a charge density, we can stillargenary calculus to analyze self-interactions
between various “pieces” of the probability distrilon prior to collapse in exactly the same way
we would analyze self-interactions between variguisces” of a classical charge density. And,
by doing so, we are able to arrive at resultsdhaentirely consistent with the QED understanding
of magnetic moment anomalies reviewed in [14], Which can be calculated to infinite order
using the limit-taking techniques of ordinary cdilsu

Specifically, in classical theory, the self-intdfan of a given charge density may be

studied by calculating the electromagnetic inteoast between and among different “portions” of
that density, and by using ordinary calculus toedsin the limit as each portion grows
infinitesimally small and the combinatorial numhoérpairwise interactions approaches infinity.
But for a quantum particle, such as an electrotherother leptons, we do not have a charge
density, we have a probability density. Yet, foprabability distribution that has not yet been
collapsed by an observation, we can treat theilbligion no differently than we would treat a
classical charge density: we simply use ordinatguwdus to calculate the self-interaction energy
between and among different parts of the probahdlistribution rather than different parts of the
charge density. Thus, in the same way as is durteé classical density, we use ordinary calculus
to take the limit as each element of the distritnutapproaches infinitesimal volume while the
number of pairwise interaction combinations amdregé elements grows infinitely large. So let
us begin this calculation.

Classically, the Coulomb energy ks, , = o = k.Qd/ r between two like-signed charges
separated by a distance But as (10.15) and (10.16) makes clear, th@nly the lowest order
term in the non-linear enerdy,,,/ m¢ :1/(1— E.o/ mé) . For the moment, let us neglect these

non-linear behaviors and use the lowest-orderaten energye,, , = k.Qa/ r which arises from

the internal self-repulsion of a lepton with a dere, wheree is a positive number given by the
running couplinga =k € / # ¢ with asymptotic valuer =1/137.03599913 at low energies.

To start, as a crude estimateRf,, , we assume a spherically-symmetric lepton prolgbil
density, and we divide this density into two haiMesnd B each withQ=q=-3¢, so that
Euo = Ke(-26)(-2 9/ r=1 k &/ 1were we to treat this classically. But we neeprticeed with

care because the leptons do not have a posititre idlassical sense, but rather, have a probability
densityJ° = p=¢/'y, and atrest)°® = g, ="y . So rather than view this classically as a charge
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density divided into two halves, we engage in &eseasf observations whereby we “collapse” the
wavefunction, and then record where we have obddie electron each time. Suppose that in
one of our observations the lepton is detecteeithalf, and in another one of our observations
it is detected in th& half. We may then talk about the distandeetween the observation that
lands inA and the one that lands B1 This employs a form of conditional probability:x, | A
designates a first positior, where a lepton is observed in one trial to benmA half of the

density, and ifx, | B designates a second positieyn where a lepton is observed in a second trial
to be in theB half of the density, then the magnitud(,x‘(xl |A-X, |B)‘ tells us the radial distance

betweenx, found inA and x, found inB. But this conditional separation distance isadistical
number, and it will not be the same from one tigathe next. Rather, after repeating many trials
we will ascertain amxpectedralue <r> representing the average distance between obsgryat

“found to land inA” (denoted| A ) and those “found to land B (denoted|B). Statistically,<r>
is the “average independent draw” separation fedttectable positions of a lepton when detected
one time in halA and another time in haf. Equivalently,<r> is the weighted average separation

between the two halves of the probability distnbaot o, and is mathematically (but not

physically) the same as the average weighted sepafzetween two equal halves of a classical
charge density .

S0 as a consequence, given the position uncertafntiye lepton, for any two random
draws which land in different halves, we canndt tfitectly aboutE,,, =1 k.€ / r, but — taking
the expected value of each side of the foregoingpnly about the expectation value
(Eero) =(1k &/ 1) =2 k&(1/ 1) of the interaction energy of that draw pair, whisidependent
upon this positon uncertainty. However, followiagvery large number of draws, or, for a

probability density which is not collapsed andesrhing with huge numbers of self-interactions
such as those shown by the loops diagrams in Fijofg14] and higher orders thereof, we may

remove the expectation value brackets from theggnemd simply writeE, , =1k € <1/ r> . This
is because aIthoqui/r} is obtained from probabilistic events, it is stilhumber with a definite

value just as is the standard deviation of a pritibadistribution. Let us discuss why this is so
from both a statistical and a physical viewpoint.

Statistically, a probability distribution has arsdard deviation, and the standard deviation
is a fixed number which has a definite relatioriite average weighted separation between two
randomly-selected points in that distribution. Bumakes no sense to speak oféRkpected value
of the standard deviatiofor a given distribution. It is just a standarevdtion. In fact, the
variance (squared standard deviation) of a digiohuis definedas the average of the squared

spread about the expected valag’ E<(x—<x>)2> :<x2>—< %°. And for a meanx)=0 the

standard deviation is simplwx:,/<x2>, which is a Pythagorean relationship with a

dimensionality akin to the very large number of pis that compriséx2>. For example, for a
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Gaussian distribution represented along a singheedsion labelled, it is well-known that
(x) =20, 1\/m01.12837%, is the weighted average draw separation, andréstt related to

o, as such. Consequentl, , =1k ¢ <1/ r> — just like o, :,/<x2> when centered about zero

— will also be a direct function af, and so be a definite number defined by an expentaalue.

Another way to see this — physically rather thatistically — is to keep in mind that in
QED the observed rest ener@= mc of a lepton is equal to the lepton’s bare energyotied
E, =mC plus its electromagnetic self-interaction enerfly, (neglecting electroweak and

hadronic contributions). Thatism¢ = m ¢+ E_ with E_ arising from tremendous numbers of
self-interaction events such as those shown inrEiduof [14] (the very large number of samples
that comprise<x2> in the discussion of the prior paragraph). Onesdwot add E,,,) to m,& to
obtain what would then be axpected valuef the mass ifm)c = m ¢ +( E,). Rather, the

observed rest massis a definite number observed with high precigmbe unchanged from one
observation to the next, not a number with an ebqnb(m} that varies from one observation to

the next and so has some standard deviatipnabout the mean. The electron rest mass
m, =0.51099898 MV [17] is not amverageor expectedletected mass of the electron; it is the
always-detectechass of the electron. For a physical rest nmass= m ¢+ E_ such as that of a
lepton, g, =0, and E_,, is a fixed number connected to an expected drgaragon connected
to a standard deviation all of which are fixed nensb SoE,,, =1k.& (1/ 1) says that the first

order self-interaction energk,,, itself — not the expected value of that energyetwieen two
halves of a lepton probability density which has Im@en collapsed by an observation is equal to
the numeric coefficient k& =1 a c times the expected value of the inverse separafidm) .

It is also important to note that in gener(é]/,r} Z 1/<r> are not the same. This is because
for a probability distribution p(r), the expectation value<r>:fr,0(r )dr  thus

1/<r>:1/I:rp(r )dr , while the expectation value of the inverse(]sir}zﬁ(l/r)p(r )dr
which is not equal td./(r). Also, in general, as is well known in statisti¢s/r) >1/(r) for

positiver. The only distribution for whicl{1/r) =1/(r ) is a Dirac deltgo(r) = J(r); as soon as

there isany finite spreadn the distribution, that is, a standard deviatpeater than zero, we will
always have(1/r)>1/(r). As aresultE,,=+k&(1/1)>1k.é/( ), which is to say that the

self-interaction energye, , between the two halves of the density will alwagsgreater than
1K€ /(r), where (r)zﬁr,o(r )dr and (1/r>:j:(1/r)p(r )dr are both determined by the
precise nature of the probability distribution, wihe Iatter(l/r} determining the precise value
of the self-interaction energy vig,,, =1 k& (1/1).
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With all of the foregoing in mind, having split tipeobability density into two halves, as a
second step, let us now split the probability dgnsito three equal thirds, with the same average

draw separatiorﬁr} relative to one another. Now, we will have thre@pise interactions that all
need to be summed, €8, =3k, (£ ¢)(£ §(1/ =2 k&(1/ y>< k&/( ¥ is the self-interaction

energy. This is still approximate, but less santtiee split into halves. For a third step, wetspli
the distribution into four equal quarters, stilltlwi(r> separating the quarters one from another.

There are nOV\C(4, 2) = 4B/ 2= € pairwise interactions, so the self-interactionrggas now
Euno =6k (26 (2 8(1/ =2 k&(1/ }>3 k&/( ¥y. One can visualize this relationship via a

pyramid with its center at the center of the (spadlly-symmetric) distribution and one quarter of
the distribution centered at each vertex of theapyd. This is closer still to the exact energgnth
were the two- or three-part divisions. But to kgbk exact, we now need to keep going with more
and more splits, and we now need calculus. Sipadii

We may generalize the above to any number of “gitlset for the following matter: The
physical space is three dimensional, so were wsplib the distribution into 5 or more equally-
charged, equally-spaced portions, we would neetstalize this using a hyper-pyramid to locate
the vertices. Let us momentarily ignore this nrat@d split the distribution inthl equal parts,

each separated t(y> in an N —1-dimensional space. Now the number of pairwiseratdtions
is C(N,2)= NI{N-1)/2=( N~ N) 2, and so the overall expected interaction enerdyhei

E.o=C(N.2) k(& §(+ (17 p=(2( N= N/ N) k&1/ )>(3( R- 7 R K )

Finally, we may take the calculus limit & — o, to find that:

et ) ) ) -

Although this is derived in what has become anrabsinfinite-dimensional space, the
fact that we are using a statistical average irweeparatior(l/r} allows us to regard (13.1) in

the calculus limit as aexactexpression in three space dimensions for the §oweder, per
(10.15)) interaction energy arising from an infnibumber of pairwise interactions between

infinitesimally-small charge elements, on one ctindi We must now regar(ﬂ/r) to be the

weighted expected value of the inverse separaticany two independent “draws” of a lepton
from anywhere in the undivided distributjamithout the conditional probabilitiesequired when
we artificially subdivide the lepton into two orrée or four etc. discrete and not-infinitesimal
chargese/ N as was used to construct the calculus limit inXL3 Put differently, once we no
longer subdivide a lepton intd parts, we longer need to think aboutldr1 dimensional space,
because that space is built upon the artificiatifpg@aming of the lepton probability density intd
pieces and the measurement of the expected sepabatiween any two pieces conditioned on a
draw from those two pieces. Now, we just think @bthe average separation between two
independent draws taken from anywhere in the leptobability density, unconditionally. And
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as earlier noted(1/r)>1/(r) a.k.a.(r)>1/(1/r) for other than a Dirac delta. So wifln)

representing the unconditional expected draw sé&paravhich is now also the mean average
separation between any two randomly-selected pointise probability density , this (r) will

bear a direct relation to the statistical standBdationo of the probability density, again, with
the exact relation dependent upon the exact typhistfibution. Again, as noted, for example,

<x> =20, /[T for a one-dimensional Gaussian. So (13.1) tedlthe result that the lowest order
Coulomb self-energy of the leptd,,, =1 k& (1/ 1), exactly. The inversél/r) is a definite
number; so too therefore 5, .

Next, turning to higher orders, referring to (1),.we emphasize that (13.1) was calculated
using thdinear Coulomb interaction energg, , = g = k.Qq/ r= k.é/ rfor two charge quanta
Q=g=-e. Animportant finding in (10.15) which is represed in terms of energy by (10.16)
is that E, is merely the lowest order energy justBss mV in (9.3) is the lowest order term
in the special relativistic energy of motion akg I-GMm/ r in (9.5) is the lowest-order term in

the gravitational energy for the Schwarzschild 8ofuof general relativity. In this sense, (10.15
and (10.16) are very important results, becauseittieduce heretofore-unrecognized non-linear
behaviors into classical electrodynamics whentieraction energy grows large in relation to the

test particle rest energy, and they also introcuceaterial limitqg / mé <1 in the strength of
electromagnetic interactions which becomk®q/ mé r<1 for Coulomb interactions and
k.& / mé r<1 for Coulomb interactions witl) = q=-e. So if we now use the first order self-

energy (13.1) in the full expression of (10.16)way obtain the complete self-interaction energy
of the lepton probability density including all thfe non-linear terms, namely:

kee2<1>

Eem _ 1 a4 mC2 2r _ kee2 i - Lé _1 n

mcz_l—"eez<1> 1_1_'<e€"<1>' m6<2r>zn=°( m6<2>j - (13.2)
mc \2r mcé \2r

Then, givenk, =1/ 47z, , we may multiply the third and sixth expressiamnéli2.5) through
by r to obtain the relatiork,& / mé =(a/2m)A. Using this in (13.2) and adding 1 throughout,
we obtain the selected terms:

21 \2

d _ E _md+E E, 1 » (a ./ 1\) _ canonical
= = = m=1+ m = = — A= =—  — (13.3
oo T 4r  mé mé mé 1_aA< 1> Z“*(Zn <2 >j mechanice( )

where E = m¢ + E_ is the total rest energy of the lepton, and wivegehave also made use of
V.. =dt/dr = E/ mé from (12.4) to relate everything to the electrometie time dilation as well
as the canonical-to-mechanical ratio.
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Now, given the context of the lepton self-enef§y mc + E_, contained in the above, let

us focus on the meaning of the rest enemyy in (13.3). In general, classically, when a test
particle is placed into an electromagnetic fiehig® is the rest energy of the test particle when
there is no electromagnetic interaction (formabigor to imposing local gauge symmetry). Once
that test particle is given a chargeand placed into a proper electromagnetic potemgjalthe
interaction energy becomes,, = gg (formally, after imposing gauge symmetry). Andtire
special case of a Coulomb potential, this energk js=+k.Qq/ r for two like-charges, which
signifies a repulsive interaction for which the ggyediminishes as the two charges are separated.
Therefore,m¢ is the “starting energy” neglecting electrodynasmandE = m¢ + E, _ is the total
energy including the energy of electrodynamic iaté&on.

In (13.3) for an individual lepton self-interaainmc is likewise the “starting energy”
neglecting electrodynamics, whilg, _ is the self-interaction energy. TherefoEes mc + E is
the total energy of the lepton including self-iatettons. But the only lepton energy we ever

observe in an experiment is the so called “dressedigymc with the self-interaction energy
already “baked in.” This is central to the usetlé Ward —Takahashi identities in QED.

Specifically, the “dressed” energyc® of a lepton is equal to its “bare” energy denotgd® plus

its self-interaction energyE, _, that is, m¢ = E= mj é+ E, (neglecting comparatively-small

electroweak and hadronic loop contributions). Bemthatmc + E_ in (13.3) is the sum of a
“starting” energy plus self-interaction energy, mastreinterpretmc” in (13.3) as the unobserved
bare energy and therefore replacenc — my ¢ in (13.3). Likewise, we must reinterpret
E=mC + E,_ as the observed rest energy’, and so also replace the tofal- m¢. With
these replacements (13.3) becomes:

% :ﬂ:ﬂ: rrbC2+ gm - 1 :zw i/] <_1> n :—Canonicall (134)
M odr m, m ¢ 17 /1< 1 > =0\ 271\ 27, mechanice

2715

Now, the canonical-to-mechanical time dilationadiist seen in (12.4) and then (12.6) and (12.7)
also representghe ratio of the total dressed mass to the bare smas the form of
Ve =dt/dr=m/ 3.

Next we consider the special case whéfg/ 2r) = 1, which becausél/r)>1/(r) from

basis statistics, implies that(1/2r)=1>A /(2 ) a.k.a.(2r)>A with the exact(r) dependent
on the precise form of the density. In this special case, (13.4) will reduce to:

po=dtom. 1 _y- [ij =14 Oy o canonieal gy, S gy -9 (13.5)
dr m 1-al2rm n=0 /g mechanical 2
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So in this special case Whevb(1/2r>: 1, the canonical-to-mechanical ratio of/ m, of the
dressed mass to the bare mass is approximatelyteqgg., /20 g/ 2, as isy,, =dt/dr .

This approximation of/,, = dt/ dr = m/ nmy to g/ 2 comes about in the special case where
A <1/ 2r> =1, exactly. This means, in turn, that there exdstse dimensionless rati®[1 defined
for each leptorby the approximatiod/P=A(1/2) 01 such thatm/ my = g,/ 2 exactly In
other words, if A(1/2r}=1 leads to y,,=dt/dr=m/ m O g, /2, then there is some
approximateP 1 such that the canonical-to-mechanigg| =dt/dr = m/ m; = g.,/2 exactly
And it also means that there is a slightly diffénetio 1/P = A <1/ 2'} [J1 which may be defined
for each leptorsuch thaty, =dt/dr=m/ ;= ¢g2. Giveng/2=1+a=1+ g, + q + Quq
and a.,, + a4 << a,p, the very slight difference between each leptdh’and P* will be driven
directly by the very slight difference betweaand a,., based on the electroweak and hadronic
contributions toa, as will be reviewed in the next section. So afy A(l/Z} =1/P01 such
that y,, =dt/dr = m/ m = g,/ 2 exactly, and using this in (13.4), yields:

_dt :m:rrbc2+ E._ 1 Zw ( a j”_ canonica|=9QED =1+a, (13.6)
n=0 0 - ED * !

G m, mé  1-a/2nP 27P )  mechanical 2

This 1/P may be calculated by algebraically rearranging tketiom between the fifth and eighth
expressions above and by usigg, / 2 = 1+ a,,,and using1/r) >1/(r), into:

1sﬂ<l>zngED_2:£%ED:E B0, A (13.7)

P 2r/ @ Jop @ Ogeo @ ltay, (2)

This relationship applies independently to eacthefthree leptons; that is, just as there are three
distinct A,,4,,4, and g., g,, g and related anomalies, so too there are thremdis,,P,,P,

and three distinctr,),(r,).{r,) .

Given thatl/P=A(1/2)>A /(2), this also means th4@r) >PA establishes a lower
bound on the expected draw separalﬁo)l For example, using the five-loop magnitude fo t

muon anomalyaep,, :116584718.9(3 O.()8< 18 from equation 6 of [14] which is also based on
using @ =1/137.03599904, we may use (13.7) to deduce tligt=0.997355202232 and:

1+
(21,)>P, A, =220 ) - 0,9973552023232,, (13.8)
21 g
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where A, =h/ m,cis the Compton wavelength of the muon. In otherds, the expected value

of twice the radial draw separation (which one mayghly think of as a “statistical diameter”
(d)=(2r)>PA of the probability density) has a lower bound whig very slightly less than the

Compton wavelength of the muon. Recalling thatweild have<2r> =PA only for a density
p(r)=9(r) which is a Dirac delta, the observéd)) =(2r) for a lepton probability density with

any significant spatial spread i.e., standard dmnao, is thus expected to be somewhat larger
than the Compton wavelength of that lepton.

Next, let us generally write,,., for each lepton as a Maclaurin series &gt = f(x),

with coefficientsC, = £ (O) representing the™ derivatives of f (x) at x=0, thus:

- C(a)
= 20— . 13.9
B0t0 = i n! (277} (13.9)
Here, each lepton has its own set of coefficig)tsbut with C, =1 for all three leptons whereby
the first, dominant term in the series for all B is a,, =a/2m=a, from Schwinger [13].
Then also withC, =1 for all leptons, theP ratio from (13.7) which establishes the numeric

coefficient of the Compton wavelengths in the fofch) =(2r) >PA as in (13.8), takes on the
form (below, we invert (13.7) then apply (13.9)):

C, a Cl(ajz C{a}3 - Cn(a "
i el IR e Il I R e
_a(Mra |_ot2r a\ar) alor) T “Zronlor)  (d) g5
21\ ayg C a Cz(ajz Cs(ajg o C. a}" A '
| el I (Sl I S S —
12 20\ 2m) 3\ 27 “O(n+ )\ 27
We may also use (13.9) in (13.6) to write (13.8) as
dt _m 1 o [ a ) _ Yoo « C(a
= == @ = — | =====1+ = . 13.11
Yoo Ur "y 1-al27P ano(mpj 2 e zn=°n!(2nJ (1310

This includes a direct relationy " (C. /nl)(a/2m)" =" (a/ 271P) =1/(1-a | 21P)
between the series with the QED loop coefficie@fsand the series witR which is equal to the
closed mathematical functid/ (1-a / 277P).

In addition toC, = C, =1, from equation 5 in [14] it is possible to arithtically obtain the
Maclaurin-styleC, throughC, as defined in (13.9), for the muon. These areprded for the
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muon to beC, = 212 [J76585425=6.1268594(, and likewise, without showing the detailed
computation,C, =1154.42447, C, =50,257.7%, andC, = 2,892,672 From the leading terms
in (13.10) this means that:

(s (5
= e R (a)
=2\ r_\ 2t —<L (13.12)
”+CZ("J . a+3.0634297o(”j ;.
2 21\ 2mr 27T 27T

Here, it will be noticed that the rat® from (13.10) which sets the lower bou(@t ) > P/
on the weighted expected separation between indepérdraws from the lepton probability
density (and because of the proportionatryl] (r) , also on the standard deviation of the density),

will change as the abelian running electromagrasigling a increases for deeper probes of the
lepton probability density. For example, from @)3.this ratio has the numeric value
P, =0.997355202232 for the muon, but only for the asymptotic=1/137.03599904. From

(13.12) it is clear that as one probes more de@pdythe muon density with the abelian coupling
a becoming larger, the denominator will grow fagtean the numerator, s, will be detected
to grow smaller, and therefore, the lower bound] <2r> >PA will also grow smaller. Thus, the

lower bound on the standard deviation of the muabability density will diminish. And it is
clear that it is the two-loop (current density) coefficientC, / 2! which determines this behavior.

Given the above, we may also study hBybehaves for the electron. The coefficients of

(13.9) for the electron have been calculated by ymamthors, and are well-summarized in
equations 3, 5 and 6 of [18]. These are computetheé Maclaurin-style of (13.9) to be
C, =-2.627831724633t, C, =56.6995898, C, =-733.670¢andC, =35174.4. We may first

use these in (13.9) along with=1/137.03599904 to calculate that

_aC2a2C3a3C4a4C50'5_
Bgep ==+ 2| = | + 2| | +2| = | +=| = | =0.001159652173 . (13.13)
2 2W\2mr) 3\ 2r) 4N\2m) 5'\2m

This should also be contrasted to the empir&@al 8y, + 8oy + 15 =0.00115965218076 2

that includes electroweak and hadronic contributiand is slightly different starting at thé™*
position. We may then use (13.13) ama1/137.03599904 in (13.10) to calculate that:

1+ d
= =i(@J :1.00267699854(H3<</]—>. (13.14)

¢ o oo

Further, using (13.13) in the leading terms of {03, contrast (13.12) for the muon, we find that:
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(5 ()
= I R e ()
=2\ N <\ (13.15)
aﬁz(“j +. a—1.3139586231676aj + o
21 21\ 27 2T 74

From (13.14) we learn that the lower boufuj) >1.00267699854089, for the electron

density spread is actually slightlgrger than the electron Compton wavelength, in contrast
(13.8) which shows that for the muon this is smath@n the Compton wavelength. And from

(13.15) we learn that unlike the muon, the electoover bound<2r> >PA will grow larger as the
running a grows larger. This means that for a deeper podlige electron the standard deviation
o, U <r> of the probability density will therefore also thetected to grow larger. Contrasting the
electron with the muon, it will be understood thla¢ behaviors of both (13.14) and (13.15)
emanate from the fact that for the electron theigogp a, < a / 21 = ag, while for the muon the
behaviors of (13.8) and (13.12) stem from the eivglia, > a/277=a;. And from this we may

infer that becausea, >a /2 for the tau lepton just like for the muon, the esied draw

separation from the tau density will have a minimuadue that ismallerthan the tau Compton
wavelength, and will be seendecreasets standard deviation as it is probed more deeply

In sum, as a result of defining the raid]1 in (13.6)such thatm,/ m= g,.,/ 2 exactly
which ratio is deduced in (13.7) and used in (188}he muon and (13.14) for the electron, we
may now combine (13.11) with (12.4) and use k.€ / 7 ¢ to write, for the electromagnetic self-
interaction of leptors

— gQED _ gQED _ canonical

2 g mechanica
.(13.16)

SHN SS—— s nzz‘” &(ijn
1-a/2mP 1-k €& /h® "0 27P =0 ni\ 27

This very important ratio chain describes the repel self-interaction of a single lepton, where
mc =m¢cé+ E_, wherem is the dressed mass amd, is the bare mass an#,_, is the

electromagnetic self-interaction energy of the dapt And it must be emphasized that (13.16)
applies to the particular circumstance where wecansidering lepton self-interacticeparately
from any external potentiabo thatE,, is the internal electromagnetic interaction enesgych

contributes to the dressed mang’ = m ¢+ E,. This means that in particularz’ / p* above

must be understood as arat6/ p* -~ p“/ p“=md/ md = n gofthe dressed mechanical

momentum to the bare mechanical momentum. Owgtta point on it, as the ratio of the canonical-
mechanical momentum to the mechanical-mechanicatentum.
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So as we surmised might be the case in (12.7)eaat to the degree that we neglect the
electroweak and hadronic contributionsde= g, + &, + a,,4 — (13.16) teaches that the ratio

Joen/ 2 is indeed a direct measure of a time dilationdagt, =dt/dr intrinsic to the self-

interaction of each of the leptons, and in turmaiso a direct measure of the canonical-to-
mechanical ratio first uncovered at (12.4). Coeedy, obtaining the anomalous magnetic moment
from theoretical first principles boils down to es@ining the ratio of canonical objects to
mechanical objects, and equivalently, to ascengimi time dilation factodt/ dr intrinsic to the
electromagnetic self-interactions within the lepteich give rise to the self-interaction energy
E... The result within (13.17) thah/ m =1+ a.,, is as direct a statement as can be made that
the anomalous magnetic moments arise from andtijire@asure the electromagnetic energy of

lepton self-interactions, and provide a simple wagalculate the unobserved bare masses directly
from the observed masses and the associated aesmali

We shall use the term “canonical co-scaling” tocdég this very significant result
whereby the leptog-factors g, : g, = canonical: mechan | co-scale in direct proportion to the
ratio of all of the other canonical-to-mechanicabnqtities in (13.16), and most importantly, in
direct proportion to the electromagnetic time dadatfactor y,, =dt/dr. Very importantly, as
has been demonstrated throughout this paper, ttesenical quantities all arise from their
mechanical counterparts simply from the requirenfi@nibcal gauge symmetry which spawns the
ratio 9 /0* of gauge-covariant to ordinary derivatives. Siynplut: the anomalous magnetic
g >2 (or so far, at leasy., > 2) themselves arise out of the Digc=2, also simply from
applying local gauge symmetry. So these are justteer consequence of how ordinary derivatives
become gauge-covariant derivatives, - 9, =9, —igA,, as a consequence of requiring local
gauge symmetry. No more, and no less.

Also, in (13.16)Xhe magnetic moment anomalies provide direct exgdiialidation of the
time dilation predicted in (10.12), and establislattin the physical world, time is in fact dilated
for_interactions between repelling like-chargesthexr than between attracting thus unlike-
charges Referring back to the discussion at the startse€tion 11, this is because if

dt/ dr =1+ k Qg/ mé 1in lowest order was for electrical attraction anud repulsion, which was

the author’s own initial misconception due to usihg analogousit/ dr =1+ GMm/ mé 1 from
gravitational theory, then between two repellingarges time would contract as

dt/dr =1-k Qg/ mé 1 in lowest order, and the same analysis which thdrto (13.5) would
have instead yieldedit/ dr O1-a /2701~ g,, 0 goep /2. SO given thata Oa,e, up to the
comparatively-minos,, + a4 contributions, this would have meant tlig] 2 — o / 77 < 2 which

is contradicted by observation, versy§12+ a / 77> 2 which is observed. Consequently (13.16),
which contains what is now aexactconnectiony, =dt/dr=m/ m =1+ a., between the
electromagnetic contribution to time dilation ahd tepton magnetic moment anomaly by way of
the self-interaction energy containedie® = my ¢ + E,, provides direct empirical evidence that

repulsive electromagnetic interactions betwéke-electrostatic chargeslilate time just as do
attractive gravitational interactions between (whlatays are)ike-gravitational chargesa.k.a.
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masses. And as earlier noted, this is a quanichtheory consequence of the reversed propagator
sign for spin-1 photons versus spin-2 gravitonscidauses like-gravitational-masses to attract

but like-electrical-masses to repel. This, againyhy we have paid such close attention to signs

and sign conventions throughout.

To this point, however, we have only usaé &, neglecting the relatively tiny, albeit
still detectable, electroweak and hadronic contiims through whicha = g, + &, + @, AS

stated at the start of this section, this is bes#his paper has thus far developed electrodynamics
to the exclusion of weak and strong or hadronieranttions. Now, we turn to these electroweak
and hadronic contributions, which as we shall shak, most simply accounted for by a very
profound and universal connection between timeearatgy.

14. Time “Sees” all Energy: Why the Magnetic Moment#Anomalies are an
Exact Consequence of Local Abelian and non-AbeliaBauge Symmetries

It is often said that gravitation “sees” all engrg/Vhat is meant by this statement is that
any two masses / energies in proximity to one arathll attract one another, no matter what the
source of those energies. And the quantum medtivese interactions, of course, is the spin-2
graviton. A good example of this is (10.24), inigthnot only do the rest masses gravitate, but so
too do the energies of motion and the energieseatremagnetic interaction and even, in a self-
feeding non-linear way governed by Einstein’s emuatthe energies of gravitation. In this
respect, gravitation is uniqgue among all interawdio For electromagnetism, the spin-1 photon
mediators will only “see” particles with electricetharges. And so, for example, they will miss
the neutrinos. For electroweak interactions, thie-§ W bosons will only “see” particles with
weak isospin such as left-chiral quarks and leptand so will miss the right handed fermions.
And the spin-1Z boson will miss right-chiral neutrinos which camgither charge nor isospin.
For strong interactions, gluons will only “see” gks, not leptons. And for hadronic interactions
which employ spin-0 Yukawa mesons to mediate dfttracshort-range interactions between
baryons such as protons and neutrons which are asitepentities comprising confined quarks
and the gluon-mediated interactions among thosekgutne mesons will only “see” baryons but
not leptons.

A fundamental finding of this paper is that tineeés” all energy, just as does gravitation:
In (9.3) we reviewed how time “sees” the kineticesgy E, of motion because

E=mcdy,=médf ¢= mt+ E In (9.5 we reviewed how time “sees” gravitaibn
interaction energyE, becauseE = mcy, = mé df @¢= mt- E. In (10.13) we discovered that
time “sees” electromagnetic interaction energy, via E=mcy, = médif ¢= mt+ E.

And in (10.24) we saw how when all of kinetic ame\gtational and electromagnetic energies are
present simultaneously, because of the compouradiael E = m(fyemygyvz mé di @, time

“sees” all of these energies and all of the nomlireampositions of these energies. So it is nhtura
to believe that this pattern will continue, wheretiyen an energ¥.,, is produced as a result of

electroweak interactions mediated WyandZ bosons, or an enerdy,,, is produced as a result
of strong interactions between quarks within a banyhich are mediated by gluons, or an energy
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E,.q IS produced as a result of hadronic interactioesvben baryons mediated by Yukawa

mesons, time will “see” all of these energies ali, West as we already know that that gravitation

does “see” all of these energies. Specificalljetishould be expected to dilate or contract in
proportion with these other energies as well, assgravitation will act on all of these energies.
Any time there is some motion or interaction whighes rise to measurable energy that is “seen”
by gravitation, the very same motion or interact@multaneously gives rise to a dilation or

contraction seen in the measurement of time.

In fact, from this viewpoint, if one were creatéedd map for any region of the universe —
whether macroscopic or microscopic — in terms eféhergie€ that exist at each event point in
that region, one could equivalently map out thaywame region in terms of tht/ dr = E/ mé
ratio at each event point with the total eneEjyaving a variety of origins from a variety of
interactions and motions. The coordinates for meag all events in thisdt/ dr field” are then
established by a laboratory clock of the obsenbseoving this field, for which clockit/ dr =1
exactly, by definition. And all other observed Bige (except for extremely-large motions or
extremely-strong interactions) will haveda/ dr [J1 differing from 1 only by parts per million or
billion or trillion or higher. But there will stibe a difference from 1 that establishes a measeaira
dt/ dr = E/ mé field which serves a proxy for the energy fieWte shall refer to this as the “time
dilation field,” recognizing that in some instandise will dilate negatively, i.e., contract.

So from the person running at six miles per houth&ocar driving at 60 miles per hour to
the plane flying at 600 miles per hour to the ra¢kavelling at 6 miles per second, to a mass in a
gravitational field, to an electron in the electamnetic field of a nucleus, to a proton or neutron
bound into an atomic nucleus, to a quark intergatiside a proton or a neutron, to a lepton or a
qguark or a baryon that is weakly interacting, eagthhave its own unique totadt/ dr to go along
with its unique total energ¥ / m¢é = dt/ & from whatever origin or origins. In short, frofrig

viewpoint, dt/ dr = E/ mé is auniversal relationbetween the total energy of a material body
from all sources and origins of its energy. Irstrelation,dr for all practical purposes is a tick
interval At at which periodic signals are emitted by that baciyng as a geometrodynamic clock,
while dt is the tick intervalAt at which periodic signals are emitted by a likee&l in the
observer’s laboratory. It is with this understanglithat we now turn to the electroweak and
hadronic contributions to the lepton magnetic matmeontained in the standard model relation

&= 8gep T 8w T Ay

Using the generalized energy/time relatidi’ dr = E/ mé to consider the contributions
t0 @ = 8y, + 8y * & the key relation within (13.16) s+ E,, /m ¢ =1+ a,,. From this we

see that the QED contribution to the anomaly, = E,/ m, ¢ directly measures the ratio of the
electromagnetic self-interaction enerdy, to the bare energyn ¢. This suggests that

3y = By / M ¢ will measure the electroweak self-interaction ggeanda,,,, = E,,,,/ m,¢ will
measure the hadronic contribution to the self-axtdon energy. We summarize each distinct
contribution (subscrip€ = QED, EM, Hac) to the magnetic anomaly k. = E./ m,¢. So with

a total self-interaction (Sl) energyg, =E,, + E,, + E,,;, from all sources, and given
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a= 8y + 8y t A1ae @nd taking the total dressed energy torbe& = m ¢ + E;, and — most

importantly — takingdt/ dr = E/ mé to be universally-true for all energies irrespeef source
or origin whereby time “sees” all energy, we mayrigdiately advance (13.16) to:

_dt_n7_U¥_9"_ m_mc+E, _ canonical

Vem‘E‘?‘?‘ ¢ m n ¢ mechanical

:1+ ESI :1+ Eem+ EEW+ EHad:
m, ¢ m ¢

1 1 o a ) -« C(a)
O = = — | = —_n| _—_
1-a/2nP 1-k€ /h® ano[ mpj 2y n!( 2nj

The middle line in (14.1) shows the result of titeeeing” all energy contributions, which,
when applied to lepton self-interactions, takesftien dt/ dr = E/ E, = mé/ m € of a dressed-

to-bare ratio. The only expressions in (13.16)cktwill now become approximate in relation to
all other expressions by virtue afl1a,., are the those shown on the bottom lines of bal@)

and (14.1). This is because althougha,., =1/(1~a /27P) =" (C, In)(a /21)" by itself

is relatedexactlyto the electromagnetic running coupling=k.€ / 7ic, one must expedi,,, to
be related to the electroweak charggsand g,. And further, as stated on page 3 of [1&],,,

1+aQED+aEW+ aHad: 1+ a:%:i, (141)

the “hadronic (quark and gluon) loop contributicmsaj“" give rise to the main theoretical

uncertainties. At present, those effects are dtutable from first principles, but such an
approach, at least partially, may become posstlatace QCD matures.” In all events, however,
neither can one expect these hadronic contributimnde an exclusive function of the

electromagnetiar =k € / 7ic, because these will involve the strong charggs, and possibly
short-range Yukawa couplings between hadrons ds wel

But what is critically important, via time “seeingll energy, is the result in (14.1) that the
time dilation dt/dr=m/ m =1+ &= ¢ 2 is now a direct, exact measurement of the lepton
magnetic moment anomaly, including the electrowaadt the hadronic and any other possible

contributions not part of the standard model thay mo into the observed anomaly The only
requirement for some self-interaction to contribtdethe magnetic moment anomaly is that it

contribute some energy to the total enemyy in mc®/ m ¢ =1+ & Thata= gy, + 8y + Giag
with aJa,, in the standard model, is a statement that thg self-interactions which
measurably-contribute to the dressed lepton eremgythose involving electrodynamic interaction
loops which are dominant, and electroweak and macliroops which offer small corrections.
Now, given that for lepton self-interactions, ttmmplete g/2=9* /90* is exactly equal to the

canonical-to-mechanical ratio of the gauge-covararthe ordinary spacetime derivatives, with
the canonical co-scaling of (13.6) carrying throwgith exactitude to (14.1), we see how the
anomalous lepton magnetic moments are all a daredtimmediate theoretical consequence of
local gauge symmetrygnd that no other theoretical basis is necessa@f course, the gauge
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symmetry we must now speak of in (14.1), includeson-abelian symmetries of Yang-Mills

theory [15] which underlies the theories of weald atrong interactions. But what is so powerful
about the principle that time “sees” all energythat even without going into the details of

electroweak and strong and hadronic interactioorihet is possible to precisely account via
(14.1) for the electroweak and hadronic and angrmplossible contributions to the lepton magnetic
moment anomalies.

15. Lepton Bare Masses and Probability Density Statard Deviations for
Possible Experimental Validation, and the Observald Physical Meaning of
Lepton Compton Wavelengths

As a direct result of (14.1) it becomes possibledlculate arexactvalue for the bare
masses of each of the three leptons, via the sirefgl@gonm, =2m/ g. Using the empirical values

g, =2.002319304361¢ and g, =2.002331841 deduced from [17] and, =2.0023544: from
[19], together with the rest energiegc® = 0.5109989280 MeY; m,¢® =105.6583715 Me\ and
m ¢ =1776.86 MeV from [17], we compute that the bare masses (neté¢ Gits for tau):

m,, ¢ =0.5104070334 MeV; m, ¢ = 1055353257 MeV;m, &=  1.7747AL (15.1)

Consequently, the total self-energy of each leptimm all contributions, is easily calculated via
E,, = mc¢ - m ¢ to be (note KeV units for the first two leptons):

Ey. =0.5918946 KeV; E,, = 123.0458 KeV;E,, = 2.09 Me. (15.2)

As to the ratioP first deduced in (13.7) to which the expected dsaparation is related
by (2r)=(d)>PA, (14.1) makes clear as discussed that this is ooly an approximate
relationship, up to the contributions from electeak and hadronic loops, and their dependency
on couplings other tham =k & /#c. So restructuring (13.7) to include this approaiion,
including g 0 goep, » WE may write:

_ a_g
(dy=(2r)>PA DEE : (15.3)

Then using the successive signs1” to mean “greater than approximately,” we find tthize
approximate lower bounds on the expected draw a@pas, i.e., on the average weighted
separations between spatial points within each ofeptprobability density, using
a =1/137.03599904 and the foregoing-factors, are computed to be:

(d,)>01.00267699557H, ;(d,)>0 0.997292222) (d,)>0 0.9877396.  (15.4)
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Because these are proportional to the standardatitaviof each probability density,
od <d> , (15.4) provides us with approximate relativeaatfior the standard deviations of each of

the lepton probability densities, on the assumptiwt the form (e.g., Gaussian) of each lepton
density is the same. So what we learn from (15.4hich might be accessible to experimental
testing — is that in relation to the Compton wawgté of each lepton, the probability densities are
more densely packed for each successive higherajere If the statistical standard deviation
for the tau lepton probability density is scaledltdhen the ratios of these standard deviations is
easily computed to be, : 0, : 0, =1:1.009671181.0151227¢. In other words, in relation to the

Compton wavelength of each lepton, the standardatien of the muon probability density is
about 1% larger than that of the tau lepton, witiéestandard deviation of the electron probability
density is about 1.5% larger than that of the &ptdn, assuming their underlying distribution
types are all the same and differ only by theindéad deviations. Again, it may perhaps be
possible to experimentally test the approximateeag” ratios contained in (15.4).

The foregoing also gives us a very direct physealanation of the Compton wavelengths
A =h/mc of the three leptons. Often, it is pointed dattthe Compton wavelength of a lepton
(or other particle) is the wavelength of a photathvan energy equal to the rest energy of that
lepton. And this in turn makes this a scale atclwhhe uncertainty difficulties of localizing the
position of a lepton come into play, whereby them@ton wavelength is a sort of qualitative
boundary between circumstances under which oneamianay not use classical physics. But these
are all roundabout understandings, because le@t@nstructureless point particles as has been
discussed early in section 13, and so the Comp#rel®ngth most certainly cannot be not the
“size” of a lepton in any classical sense. Howeberause leptons prior to “collapse” do have an

associated probability density’ = p =" with an associated standard deviatr{or standard

deviations about each axis and / or in radial arglikar directions), there is a “size” of the splatia
region within which it is most likely to detect @pton when its wavefunction is “collapsed.” So

if the average separation between any two indep#rttaws from the probability densityﬁs),

then one may readily think ¢fl) =(2r) as a sort of “statistical diameter” for the leppnbability

density. Therefore, what (15.4) teaches is thattimimum statistical diameter of a lepton is very
close to the Compton wavelength of the lepton, whthexact relation dependent on the specific
nature of p. Further, because the standard deviation is @sportional to the average draw

separation (agair(x) = 20, /</ 11.128379, for a one-dimensional Gaussiatil) = (2r) will
also establish a minimum value for the standardatiews o,,0,,0, of the lepton probability
distributions, again with the exact value(s) dependent upon the particulars of thigiligion.

So the Compton wavelength now has a very cleardargtt and satisfying and most
importantly,empirically-verifiablemeaning, at least for the leptons: One-half of @menpton
wavelength of a lepton sets an approximate lowenton the expected separation of any two
independent draws obtained by detecting the leptsome position within the probability density,
with the exact expected independent draw separdgtermined by the specific character of the
probability density. Because by basic statistiesstandard deviation of a probability distribution
is directly related to the expected independentvdsaparation, the Compton wavelengths also
establish the standard deviations of the leptorbasdity densities. In short: the Compton

63



Jay R. Yablon, September 26, 2016

wavelength of a lepton, up to a constant factortootfar from 2 (representing a diameter 2r
not a radius), measures the spatial standard dmviat, of the probability densit)p(x) =y'y

for that lepton. This is a much more satisfactomy direct explanation than those which describe
the Compton wavelength as that of a photon eneogyntensurate with particle rest mass, or as
the distance at which uncertainty becomes a facidre Compton wavelengths are a directly-
measurablestatistical sizenot of the leptons, butf the probability densities of the leptorsd
they bear a direct relationship to expected prdissioi draw separation and to the standard
deviations of the lepton probability densities. aky it should be quite possible to measure this,
and also to measueg, : g, : 0, =1:1.009671181.0151227!which are the approximate statistical

spread ratios contained within (15.4).

16. Electromagnetic Time Dilation and DeVries’ Fornula for the Fine
Structure Constant

Before concluding, it is of significant interestdemonstrate how the electromagnetic time
dilation (10.11) and the consequent non-lineartedetagnetic interactions discussed at (10.15)
and (10.16) and thereafter can alternatively beesged using recursive mathematics, because as
we shall now see the DeVries formula [20] for tireefstructure constant is recursive in a very
similar way to the non-linear behaviors developeteh As such, this may lay the foundation for
providing a physical explanation of the DeVriesnfiola which remains accurate within
experimental errors more than a decade after itfinsgpublished, but still has not been afforded
a physical explanation.

For this demonstration we start with the eleotgnetic time dilation factor first obtained
in (10.11), namelyy,  =dt/dr :1/(1— ag / mé). At (10.15) and (10.16) this was seen to be at

the heart of the non-linear terms in the interacgaergy stemming from the mathematical series
Vow=1/(1-x) O1+ x with x=qg/ mé = k Qqd mt for a Coulomb interaction. And at (12.4)

this was first shown to also be equal to severaémtanonical-to-mechanical ratios which at
(13.16) were shown to include the electromagnetitribution to the g-factor vig, = gqe, /2

and at (14.1) upon application of the generalizedrgy/time relationdt/ dr = E/ mé, to the
completey, =g/ 2 including weak and hadronic contributions.

But this time dilation factor may also be easilytten in the alternative form:

_.. 0% _dt _ . op dt _ 1
_+ 9%, _dt_, g dt_ , 16.1
e me " o mé d¢ 1- g/ mt (16.1)

This is clearly recursive becaugg, is expressed as a functi(hﬂ(q% / mcz)yem of itself, which

repeatsad infinitum Yet y,, may also be isolated and written directlyld%l— ag / mcz), the
way we have done previously. But since the reoarss what interests us here, let us expand the
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recursion by simply placing,., from (16.1) into itself several times to identénd solve for the
infinite series, as such:

I . @[ . @,
Vem =1t 1@ Ven= 1F m&[“ m&( m?:(1+ w&[” DD
2 3
_ aa a% % 8773 @y,
T (méj ( m&j ( méj ( m?cj ' (16:2)
= N q% n: 1 =
;(m&j 1-(ag /mé) /"

This is the same series that underlies the nomdlieeergy (10.15), but recursively expressed.

What makes this of special interest is that the es/formula [20] for the fine structure
constant, namely:

2 o D O T a a a
a=rteql-Z )i res (zn){l (zn)l(”(mf(}(m){&(m)“( ' W o

has a the parametdr which is structurally very similar to the top lird (16.2). Given that
exp(—n2 /2) = 1/139.045636660¢, it is clear thatm> >1 for which '* 01 is a dimensionless

number that turns out to be slightly larger tharsuch thata=F2exp(—n2 /2) equals the

empirically-observed fine structure constant with valuea =1/137.035999139(3 reported in
[11] or the valuea =1/137.035999049(9( used in [14], to within present-day experimental

errors. It is for this reason that even thoudhas not yet been afforded a physical interpretation
the DeVries relationship must be regarded veryssty. Note also that the only two independent

numbers in (16.3) are and 77. So while the fine structure constam(ﬂ) is a function of only
the numberr, we can also say that(a) is a function only ofr , which suggests and extremely

close connection between the physics of electroetzgn and the pure mathematics of circles,
spheres, etc. All of this motivates us to se@imhe connection can be established between (16.2)
and (16.3).

Starting with (16.2), let us now consider a Coutopotentialg =k, Q/ r for which the

linear interaction energy rati&,,,/ m¢ = gg/ mé= k Q¢ nfc, see (10.15). Then as we did
to arrive at (13.1), let us consider a single chdrsglf-interacting lepton probability density prio
to wavefunction “collapse,” and divide this intodvhalves each witlQ=q=-3e. Thus,

Euno =2 k& (1/ 1), with (1/r) >1/(r ) being the expected value of the inverse draw séiparon

the condltlon that the two draws come from différealves of the probability density. What we
then learned leading up to (13.1) is that as welisiude the lepton further and further ad infinitum
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then take the ordinary calculus limit, the linealf-enteraction energy ends up being given by
Euno = % = k€ (1/21), which is (13.1). Then using the relatidqe’ / mé =(a/2m)A as we

did at (13.3), and also using the statistical di@mgd) = (2r), from (13.1) we obtain:

E., on Kk e2< 1 > a < l> a < 1O>

emd — =_= V=" Q= N\=— (=), 16.4
m¢é mé mé\2 2\ 2 2T (16.4)
Although this is the linear expression for the #l@magnetic self-interaction energy, we see from
(13.3) that the complete non-linear energy is olet@iby settingx:(aA/2ﬂ)<1/2r> in the

mathematical functionyemzll(l— x). But the recursive (16.2) is just an alternativay of

representing this function. So to obtain a remersixpression foy,,, which contains all of the
non-linear terms of (10.15) built in, we may sutgé (16.4) into the top line of (16.2) to obtain:

o W P P

This is simply an equivalent, albeit recursive waywrite (13.3). This may also be written in
terms of the dimensionless ratio parameléP:A<1/d> defined in (13.7).

Contrasting this with (16.3) we now see an extrgmdbse resemblance with the
dimensionless DeVries numbé&r. This resemblance is not just structural; nous itlirectly
physically-substantive because the driving numbeeach isa . In fact, theonly difference
betweeny,, in (16.5) and” in (16.3) is that in (16.5) the denominatormfis 277 at all recursive

orders, while in (16.3) the denominatonftorder is(277)". Yet, (16.5) also has the teri{1/d)
multiplying a / 2 at each order, while in (16.3)15((277)n multiplies a at each order. Thus, it

seems there is a link to be found betweléfh/d) and1/(2m7)", which we now explore.

In A(1/d), A is the Compton wavelength of the lepton, and thsisgle, definite number
just like the massn= h/ cA1. But treating the inverse statistical dime@fd} as a free variable

at each order, let us now define an infinite seqaenf statistical diameters that we denote thy)

with 0<n<o where each such diameter is associated with eathrsive order in (16.5). So
changingd - d, in (16.5) and setting at each order to be the number of that order5§16.

becomes:
Vem=1+%/1<d—lo>[1+%/1<dil>(1+% <Elz>(1+% <F13>£1+%T <Fl4>(B ..)DD.(le.G)
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By the substitutiord — d. we did change the nature gf_ in (16.6) because in (16.8)was the

same number from one order to the next while jueva it is different. So because of this change
we have denoted this modifigq,, asy,,,. We may also generalize (13.7) be defining assgion

of ratio parameters/P, =A(1/d,).

Next, contrasting (16.6) with (16.3), let us impgdefine) the condition:

1 1 1 A
== V\=— 6.
3 <d> (2 (d) (167

with 0<n< o, where the inequality holds for any distributidher than a Dirac delta as has been
previously reviewed prior to (13.1). This also me#hat:

P, =(2m)"". (16.8)
The inequality (16.7) then restructures easily to:
(d,)>(2m)"" A=PA, (16.9)

and is dependent upon the exact nature, e.g., Gaugs otherwise, of the probability density
o=y . If we then insert (16.7) into (16.6) we obtain:

Vem=1+(2‘]’7)0 [1+(2‘7’T){1+(2‘7’T){1+(§T){1+(;)4(3 )JJN |
ezl afeate

It is to produce this exact equality that we chibseconditions (16.7). This means that obtaining
a physical understanding of DeVrids’factor, boils down to understanding (16.7) thro(itf9).

(16.10)

Toward this objective, let us now write the recegselation (16.6) in “inductive form,”
by which we mean a form in which a function at @egi recursive order is defined in relation to

the same function at the next adjacent order. @ddgexample is the definition! = n[ﬂ n—l)! with
terminal condition0!=1 for factorials. In this form, working from (16.&nd (16.7), we define:

a 1 a a
=1+2_) =1+— =1+ , 16.11
emn 277_ <d >yem rl (Zﬂ)n y em +l P y em+i ( )

n n+l
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where0<n<oc. Then, itis clear that (16.6) is compactly vetittasy, . = y..,, and that with the
condition (16.7) the DeVries number is actudlly y,.,. So with the foregoing, the DeVries
relationship (16.3) simplifies to the trilogy:

n.2
a:(yemo)zexp(_7j; r:yemo; yemn:]'-l-ﬁyemm' (1612)

Here,l" =y, is the terminal relation analogous@b=1, while y,,, = 1+(a /(2/7)”) Ve n IS the

inductive form of the recursion analogousrtio= n[ﬂ n—l)!.

So, what might one make of (16.7) through (1608)sically? To gain some clues, it is
probably simplest to work from (16.9), which we teras the equalit{/dn>rnin = (277)”'1)l of a set

of minimumstatistical diameters in relation to the Comptoavelength. For the first several
orders, using the reduced Compton wavelerigthd / 277, these statistical diameter minima are:

<d0>min :x’ <d1>min :A’ <d2>min :27ﬂ, <d3>min :(ZH)ZA’ < d4> min:(2n.)3A ) (1613)
Another way to write this is as the recursive kéara terminal condition:
<d“>min = 27T<dn—1>min : <d0>min =K. (1614)

In this vein,27=C/r is of course the ratio of the circumference oirale to its radius, so at
each order, the statistical diameter is promotechfa radial length to a circumferential length.

Further, while each of th@n> ., arise from a different order of the recursions jterfectly

mi

reasonable to think of thein (dn>min as some type of quantum number. Additionally dose
Y.,=dt/ dr is the electromagnetic contribution to time ddati and becausdt — At measures
the “tick” interval of a clock in a laboratory, tlexistence of a succession gf_ . in (16.12) is
suggestive of a relatiory,, ,=dt/dr containing a collection of proper time “tick” rate
dr, - Ar, emanating from the lepton. At the same time, “tick” rate of a signal is related to
its frequency byf =1/Ar, so that a collection of tick rates is relatedtoollection f, = 1AT7,
of frequencies. And this in turn means that therome collection of time dilation factors:

dt At

=— - =——=Atf 16.15
Yem n dr Vem s AT r ( )

n n

which are equal tof, multiplied by theAt ticks of the laboratory clock.
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So in this vein, the intuitive sense that one main gy studying (16.13) and how it
interrelates to the DeVries formula is not unlikewhone might think about the quantum number
that Planck first found irE = nhf to describe the energy oscillations in a blackboatjiation
spectrum. Or withd =h/ p, this is not unlike the Bohr / deBroglie relatiod = 27r first used

to model the hydrogen atom. In fact, the deBrogllation may be rewritten as/ A =n/2m and

then likened to(d,) . /A =(271)"", keeping in mind that the former is for electratits in
(hydrogen) atoms while the latter is for the satkraction of electrons standing alone. So in the
same way that, /A =n/2m was the point of entry to modelling atom(sl,) . /A =(27)"™"
would seem to be the point of entry for modellindividual electrons. Likewise, (16.15) contains
an infinite collection of frequencies, and we kntivat any time we have such a collection of
frequencies, these may be approached using Foameysis. Further, it is well-known that
Heisenberg’s matrix mechanics arose from considethre Fourier analysis of an infinite
collection of frequencies. So one can envisiohthé.15), properly advanced, could perhaps lead
to an even deeper understanding matrix mechawing. most certainly, the relations ascertained

in the forgoing do seem to be rife with quantum haggcal information that needs to be closely
studied and deciphered.

17. Conclusion

From ancient times, through those of Galileo, Hingy Newton, Bernoulli, du Chatelet,
Joule, Carnot and Einstein, the principle of enexgyservation and the understanding that energy
is a universal form of currency or liquidity of timatural world out of which everything is made
and which can be transformed from one form to agrdblit can never be created or destroyed, has
evolved into perhaps the most universal, overag;himifying principle of theoretical physics.
Likewise, the manipulation of material objects tmeert energy from one form to another, be it
chemical, solar, nuclear, mechanical, electromagnetat or other types of energy, has been the
foundation of humanity’s technological advancemagsbfar as being able to perform important
and necessary work without the use of human or anptmysical labor.

The Special and General theories of Relativityegene first inkling of a similarly-deep
and universal connection between energy and tik@ only was energy understood to be time

componentE = p° of an energy-momentum vector in spacetime, butenmimportantly it was
understood that for an object in relative motiandidilates in relation to the total energy by
E=mc)y,=mé d{ ¢ O me+1 m which includes a rest energgc plus to lowest order the
Newtonian kinetic energgmv* as in (9.3). And it was understood that a massgnavitational
field also dilates time in relation to the totakegy for the Schwarzschild solution in the Newtonia
limit according to E=mc)y, = médf ¢ mt+ GMih where E,=-GMm/ r is the
gravitational interaction energy as in (9.5). Mwmrer, when there is both motion and gravitation,

the total energy continues to be related to theatvéme dilation byE = mc& dt/ o, but with a
compounded effect wherebydt/dr =y, y, as shown in (9.8). The present paper similarly

establishes, consistent with the well-validatedelndz force law at (5.7) as obtained from the
metric (3.5) via the variation minimization (1.1hat when an electromagnetic chaggeith mass

69



Jay R. Yablon, September 26, 2016

m is placed into a proper potentialy, there is also a time dilation given by
yemEdt/drzll(l—% / mé) at (10.11) which likewise obeys the relati@= mc dt/ d as

seen in (10.13). And this likewise compounds wgtthvitational and kinetic energy according to
E =mcy,,V,V, as seenin (10.23) a.k.a. (3.11).

So if there is any single result of paramount ingnace here, it is the finding at (14.1) of a
universal relation between time and energy wheedbfprms of energy dilate (or contract) time
regardless of their origin, and that this is notya classical feature of nature, but that thises
through to the lepton magnetic moment anomalieshvare the quintessential hallmarks of the
success of quantum field theorin short, just as gravitation “sees” all energg,too does time
“see” all energy, not just macroscopically, butreatthe microscopic level of individual quantum
particles, via the universal relatiodt/ dr = E/ mé. Any time a material body of whatever
character gains or loses energy of whatever folomfiwhatever origin, the rate at which a
geometrodynamic clock associated with that body twk is altered, and therefore, so too is the
measurement of time when that body is used as.aldne cannot change the energy of a particle
or a system without simultaneously changing hove ismrmeasured when that particle or system
is used as a geometrodynamic clocko, as a simple example from Special Relativityen a
person is stuck by a ball moving at, say, 60 npleshour, one can and does say that the impact
is the result of the kinetic energy of motion cditthall relative to the person. But one can eguall
say that the impact is the result of time beindedént for the ball than for the person, albeithwit
a miniscule difference of parts per quadrillioni®0 And when lightning strikes, one can say that
it is nature trying to bring a large potential diftnce into equipotential, or one can say thatraatu
is trying to bring different rates of time into elfarium. Any talk of energy, has a parallel and
equivalent talk of time.

The other present result of underlying, unifyingpbrtance, is that the motions of material
bodies in nature and many of the observed numéjects observed in nature, are fundamentally
“canonical” motions and objects growing from “mealtal” motions and objects as a result of
local symmetry principles. Thus, gravitational mathas been known for a century to simply be

the canonical motionu” / dr — Du’ / Dr =0 of (1.3) obtained by promoting ordinary spacetime
derivatives to gravitationally-covariant derivatidg — 9., governing parallel transport in curved

spacetime withR",, A = [a;v,a;ﬂ] A; . And based on this present work, the Lorenz faroéon

of classical electrodynamics is seen to be simpydanonical motiomu” / dr — DU /D7 =0
of (5.9) obtained via the variation (1.1) and ugimggeodesic gauge (5.6), of promoting spacetime
derivatives to gauge-covariant derivativ®s - 9, =d, —igA, governing parallel transport in an

abstract space first developed by Hermann Weyl[%h, [6], [7] in which the field strength
gF* p= i[@”,@”]¢) defines an imaginary form of curvature.

Then, at the same time mechanical motion is prothtmte&anonical motiou? / D7 =0
as a consequence of the derivative promotign- 9, of gauge symmetry, so too a number of

mechanical objects are simultaneously promotesigahonical objects as shown in (12.4), such
as the four-velocityu” - U*, the four-momentump” - 77 and the energymc - E,
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canonically co-scaling directly with the electromagc contributiony, =dt/dr to the time
dilation. And although (12.4) applies to classmigjects, when we study the behavior of individual
charged lepton quanta, we find at (13.16) thatc¢hisies through to the quantum level, whereby
the “mechanical” Diracg-factor g, also co-scales viag, - g, into the canonical

Joeo = 2+ 284, Which includes the electromagnetic contributioht® lepton magnetic moment
anomaliesa,, that are a hallmark of Quantum Electrodynamicd. thé same time, the bare
lepton masses co-scale into dressed massesnyia m also in step with the time dilation

Y., =dt/dr. This ties the electromagnetic time dilation tibge to the modern understanding

that the magnetic moment anomalies arise fromaheedepton self-interactions that turn the bare
masses into dressed masses in accordance withahd Vdkahashi identities.

Then, when we turn again to the universal relatitindr = E/ mé between time and
energy whereby the time “sees” all energy, we fatd14.1) that even the electroweak and
hadronic anomaly contributions may be accounted féow, g, =2 co-scales intog =2+ 2a

containing the complete, observed anomaly withcalhtributions, because electroweak and
hadronic interactions also produce energies whickctlly affect time. So the physics of all
interactions — gravitational, electromagnetic, weaikl strong — and the hadronic interactions
which this author has studied in depth at [21],][226], [23] and [24], all enjoy the unifying
thread whereby mechanical motions and objects gnbevcanonical motions and objects, and
measurements of time are affected by any and atigges of whatever form from whatever origin.
In this way it becomes possible to establish a ggmydynamic foundation for classical and
guantum electrodynamics centered about time dilaitd contraction and a universal time-energy
relation, and lay out the path by which this iseexted via non-abelian gauge theories to weak and
strong and hadronic interactions.

The author wishes to acknowledge and thank Joys@ani for his encouragement and his input
throughout the conduct of this research.
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