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Fermat’s Last Theorem (FLT) :
a"+b" #c" , hointeger a,b,c ifn>2
Prove,
Draw the graph (Pic.1) as below, | consider only 1* quadrant.
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From Pic. 1 : if n is more, the curve will be near the point(c, c)



Then | make the grid ( square 1x 1) as below,
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Now | can define the intersection point means the integer, and | will prove these curves

will not pass the intersection point for n > 2.



No intersection point area

There are no intersection point area ( yellow area ), all curves in this area are within FLT.
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Next, | will find the intersection point between the curves and the symmetry axis.
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From (1), b can’t be the integer, the curves will not pass the symmetry axis at intersection point.



From the Pic. 3, | will find the relation between b and c¢ atthe point (c-1, c-1),
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From (2), in the no intersection point area, it can be determined
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Next, consider the curves inthe no intersection point area.

a"+b" =c¢" , a and b are not the integers.

a and b may be the rational or irrational numbers,

d
Assume a and b are the rational number, a = — and b= =—
e e

(d,e)=1,(f,e) =1 and d,e,f aretheintergers.
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See pic. 4, | draw the line (Lline) in the no intersection point area.

The line will pass all the curves for all degree of n > oo,

d
Assume L line pass a-axis at — , it can be written as below,
e

(i)n' + (A)n1 = " for n = nl
e e

(1)'12 + (é)n2 = " for n = n2
e e

(1)"3 + (é)"3 = " for n =n3
e

(i)nm + (f—w)n" = ¢’ for n > o«
e e

L<[i<[i<.<[f, and n <n,<n,;<..<n,



Multiply the e" all of the equation,

d" + f" = (ce)t for n=nl
d™ + f, = (ce)™ for n=n2
d* + f;" = (ce)™ for n=n3
d™ + f.,"° = (ce)™ for n >

n

All equations show it can be written in the form a" +b" =¢" by a,b,c can be the intergers.
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But it is conflict with (3), if n > the curves will not pass the intersection point.
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it can’t be written inthe form a" +b" =¢ for n > o
Solcanjudge a and b aren’t the rational numbers. Butthey are the irrational numbers

in the no intersection point area.

n

a"+b" =c¢" , aandb are theirrational numbers in the intersection point area.

From the above conclusion,

n

X
Multiply (—)" into the equation a"+b" =c
c
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X isanyinteger 1,2,3,...

ax bx . L
But — and — aretheirrational numbers because a and b are the irrational numbers

C C

Solcansay a, b, c can’t be the integers atthe same time.

Finally, | can prove , a" +b" #¢" for n>2 FLT is proved. Finish !!!




