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History of Neutrosophic Theory
and its Applications

Zadeh introduced the degree of membership/truth (t) in 1965
and defined the fuzzy set.

Atanassov introduced the degree of nonmembership/

falsehood (f) in 1986 and defined the intuitionistic fuzzy set.
Smarandache introduced the degree of indeterminacy/

neutrality (i) as independent component in 1995 (published in
1998) and defined the neutrosophic set on three components (t,
i, f) = (truth, indeterminacy, falsehood):
http://fs.gallup.unm.edu/FlorentinSmarandache.htm

Etymology.
The words “neutrosophy” and “neutrosophic” were coined/

invented by F. Smarandache in his 1998 book.

Neutrosophy: A branch of philosophy, introduced by F.
Smarandache in 1980, which studies the origin, nature, and
scope of neutralities, as well as their interactions with different
ideational spectra.

Neutrosophy considers a proposition, theory, event, concept,
or entity, "A" in relation to its opposite, "Anti-A" and that which
is not A, "Non-A", and that which is neither "A" nor "Anti-A",
denoted by "Neut-A".

Neutrosophy is the basis of neutrosophic logic, neutrosophic
probability, neutrosophic set, and neutrosophic statistics.
{From: The Free Online Dictionary of Computing, edited by
Denis Howe from England. Neutrosophy is an extension of the
Dialectics.}

Neutrosophic Logic is a general framework for unification of
many existing logics, such as fuzzy logic (especially
intuitionistic fuzzy logic), paraconsistent logic, intuitionistic
logic, etc.

PREFACE
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The main idea of NL is to characterize each logical statement
in a 3D-Neutrosophic Space, where each dimension of the space
represents respectively the truth (T), the falsehood (F), and the
indeterminacy (I) of the statement under consideration, where T,
I, F are standard or non-standard real subsets of ]-0, 1+[ with not
necessarily any connection between them.

For software engineering proposals the classical unit interval
[0, 1] may be used.

T, I, F are independent components, leaving room for
incomplete information (when their superior sum < 1),
paraconsistent and contradictory information (when the superior
sum > 1), or complete information (sum of components = 1).

For software engineering proposals the classical unit interval
[0, 1] is used.

For single valued neutrosophic logic, the sum of the
components is:
 0 ≤ t+i+f ≤ 3 when all three components are independent;

 0 ≤ t+i+f ≤ 2 when two components are dependent, while

the third one is independent from them;
 0 ≤ t+i+f ≤ 1 when all three components are dependent.

When three or two of the components T, I, F are independent,
one leaves room for incomplete information (sum < 1),
paraconsistent and contradictory information (sum > 1), or
complete information (sum = 1).

If all three components T, I, F are dependent, then similarly
one leaves room for incomplete information (sum < 1), or
complete information (sum = 1).

In general, the sum of two components x and y that vary in
the unitary interval [0, 1] is: 0 ≤ x + y ≤ 2 - d°(x, y), where d°(x,

y) is the degree of dependence between x and y, while d°(x, y)

is the degree of independence between x and y.
In 2013 Smarandache refined the neutrosophic set to n

components: (T1, T2, ...; I1, I2, ...; F1, F2, ...);
see http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic-
PiP.pdf .
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The Most Important Books and Papers 

in the Development of Neutrosophics 

1995-1998 - introduction of neutrosophic

set/logic/probability/statistics; 

       generalization of dialectics to neutrosophy; 

http://fs.gallup.unm.edu/ebook-neutrosophics6.pdf (last edition) 

2003 – introduction of neutrosophic numbers (a+bI, where I =

indeterminacy)

2003 – introduction of I-neutrosophic algebraic structures

2003 – introduction to neutrosophic cognitive maps

http://fs.gallup.unm.edu/NCMs.pdf

2005 - introduction of interval neutrosophic set/logic

http://fs.gallup.unm.edu/INSL.pdf

2006 – introduction of degree of dependence and degree of 

independence 

    between the neutrosophic components T, I, F 

http://fs.gallup.unm.edu/ebook-neutrosophics6.pdf (p. 92) 

http://fs.gallup.unm.edu/NSS/DegreeOfDependenceAndIndepe
ndence.pdf

2007 – The Neutrosophic Set was extended [Smarandache,
2007] to Neutrosophic Overset (when some neutrosophic
component is > 1), since he observed that, for example, an
employee working overtime deserves a degree of membership
> 1, with respect to an employee that only works regular full-
time and whose degree of membership = 1;
and to Neutrosophic Underset (when some neutrosophic
component is < 0), since, for example, an employee making
more damage than benefit to his company deserves a degree of
membership < 0, with respect to an employee that produces
benefit to the company and has the degree of membership > 0;
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and to and to Neutrosophic Offset (when some neutrosophic
components are off the interval [0, 1], i.e. some neutrosophic
component > 1 and some neutrosophic component < 0).

Then, similarly, the Neutrosophic
Logic/Measure/Probability/Statistics etc. were extended to
respectively Neutrosophic Over-/Under-/Off- Logic, Measure,
Probability, Statistics etc.

http://fs.gallup.unm.edu/SVNeutrosophicOverset-JMI.pdf
http://fs.gallup.unm.edu/IV-Neutrosophic-Overset-Underset-
Offset.pdf
https://arxiv.org/ftp/arxiv/papers/1607/1607.00234.pdf

2007 – Smarandache introduced the Neutrosophic Tripolar Set

and Neutrosophic Multipolar Set

and consequently
– the Neutrosophic Tripolar Graph and Neutrosophic

Multipolar Graph 

http://fs.gallup.unm.edu/ebook-neutrosophics6.pdf (p. 93)

http://fs.gallup.unm.edu/IFS-generalized.pdf

2009 – introduction of N-norm and N-conorm

http://fs.gallup.unm.edu/N-normN-conorm.pdf

2013 - development of neutrosophic probability

  (chance that an event occurs, indeterminate chance of 

occurrence, 

   chance that the event does not occur) 

http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbabili
ty.pdf

2013 - refinement of components (T1, T2, ...; I1, I2, ...; F1, F2, ...)

http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic.pdf

10

http://fs.gallup.unm.edu/SVNeutrosophicOverset-JMI.pdf
http://fs.gallup.unm.edu/IV-Neutrosophic-Overset-Underset-Offset.pdf
http://fs.gallup.unm.edu/IV-Neutrosophic-Overset-Underset-Offset.pdf
https://arxiv.org/ftp/arxiv/papers/1607/1607.00234.pdf
http://fs.gallup.unm.edu/ebook-neutrosophics6.pdf
http://fs.gallup.unm.edu/IFS-generalized.pdf
http://fs.gallup.unm.edu/N-normN-conorm.pdf
http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbability.pdf
http://fs.gallup.unm.edu/NeutrosophicMeasureIntegralProbability.pdf
http://fs.gallup.unm.edu/n-ValuedNeutrosophicLogic.pdf


2014 – introduction of the law of included multiple middle

(<A>; <neut1A>, <neut2A>, …; <antiA>) 

http://fs.gallup.unm.edu/LawIncludedMultiple-Middle.pdf

2014 - development of neutrosophic statistics (indeterminacy is

introduced into classical statistics with respect to the 

sample/population, or with respect to the individuals that only 

partially  belong to a sample/population) 

http://fs.gallup.unm.edu/NeutrosophicStatistics.pdf

2015 - introduction of neutrosophic precalculus and

neutrosophic calculus

http://fs.gallup.unm.edu/NeutrosophicPrecalculusCalculus.pdf

2015 – refined neutrosophic numbers (a+ b1I1 + b2I2 + … +

bnIn), where I1, I2, …, In are subindeterminacies of 

indeterminacy I;

2015 – (t,i,f)-neutrosophic graphs;

2015 - Thesis-Antithesis-Neutrothesis, and Neutrosynthesis,

Neutrosophic Axiomatic System, neutrosophic dynamic systems, 

symbolic neutrosophic logic, (t, i, f)-Neutrosophic Structures, I-

Neutrosophic Structures,  Refined Literal Indeterminacy, 

Multiplication Law of Subindeterminacies:
http://fs.gallup.unm.edu/SymbolicNeutrosophicTheory.pdf
2015 – Introduction of the subindeterminacies of the form

0 0
n k

I 
, for k ∈ {0, 1, 2, …, n-1}, into the ring of modulo 

integers Zn - called natural neutrosophic indeterminacies

[Vasantha-Smarandache]

http://fs.gallup.unm.edu/MODNeutrosophicNumbers.pdf
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2015 – Introduction of neutrosophic triplet structures and m-

valued refined neutrosophic triplet structures [Smarandache -
Ali]

Submit papers on neutrosophic set/logic/probability/statistics to
the international journal “Neutrosophic Sets and Systems”, to

the editor-in-chief:  smarand@unm.edu

( see http://fs.gallup.unm.edu/NSS )
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This book gives the probable applications of these 
concepts to MOD mathematical models like MOD Cognitive 
Maps model and MOD Relational Maps model which have been 
introduced by the authors. 

There are open conjectures which can help the 
researchers in graph theory.  Several innovative results are 
obtained.  

 We wish to acknowledge Dr. K Kandasamy for his 
sustained support and encouragement in the writing of this 
book.  

W.B.VASANTHA KANDASAMY 
ILANTHENRAL K 

FLORENTIN SMARANDACHE 

In this book authors for the first time introduce study and 
develop the notion of MOD graphs, MOD directed graphs, MOD 

finite complex number graphs, MOD neutrosophic graphs, MOD 

dual number graphs and so on using edge weights from Zn, 
C(Zn) Zn  I,  Zn  g and so on. 

Likewise MOD directed natural neutrosophic graphs are 
defined.  Further type I, type II and type III. MOD directed 
graphs and MOD natural neutrosophic graphs are defined and 
developed.   

This book has over 185 examples and over 250 figures. 

n

The notion of MOD bipartite graphs and MOD natural 
neutrosophic bipartite graphs using ZI , CI(Zn) Zn  II and so 
on are described. 

ABOUT THE BOOK
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Chapter One 

BASIC CONCEPTS

 In this book for the first time authors venture to study MOD 
graphs using Zn, I

nZ , C(Zn),  Zn  I, Zn  g, CI(Zn), Zn  hI 
and so on. 

MOD graphs take vertex set and (or) edge sets from any of 
the sets Zn, C(Zn), Zn  I, Zn  g, Zn  h and Zn  k. 

These MOD graphs are special for these lead to MOD 
Cognitive Maps model [68].  So an exhaustive study of MOD 
graphs is carried out in this book. 

Next we study MOD natural neutrosophic graphs and 
directed graphs with edge weights / vertex sets from I

nZ or 
Zn  hI or Zn  II or CI(Zn) or Zn  gI or  Zn  kI.  Such 
study is thoroughly carried out in this book.  These graphs find 
applications in the study of MOD natural neutrosophic Cognitive 
Maps model [68]. 

So a systematic study is made in this book.  For the first 
time we visualize edges and vertex sets to be natural 
neutrosophic, natural neutrosophic dual numbers, natural 
neutrosophic-neutrosophic edges / vertices and so on.  Such 
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study is only new and innovative but can find application in 
MOD Cognitive Maps models. [17-25, 68]. 

Next we proceed onto introduce and newly describe the new 
notion of MOD bipartite graphs and MOD n-partite graph with 
edge / vertex set from any one of the sets Zn, Zn  g, C(Zn), 
Zn  h, Zn  I,Zn  k. 

These structures find applications in MOD Relational Maps 
model with edge weights from Zn or Zn  g or Zn  I or 
C(Zn) or Zn  h or Zn  k  [69]. 

 These models will be new for edge weights / vertex sets 
can be complex or dual numbers or neutrosophic or special dual 
like numbers or special quasi dual numbers.  So such study is 
not only new and innovative but is very useful. 

Next we study of MOD n-partite graphs with vertex sets / 
edge sets from Zn or C(Zn) or Zn  I or Zn  h or Zn  g or 
Zn  k. 

We now proceed onto describe MOD natural neutrosophic 
bipartite graph with edge weights / vertex sets from Zn  II or 

I
nZ or CI(Zn) or Zn  hI or  Zn  gI or Zn  kI. 

These MOD natural neutrosophic bipartite graphs can find 
applications in MOD natural neutrosophic Relational Maps 
model [69].   

The edge weights can be from I
nZ

 

or CI(Zn) or Zn  II or 
Zn  hI or  Zn  kI or Zn  gI. 

Such study is new and innovative for we can have the nodes 
to be natural neutrosophic or complex or dual number or special 
quasi dual number or special dual like numbers. For more about 
these concepts refer [47-50, 55]. 
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Chapter Two 

MOD GRAPHS

 In this chapter we for the first time introduce the notion of 
MOD graphs and MOD directed graphs.  

A MOD graph is a graph where the vertex sets is either a 
subset of Zn or whole of Zn (2 ≤ n < ∞).  

MOD directed graphs are of three types. 

In type I MOD directed graphs the vertex set can be any 
thing but the edge weights are from Zn; 2 ≤ n < ∞.  

In type II MOD directed graphs both vertices as well as edge 
weights are from Zn.  

In type III MOD directed graphs vertices are from Zn but 
edge weights from the set {0, 1}. 

 The general MOD graphs are graphs whose vertex sets are 
from Zn or subsets of Zn may not be directed. 

 We will first provide some examples of each of the 
situations and also suggest problems. 
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 Example 2.1:  Let {G} be the MOD graphs with vertex set from 
Z2 = {0, 1}. 

              

Figure 2.1 
are the only four MOD graphs using the vertex set Z2. 

Example 2.2: Let {G} be the MOD graphs with vertex set for Z3
= {0, 1, 2}. 

o 0

Figure 2.2 

0 1 0 1 1 0 

0 1 1 2 

1 0 

2 1 0 

0 2 2 0 2 1 

0 1 2 
0 1 

2 

1 

2 1

2 

0 1 
0 1 

2 
0 

1 

0 

1 2 

0 
2 

2 

 {}  {}  { }  

 {}  {}  {}   { }    { } 

 { }  {        }  {        }  {        } 

 {       }   
 

  
 

    
 

  
 

 
    

 
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There are 17 MOD graphs using the vertex set 
Z3 = {0, 1, 2}. 

Example 2.3: Let {Gi} be the collection of all MOD graphs using 
vertex set from Z4 = {0, 1, 2, 3}. 

 {0}, {1}, {2}, {3}, {1, 2} {0, 2}, {0, 1}, {0, 3}, {1, 3}, 
{2, 3}, {0, 1, 2}, {0, 1, 3} {0, 2, 3}, {1, 2, 3}, {0, 1, 2, 3},  

1 0 2 0 3 0 

2 1 3 1 3 2 

1 0 2 0 
1 2 

2 1 0 

3 0 3 1 0 1 

1 0 3 

2 0 3 2 3 0 

3 0 2 

    

    

 

 

 

 

    

 

  

  

  

 

  

 

  

 

  

      

 
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2 1 3 1 2 2 

3 2 1 

1 

2 

0 1 0 

2 

0 1 

2 

1 

3 

0 1 0 
1 

3 3 

0 

2 

3 

0 2 0 
2 

3 3 

0 

2 

3 

1 
2 1 2 

3 3 

1 
  

 
  

 
  

 

 
   

 
   

 

 
   

 
   

 

  

     

 

 

 
    

 
  

 
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and so on. 
Figure 2.3 

0 

1 2 

0 

1 3 2 3 

2 3 

1 
0 1 

2 3 

0 2 

1 3 

0 3 1 2 0 1 

1 2 0 3 2 3 

0 2 0 3 1 2 

3 1 1 2 0 3 

1 3 2 3 

0 2 1 0 

0 
 

   
 

 

 
  

  
   

  
 

    

    

     

    

   

  

 

    
 

  

  

  
 
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So even in case of Z4 we see getting all the MOD graphs 
happens to be a challenging problem. 

 We take {0, 1, 2, 3} = Z4 as the vertices {v0, v1, v2, v3} for 
one can easily work with vertices for it is non abstract. 

 We see when we work with MOD integers Zn they can be 
applied to semi automaton, automaton or in networking. 

We leave open the following conjecture. 

Conjecture 2.1:  Let {Gi} be the collection of all MOD graphs 
with vertex set from Zn; 2 ≤  n < ∞.  

Find the number of such MOD graphs which take its vertices 
from subsets of Zn or Zn; 2 ≤  n < ∞. 

We have provided examples of them. 

This is introduced mainly for appropriate applications. 

In case of MOD graphs the elements of Zn can be given face 
value ordering or the vertices can be given face values which 
would be useful in case of networking or semi automaton or 
automation.  

For the associated face values for their vertices can predict 
the importance or otherwise of these vertices from Zn; 
2 ≤ n < ∞.  

Next we proceed onto describe type I MOD directed graphs 
by examples. 

Example 2.4: Let G be the MOD directed graph with edge 
weights from Z5 and v1, v2, …, v7 are the vertices of G. 
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 G = 

Figure 2.4 

The MOD type I matrix M associated with G is as follows: 

M  = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 2 1 0 0 0 0
v 0 0 0 0 3 0 0
v 0 0 0 4 0 0 0
v .0 0 0 0 0 3 0
v 0 0 0 0 0 0 2
v 0 0 0 0 3 0 0
v 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
  

Example 2.5:  Let V be a MOD directed graph with edge weights 
from the subset of Z12. v1,v2,…,v5 are the vertices associated 
with V. 

v1

v3

v2

v4

v5 v6

v7

1 

2 

3 
4 

3 

3 

1 2 
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 V = 

Figure 2.5 

The MOD type I matrix S associated with V is as follows: 

S =

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 10 2 0 0
v 0 0 0 0 6
v 0 0 0 3 0
v 0 0 5 0 2
v 0 1 0 0 0

 
 
 
 
 
 
  

. 

The edge weights of graph V are only from a subset of Z12. 

 These types of MOD directed graphs have been already used 
in MOD Cognitive Maps model [68]. 

We have some advantages of using these type I MOD graphs. 

For we see we can find S2, S3 and so on. 

v1 

v3 

v2 

v4 

v5 2 

10 

5

3
5

1

6

2
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Now  S2 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 10 2 0 0
v 0 0 0 0 6
v 0 0 0 3 0
v 0 0 5 0 2
v 0 1 0 0 0

 
 
 
 
 
 
  

  

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 10 2 0 0
v 0 0 0 0 6
v 0 0 0 3 0
v 0 0 5 0 2
v 0 1 0 0 0

 
 
 
 
 
 
  

= 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 6 0
v 0 6 0 0 0
v .0 0 3 0 6
v 0 2 0 3 0
v 0 0 0 0 6

 
 
 
 
 
 
  

S2 is associated with a MOD directed graph with edge 
weights from Z12 but has loops.  

The graph associated with S2 is as follows. 

Figure 2.6 

v1 

v3 v4 

v5 
v2 

6 

3 3 

6 

6 
2 

6 
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Now we find 

S3 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 6 0
v 0 6 0 0 0
v 0 0 3 0 6
v 0 2 0 3 0
v 0 0 0 0 6

 
 
 
 
 
 
  

 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 10 2 0 0
v 0 0 0 0 6
v 0 0 0 3 0
v 0 0 5 0 2
v 0 1 0 0 0

 
 
 
 
 
 
  

= S2  S = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 6 0 0
v 0 0 0 0 0
v .0 6 0 9 0
v 0 0 3 0 6
v 0 6 0 0 0

 
 
 
 
 
 
  

The type I MOD directed graph associated with S3 is as 
follows: 

Figure 2.7 

The type I MOD directed graph associated with S3 has no 
loops. 

3 

9 

v1 
v2 

v5 

6 

6 

6 
v4 v3 

6 
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Consider S4 = S2  S2 

= 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 6 0
v 0 6 0 0 0
v 0 0 3 0 6
v 0 2 0 3 0
v 0 0 0 0 6

 
 
 
 
 
 
  

 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 6 0
v 0 6 0 0 0
v 0 0 3 0 6
v 0 2 0 3 0
v 0 0 0 0 6

 
 
 
 
 
 
  

= 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 6 0
v 0 0 0 0 0
v .0 0 9 0 6
v 0 6 0 9 0
v 0 0 0 0 0

 
 
 
 
 
 
  

The graph related to S4 has two loops. Thus we can 
conjecture only the following: 

Conjecture 2.2:  Let G be type I MOD directed graph with 
related adjacency matrix M.  

Edge weights of G are from Zn. 

Characterize those type I MOD graph G so that. 

i) The type I MOD directed graph H related with M2

have always loops (specify under what conditions it
will have no loops).

ii) Can type I MOD directed graph P related with M3 be
free of loops?
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iii) Characterize those MOD directed graph related to
say odd powers of matrix M say M2t+1 will have no
loops and that of even powers M2t will have loops.

Next we proceed onto describe one more type I MOD 
directed graph G and the related MOD adjacency matrix by an 
example. 

Example 2.6: Let G be the type I MOD directed graph with edge 
weights from Z7 given by the following figure with vertex set 
v1, v2, v3, v4, v5 and v6 with no loops. 

Figure 2.8 

 The related type I MOD adjacency matrix M related with G 
is as follows: 

v2 v1 
4 

2 

G = 

v6 v3 

v4 v5 
3 

4 

1 

6 

5 
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M = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 4 0 0 0 0
v 2 0 0 0 0 0
v 0 0 0 3 0 0
v 0 0 0 0 6 1
v 0 0 0 0 0 0
v 0 0 4 0 5 0

 
 
 
 
 
 
 
 
  

. 

M2 =

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 1 0 0 0 0 0
v 0 1 0 0 0 0
v 0 0 0 0 4 3
v 0 0 4 0 5 0
v 0 0 0 0 0 0
v 0 0 0 5 0 0

 
 
 
 
 
 
 
 
  

. 

The type I MOD graph related with M2 has two loops. 

Now we find M3 in the following 

M3 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 4 0 0 0 0
v 2 0 0 0 0 0
v 0 0 5 0 1 0
v 0 0 0 5 0 0
v 0 0 0 0 0 0
v 0 0 0 0 2 5

 
 
 
 
 
 
 
 
  

. 

This the type I MOD directed graph associated with the 
adjacency matrix M3 has three loops.  
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 We see the type I MOD directed graph matrix behaves in 
such a way so that the following conjecture is made. 

Conjecture 2.3: Characterize those type I MOD directed graphs 
G so that their squares, cubes, etc. represented by their MOD 
type I matrices i) has no loops, ii) always has loops. 

It is pertinent to keep on record that these type I MOD 
directed graphs with edge weight from Zn, have already been 
applied to MOD Cognitive Maps model [68]. 

Thus they will find applications in mathematical modelling. 

Next we proceed onto describe type II MOD directed graphs. 
These type II MOD directed graphs take both edge values as 
vertex sets from subsets of Zn. 

We will describe this situation by some examples. 

Example 2.7: Let G be a MOD directed graph with vertices v1, 
v2, …, v7 from Z10 and edge weights from the set Z10 given by 
the following figure. 

G = 

Figure 2.9 

 This G is a type II MOD directed graph.  
The type II MOD adjacency matrix M associated with G is as 
follows: 

8 4 

5 
6 

3 

7 

2 

2 

9 5 

8 

6 

3 

4 
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M = 

2 3 4 5 6 7 8
2 0 0 0 0 0 0 0
3 0 0 0 0 0 8 0
4 6 0 0 0 0 0 0
5 0 0 0 0 9 0 0
6 0 5 4 0 0 0 0
7 0 0 0 0 0 0 0
8 0 0 3 2 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

The following rules is to be compulsorily followed to avoid 
confusion. 

 We know there is a face value ordering in Z10 also 0 is the 
least and 9 is a greatest so the vertex with v1 = 2, v2 = 3, v3 = 4, 
v4 = 5, v5 = 6, v6 = 7 and v7 = 8.   

Thus we have the vertices arrange according to the face 
value ordering in Zn. 

We will give one more example of type II MOD directed 
graph in the following. 

Example 2.8:  Let H be the type II MOD directed graph with 
vertices and edge weights from Z15 given by the following 
figure. 

 

Figure 2.10 

3 

1 4 

12 

9 

8 

6 

14 

H = 
7 

5 

9 

8 
2 

10 

5 
1 

11 
6 

7 

31



The type II MOD adjacency matrix N of the graph H is as 
follows: 

N = 

1 3 4 6 8 9 12 14
1 0 0 5 10 0 0 0 0
3 7 0 0 0 5 0 0 0
4 0 0 0 2 0 0 0 0
6 0 0 0 0 0 8 0 0

.
8 0 0 0 9 0 0 0 0
9 0 0 0 0 0 0 6 0

12 0 0 1 0 0 0 0 0
14 0 0 0 0 0 7 11 0

 
 
 
 
 
 
 
 
 
 
 
  

Now we can adopt this MOD directed graph of type II for 
automaton, semi automaton and networking apart from 
mathematical modeling. 

We proceed onto enumerate the properties enjoyed by the 
MOD type II matrices and their related graphs. 

Example 2.9:  Let G be the type II MOD directed graph given by 
the following figure with edge weights and vertex set from Z18. 

G = 

Figure 2.11 

v1

v3

v5

v2

v4

10 

3 

5 

12 
1 

2 

1 

2 
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(v1 = 3,  v2 = 7, v3 = 10, v4 = 15 and v5 = 16). 

Let M be the type II MOD adjacency matrix associated with 
G. 

M = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 3 0 0 0
v 0 0 0 5 12
v 10 0 0 1 0
v 0 2 0 0 0
v 0 0 2 1 0

 
 
 
 
 
 
  

.

We find M  M = M2 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 15 0
v 0 10 6 12 0
v .0 14 0 0 0
v 0 0 0 10 6
v 2 2 0 2 0

 
 
 
 
 
 
  

In the type II MOD directed graph associated with MOD 
matrix M2 we see the MOD graph G2

 has two loops and has more 
edges connected; G2 is as follows: 

G2 = 

2 

Figure 2.12 

v3 

v2 

v4 

v5 

v1 14 15 
12 

10 
6

2
6

2

10 
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 Next we find the value of M3 and the corresponding type II 
MOD directed graph G3. 

M3 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 12 0 0 0
v 6 6 0 2 12
v .0 0 0 16 6
v 0 2 12 6 0
v 0 10 0 10 6

 
 
 
 
 
 
  

Clearly the type II MOD directed graph G3 is as follows: 

G3  = 

Figure 2.13 

The number of loops have increased. The number of edges 
has increased. Some of the weights of the directed edges has 
also increased. 

Next we find M6 and the related type II MOD directed graph 
G6. 

v1

v3 v4

v5

v2

12 

6 

16 12 10 

2 
2 

6 

10 

12 

6 

6 

6 
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M6 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 6 0
v 0 16 6 0 0
v .0 2 12 12 0
v 12 6 0 16 6
v 6 14 12 14 12

 
 
 
 
 
 
  

The type II MOD directed graph has 4 loops and 15 directed 
weighted edges. The MOD directed type II graph is as follows. 

G6 = 

Figure 2.14 

Consider 

M9 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 12 0 0 0
v 6 6 0 2 12
v .12 0 0 16 6
v 0 2 12 6 0
v 12 16 6 12 6

 
 
 
 
 
 
  

There are only three loops. 

v5 

v1 

v3 

v4 

v2 2 

6 
12 

6 

12 

14 6 

12 

6 

6 

6 
16 

12 

16 

12 
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  Let G9 be the type II MOD directed graph given by the 
following figure. 

G9 = 

Figure 2.15 

 Thus we cannot say anything about this type II MOD 
directed graph. 

 We see as we product it if we choose to call so then it is 
clearly seen there is increase in directed edges. We conclude 
this notion with one more example by taking a small value of n 
for Zn.

Example 2.10: Let G be the type II MOD directed graph which is 
as follows with edge weights from Z6. 

v1 = 0 ,  v3 =3, v4  = 4,  v5 = 5, v2 = 2 

v1 

v3 v4 

v5 

v2 

2
2

3

1
1 

2 

4 

v1 v2 

v3 v4 

v5 

6 

12 

6 

6 

12 

12 

16 

2 
2 

6 
12 

12 

6 

6 

6 
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Figure 2.16 

M = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 3 0 0 0
v 0 0 0 4 0
v 2 2 0 0 0
v 0 0 0 0 1
v 0 0 1 2 0

 
 
 
 
 
 
  

.

 The type II MOD adjacency matrix. We find M2, M3, M4, M6 
and their related type II MOD graphs. 

M2 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 0 0 0 0 4
v 0 0 0 2 0
v 0 0 1 2 0
v 2 2 0 0 2

 
 
 
 
 
 
  

. 

 The type II MOD directed graph associated with M2 be G2 
which is as follows. 

Figure 2.17 

v1 v2 

v3 v4 

v5 
2 

2 
2 

4 

1 

2 

2 
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This MOD directed graph of type II has seven edges of which 
two are just loops.  

We now find M3 in the following. 

M3 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 0 0 4 2 0
v .0 0 0 0 2
v 2 2 0 0 2
v 0 0 2 0 0

 
 
 
 
 
 
  

The type II MOD directed graph G3 related with M3 is as follows 
: 

Figure 2.18 

Clearly G3 has no loops only six edges. 

The edges has reduced for seven to six. 

Now we find M4; 

v1G3 =

v4 

v2 

v3 

v5 
2 

2 
4 

2 2 

2 

2 
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M4 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 2 2 0 0 2
v .0 0 2 4 0
v 0 0 2 0 0
v 4 4 0 0 0

 
 
 
 
 
 
  

Let G4 be the type II MOD directed graph given by M4. This 
has two loops and 8 weighted edges given by the following 
figure. 

G4 

Figure 2.19 

We know find M5, 

M5 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 0 0 2 0 0
v 4 4 0 0 4
v 4 4 0 0 0
v 0 0 0 4 0

 
 
 
 
 
 
  

. 

Let G5 be the type II MOD directed graph of M5 given by the 
following figure. 

v1 

v5 

v2 

v3 v4 

2 

4 

2 

4 
4 

2 

2 

2 
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G5 = 

Figure 2.20 

Let M6 be the MOD matrix of type II. 

M6 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 4 4 0 0 0
v .0 0 4 0 0
v 0 0 0 4 0
v 0 0 0 0 4

 
 
 
 
 
 
  

The type II MOD directed graph G6 associated with M6 is as 
follows: 

G6 = 

Figure 2.21 
The graph has only 3 edges and four loops. 

v1 

v5 

v3 
v4 

4 
4 

2 4 

4 

v2 

4 

4 

4 

v2 
v1 

4 

v3 

v4 4 

v5 

2 
4 

4 
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Finally before we comment on this graph G find M7. 

M7 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 0 0 0 4 0
v .2 2 0 0 0
v 0 0 0 0 4
v 0 0 4 2 0

 
 
 
 
 
 
  

Clearly the type I MOD directed graph G7 associated with M7 
has 9 edges and no loops is given  below. 

G7 = 

Figure 2.22 

M8  = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 0 0 0 0 4
v 0 0 0 2 0
v 0 0 4 2 0
v 2 4 0 0 2

 
 
 
 
 
 
  

. 

v5 

2 
v2

v4

v1

v3

4 

2 

4 

4 

4 
2 

2 
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 This type II MOD directed graph G8 has two loops and six 
edges given by the following figure. 

G8 = 

Figure 2.23 

Now we find M9, 

M9 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 0 0
v 0 0 4 2 0
v 0 0 0 0 2
v 2 2 0 0 2
v 0 0 2 0 0

 
 
 
 
 
 
  

. 

Thus the type II MOD directed graph associated with M9 has 
only 6 edges and no loops. The graph G9 is as follows. 

G9 = 

 
 

Figure 2.24 

2 

v2 v1 

v5 

v4 v3 
4 

2 2 

2 
2 2 

2 

v2 v1 

v4 v3 
v5 

4 
4 

2 
2 

4 

4 2 

2 
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From this graph it is easily seen all graphs G2n+1 have no 
loops whereas all G2n has loops.  

Study in this direction is left as an exercise to the reader. 

 Next we proceed onto describe type III MOD directed graphs 
by examples. 

Example 2.11: Let G be the type III MOD directed graph given 
by the following figure.  The vertices take their values from Z7. 

G = 

where v1 = 0, v2 = 1,  v3 = 2 ,v4 = 3, v5 = 4, v6 = 5 and v7 = 6. 

Figure 2.25 

Let M be the type III MOD adjacency matrix related to G 

M  = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 1 1 0 0 0 0
v 0 0 0 1 0 0 0
v 0 0 0 1 0 0 0
v 0 0 0 0 0 1 1
v 0 0 1 0 0 0 1
v 0 0 0 0 0 0 1
v 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
  

1 

v1 v2 

v5 

v7 

v4 v3 

v6 

1 

1 

1 

1 

1 

1 

1 

1 
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We find M2 

M2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 2 0 0 0
v 0 0 0 0 0 1 1
v 0 0 0 0 0 1 1
v 0 0 1 0 0 0 1
v 0 0 1 1 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
  

 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 1 0 0 0
v 0 0 0 0 0 1 1
v 0 0 0 0 0 1 1
v 0 0 1 0 0 0 1
v 0 0 1 1 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

The type III MOD directed graph associated with M2 be G2 
which is as follows: 

G2 = 

Figure 2.26 

v1 v2 

v5 

v6 

v4 

v7 

v3 

1 

1 

1 1 

1 
1 

1 
1 1 

1 
1 

1 
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This is the way special product operation is performed. 

In the usual product operation M2 is kept as it is 

M2 =

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 2 0 0 0
v 0 0 0 0 0 1 1
v 0 0 0 0 0 1 1
v 0 0 1 0 0 0 1
v 0 0 1 1 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 1 0 0 0

 
 
 
 
 
 
 
 
 
  

.

Here there are two methods apart from the special one 
which thresholds all values greater than one to one. 

Other one keeps the value as it is as long as the values are in 
mod 7 as vertex set is from Z7.   

So if 8 occurs in Mt then it will be 1 and so on (t  2). 

Yet another type of operation is the expert wishes to take 
weight from any Zn; 2 ≤ n < ∞ and the product is performed.  

We will describe each by an example. 

Example 2.12:  Let G be the type II MOD directed graph with 
edge weights from {0, 1} and vertex set from Z6 given by the 
following figure: 

45



G = 

v1 = 0, v2 = 1, v3 = 2, v4 = 3 and v5 = 4. 

Figure 2.27 

The type II MOD matrix B of G is as follows: 

B = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 1 1 0 0
v 0 0 0 1 0
v 0 1 0 0 0
v 0 0 0 0 1
v 0 0 1 0 0

 
 
 
 
 
 
  

. 

Now we find B2 

B2 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 1 0 1 0
v 0 0 0 0 1
v 0 0 0 1 0
v 0 0 1 0 0
v 0 1 0 0 0

 
 
 
 
 
 
  

. 

The MOD type III directed graph B2 is as follows: 

v1 v2 

v3 v4 

v5 1 

1 

1 

1 

1 

1 
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B2  = 

Figure 2.28 

We find B3 

B3 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 0 1 1
v 0 0 1 0 0
v 0 0 0 0 1
v 0 1 0 0 0
v 0 0 0 1 0

 
 
 
 
 
 
  

. 

The MOD type III directed graph B3 is as follows. 

B3 = 

Figure 2.29 

v1 

v2 

v5 

v3 

1 

1 1 1 

v4 
1 

1 

v1 

v2 

v4 

v5 
1 

1 
1 

1 

v3 
1 

1 
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Let B4 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 0 1 0 1
v 0 1 0 0 0
v 0 0 1 0 0
v 0 0 0 1 0
v 0 0 0 0 1

 
 
 
 
 
 
  

The type III MOD directed graph B4 represented by M4 is as 
follows. 

B4
 = 

Figure 2.30 

This has only one edge and four loops. 

Consider B5 

B5 =

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 1 1 0 0
v 0 0 0 1 0
v 0 1 0 0 0
v 0 0 0 0 1
v 0 0 1 0 0

 
 
 
 
 
 
  

. 

Let B5 be the MOD directed type III graph given by the 
following figure: 

v1 

v3 

1 

1 
v5 

1 

v4 

1 

v2 
1 

48



Figure 2.31 

Clearly the type III MOD directed graph has no loops. 

We find B6 

B6 = 

1 2 3 4 5

1

2

3

4

5

v v v v v
v 0 1 0 1 0
v 0 0 0 0 1
v 0 0 0 1 0
v 0 0 1 0 0
v 0 1 0 0 0

 
 
 
 
 
 
  

. 

Clearly the  type III MOD directed graph has no loops. 

Figure 2.32 

v1 
v2 

v3 
v5 

v4 

1 

1 
1 

1 

1 

v1 

1 
v4 

v5 

v3 

v2 

1 

1 

1 

1 
2 
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This we see after a finite number of iterations say some k 
iterations we will get Bk = B. 

This type III MOD directed graph behaves in a very different 
way. 

Next we proceed  onto describe MOD graphs with vertex sets 
from subsets of Zn  h or C(Zn) or Zn  g or Zn  h or Zn 

 k.   

This study is not only new but also relevant for at times the 
vertex set can  be imaginary or indeterminate or a dual number 
or a special dual like number or a special quasi dual number.   

So to cater to these needs these new types of MOD graphs 
are most important. 

We call MOD graph to be a MOD neutrosophic graph if the 
vertex sets are subsets of Zn  I = {a + bI / a, b  Zn, I2 = I}. 

We will provide some examples of such graphs. 

Example 2.13:  Let G be the MOD neutrosophic graph with 
vertex set from  

Z10  I = {a + bI / a, b  Z10, I2 = I} 

given by the following figure: 

50



G = 

Figure 2.33 

Now there are situations in machines as well as in 
networking where the nodes can be indeterminate at one stage 
(repair or over used or heated or low power) in case of machines 
and (in mathematical modeling where nodes can be 
indeterminate) respectively. 

Example 2.14:  Let G be the MOD  neutrosophic graph with 
vertex weights from the set Z3  I given  by the following 
figure : 

1+Iv5 

2+4I 

3I 

7 

1 

5+5I 

3+I 

0 4I 

v6 

v4 

v2 
v8 

v1 

v7 
v3 

v4 
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G 

Figure 2.34 

 Next we proceed onto describe MOD finite complex number 
graphs by some examples. 

We call a MOD graph which takes the vertex set values from 

C(Zn) = {a + biF / a, b  Zn, 2
Fi = (n – 1)} 

are defined as MOD complex graphs or MOD finite complex 
number graphs. 

We will illustrate this situation by some examples. 

Example 2.15:  Let G be the MOD complex graph with vertex 
set from C(Z4) given by the following figure: 

1+2I 

v1 

2 

0 

2+I 

I 

1 2I 

1+I 

2+2I 

v3 

v7 

v8 

v9 

v6

v5 v2 

v4 
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G = 

Figure 2.35 

Example 2.16:  Let H be the MOD finite number complex graph 
with edge weights from C(Z6) which is given  by the following 
figure: 

H = 

Figure 2.36 

v5 

iF 

2iF+1 

3 

0 

1 

3+3iF 

2+iF v1 

v2 

v9 
v3 

v4 

v6 

1 3 

5 

4I+3 

5I+2 

3I+4 2I 

I 
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 These MOD graphs will find its applications in mathematical 
modeling when the nodes are imaginary or mixed imaginary or 
real. 

 Next we proceed onto describe MOD dual number graphs. If 
a MOD graphs takes its vertex set values from the set 
Zn  g = {a + bg / a,  b  Zn, g2 = 0} then we define the MOD
graph as MOD dual number graph. 

We will describe this situation by some examples. 

Example 2.17: Let H be the MOD dual number graph given by 
the following figure with vertex set from Z9  g. 

H = 

Figure 2.37 

1 

2g 

0 
g 

4 

3+5g 

7 

5g 

8 
6+6g 
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Example 2.18: Let V be the MOD dual number graph with edge 
weights from Z4  g given by the following figure: 

V = 

Figure 2.38 

These newly constructed MOD graphs can find lots of 
applications in various fields.  

All the more MOD dual number graphs can be very helpful 
when the nodes are mixed dual numbers or dual numbers or real 
values. 

Next we describe MOD special dual like number graphs. 

Let G be a MOD graphs if the vertex set is from 
Zn  h = {a + bh / a, b  Zn, h2 = h} then we define G to be a 
MOD special dual like number graph. 

We will describe this by some examples. 

Example 2.19:  Let B be the MOD special dual like number 
graph with vertex elements from Z7  h given by the 
following figure: 

g+1 

1 

2 

3 

3g 

g g+3 

0 

2g+2 
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B = 

Figure 2.39 

Example 2.20:  Let V be the MOD special dual like number 
graph with vertex set from Z12  h given by the following 
figure: 

V = 

Figure 2.40 

2h 

6 

2 

3 

2+3h 6h 

3+6h 

1+h 

5h 

1+h 

8 

3 

2h+
9 

0 

9h 
3+h 

10h+
7 

2+7h 

5h 
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Example 2.21:  Let G be a MOD graph with vertex set from Z15 
 k = {a + bk / a, b  Z15 and k2 = 14k} given by the following 
figure : 

G = 

Figure 2.41 

G will be known as the MOD special quasi dual number 
graph. 

Thus if G is a MOD graph which takes vertex sets from; 

Zn  k = {a + bk / a, b  Zn, k2 = (n – 1) k} then we define 
G to be a MOD special quasi dual number graph. 

We will give one more example of this situation. 

3k k+ 
14 

3 

14 

1 

8k 

11 

10+
9k 

9k+
7 

v6 v7 

v8 

v9 

v5 
v4 

v3 

v1 
v2 
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 Example 2.22:  Let H be the MOD special quasi dual number 
graph with vertex elements from Z11  k given by the 
following figure: 

H = 

Figure 2.42 

These MOD graphs will also find appropriate applications in 
mathematical modeling and so on. 

Next we proceed onto describe type I MOD neutrosophic 
graphs, type I MOD dual number graphs, type I MOD complex 
number graphs and so on only by examples. 

10k 

1 

0 

1+5k 

2k 

7k+
5 10+

k 

7 9 

2+k 

3k+
2 
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A MOD directed graphs which has any vertex set but whose 
edge weights are from Zn  I are defined as type I MOD 
neutrosophic directed graph. 

Example 2.23:  Let V be the type I MOD neutrosophic directed 
graph with edge weights from Z6  I given by the following 
figure: 

V = 

 

Figure 2.43 

The adjacency matrix M associated with V is as follows: 

M =

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 I 0 0 2 0
v 0 0 0 0 0 0
v 0 4 0 0 0 0
v 0 2I 0 0 0 0
v 0 0 0 0 0 3
v 0 0 0 1 I 0 0

 
 
 
 
 
 
 
 

  

. 

We find 

v1 

v3 

v5 v6 

v4 

v2 

3 
1+I 

2I 

4 

2 

I 
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M2 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0

.
v 0 0 0 0 0 0
v 0 0 0 3 3I 0 0
v 0 4I 0 0 0 0

 
 
 
 
 
 
 
 
  

The type I MOD neutrosophic directed graph associated with 
M2 be V2 which is as follows: 

V2 = 

Figure 2.44 

Now we find  M3 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

v1 
v2 

v6 
v4 

v5 

v3 

3+3I 

4I 
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The type I MOD directed neutrosophic graph is given  by 

Figure 2.45 

This has no edge and no loops. 

Example 2.24: Let S be the type I MOD neutrosophic directed 
graph with edge weights from Z5  I given by the following 
figure: 

Figure 2.46 

The type I MOD neutrosophic matrix P associated with S is 
as follows: 

v6 

v1 v2 

v3 v4 

v5 3+3I 

V3 = 

v1 

v4 

v5 

v3 

v6 

3 

S= 
1+I 

v2 

4 

2I
2

2

I

61



P = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 I 0 0 0 0
v 0 0 0 2I 0 0
v 0 0 0 2 0 3

.
v 2 0 0 0 0 0
v 0 0 0 4 0 0
v 1 I 0 0 0 0 0

 
 
 
 
 
 
 
 
  

We now find the square of P in the following: 

P2 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 2I 0 0
v 4I 0 0 0 0 0
v 2 3I 0 0 0 0 0

.
v 0 2I 0 0 0 0
v 3 0 0 0 0 0
v 0 2I 0 0 0 0

 
 
 
 
 
 
 
 
  

The type I MOD neutrosophic directed graph  S2 associated 
with P2 is as follows: 

S2 = 

 

Figure 2.47 

v1 
v2 

v3 

v4 

v6 

v5 3 

2I 

2+3I 

2I 

4I 

2I 
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Next we find P3.

P3  = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 4I 0 0 0 0 0
v 0 4I 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 4I 0 0
v 0 3I 0 0 0 0
v 0 0 0 4I 0 0

 
 
 
 
 
 
 
 
  

. 

The type I MOD neutrosophic directed graph S3 is as 
follows: 

Figure 2.48 

S3 has three loops all of them are pure neutrosophic. 

Edge weights of S3 are also pure neutrosophic. 

Next we find P4 in the following: 

v1
4I 

S3 

v3 

v2 

v5 

3I 
v4 

v6 
4I 

4I 

4I 

63



P4 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 4I 0 0 0 0
v 0 0 0 3I 0 0
v 0 0 0 0 0 0

.
v 3I 0 0 0 0 0
v 0 0 0 I 0 0
v 3I 0 0 0 0 0

 
 
 
 
 
 
 
 
  

The type I MOD directed neutrosophic graph S4 related with 
P4 is as follows. 

 

Figure 2.49 

Now we find P5 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 3I 0 0
v I 0 0 0 0 0
v 0 0 0 0 0 0
v 0 3I 0 0 0 0
v 2I 0 0 0 0 0
v 0 3I 0 0 0 0

 
 
 
 
 
 
 
 
  

. 

Let S5 be the type I MOD directed neutrosophic graph 
associated with P5 which is as follows: 

v4 v1 

v2 

v4 

v6 v5 I 
3I

3I3I

4I

S4 = 
v3 

3I
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S5 = 

Figure 2.50 

Thus we can find any number such MOD directed 
neutrosophic graphs of type I for a given MOD directed graph.  

This will have certainly some implications in mathematical 
modeling as well as it would also can suggest  a model given by 
one expert say M is related to another experts model on the 
same problem as M = Mt, (t > 0).  

Such study can also relate the experts opinion in a distinct 
and innovative way. 

Another problem in this direction is can we say if S is the 
MOD type I neutrosophic matrix related with the MOD type I 
directed graph, then 

 Mn = (0) for some n or Mn = M? 

Study in this direction is new and left as an exercise to the 
reader. 

Next we proceed onto define and describe MOD directed 
finite complex number graphs of type I. 

v1 v2 

v4 

2I 

I 

v6 

3I 3I 

v5 

3I 
v3 
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 Let G be a type I MOD directed graph if the edge weights are 
from C(Zn) then we define G to be a type I MOD finite complex 
number directed graph. 

We will illustrate this situation by some examples. 

Example 2.25:  Let G be the type I MOD directed finite complex 
number graph with edge weights from C(Z6) given by the 
following figure. 

G = 

Figure 2.51 

Let M be the type I MOD finite complex matrix associated with 
G. 

M = 

1 2 3 4 5

1

2 F

3 F

4 F

5

v v v v v
v 0 1 3 0 0
v 0 0 1 i 0 0
v .0 0 0 i 0
v 0 2i 0 0 0
v 3 2 0 0 0

 
  
 
 
 
  

We find M2 

v1 

v3 

v5 

v4 

v2 

1+iF
2 

iF

2iF

1 

3 
3 
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M2 = 

1 2 3 4 5

1 F F

2 F

3

4 F

5 F

v v v v v
v 0 0 1 i 3i 0
v 0 0 0 i 5 0
v 0 4 0 0 0
v 0 0 2i 4 0 0
v 0 3 5 2i 0 0

 
  
 
 

 
  

. 

Let G2 be the type I directed MOD finite complex number 
graph associated with M2 given  by the following figure: 

Figure 2.52 

Now we find M3

M3 = 

1 2 3 4 5

1 F

2 F

3 F

4 F

5 F F

v v v v v
v 0 0 0 i 5 0
v 0 4 4i 0 0 0
v .0 0 4i 4 0 0
v 0 0 0 4i 4 0
v 0 0 3 3i 5i 4 0

 
  
 
 

 
   

v1 v2 

v3 v4 

v5 
3 

2iF + 4 

3iF 

4 
1+iF iF+5 G2 = 

5+2iF 
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 The MOD directed type I graph G3 associated with M3 is as 
follows. 

G3 = 

Figure 2.53 

This type I MOD finite complex directed graph has three 
loops and 3 edges. 

We now find M4, 

M4 = 

1 2 3 4 5

1 F

2 F

3 F

4 F

5 F F

v v v v v
v 0 4 4i 0 0 0
v 0 0 2i 0 0
v .0 0 0 2 4i 0
v 0 2i 4 0 0 0
v 0 2 2i 0 3 3i 0

 
 
 
 
 

 
   

We give the type I MOD finite complex number directed 
graph G4 associated with M4 in the following: 

v1 

v3 4+4iF 

v4 

5+iF 3+3iF 
v5 

4+4iF 

v2 
4+4iF 

5iF+4 
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Figure 2.54 

We now find M5 

M5 = 

1 2 3 4 5

1 F

2

3 F

4

5 F

v v v v v
v 0 0 2i 0 0
v 0 0 0 4 0
v .0 4 4i 0 0 0
v 0 0 2 0 0
v 0 0 4i 0 0

 
 
 
 
 
 
  

The type I MOD directed graph of finite complex numbers 
G5 associated with M5 is as follows: 

G5  = 

Figure 2.55 

G4 = 

v1 v2 

v3 v4 2iF 

4+4iF 

v5 

2+4iF 
2+2iF 

2iF+4 

v2 v1 

v3 v4 

4+4iF 2iF 

v5 

2 

4 

 4iF 

3+3iF 
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Thus we can find any Mn and its associated Gn type I MOD
finite number directed graph. 

 Next we proceed onto describe type I MOD directed dual 
number graphs. 

 Let G be a type I MOD directed graph withi edge weights 
from Zn  g = {a + bg / a, b  Zn, g2 = 0}, we call G to be the 
type I MOD directed dual number graph.  

We will illustrate this situation by some examples. 

Example 2.26: Let G be the type I MOD directed dual number 
graph with edge weights from Z8  g given by the following 
figure. 

 
 

 
G = 

Figure 2.56 

Let M be the type I MOD dual number matrix associated 
with G;  

v1 
v2 

v3 

v4 

v5 

v7 

v6 
3 

5g 
2g 

2g+5 

4 

3 

2+6g 

4g 
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M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 4 3 0 0 0 0
v 0 0 0 4g 0 0 0
v 0 0 0 2 6g 0 0 0
v 0 0 0 0 3 0 0
v 0 0 0 0 0 0 5g
v 0 2g 5 0 0 0 0 0
v 0 0 0 0 0 2g 0

 
 
 
 
 
 
 
 

 
  

. 

We find M2 

M2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 6 2g 0 0 0
v 0 0 0 0 4g 0 0
v 0 0 0 0 6 2g 0 0
v 0 0 0 0 0 0 7g
v 0 0 0 0 0 0 0
v 0 0 0 4g 0 0 0
v 0 2g 0 0 0 0 0

 
 
 
 
 
 
 
 
 
  

. 

The type I MOD directed dual number graph G2 associated 
with M2 is as follows. 

G2 = 

Figure 2.57 

v1 

v3 
v4 

v2 

v5 

v7 

v6 

4g 

4g 

6+2g 

6+2g 

2g 

7g 
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Next we find M3 in the following 

M3 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 2 6g 0 0
v 0 0 0 0 0 0 4g
v 0 0 0 0 0 0 6g
v .0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 2g 0 0
v 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
  

The type I MOD directed dual number graph G3 is as 
follows. 

G3  = 

Figure 2.58 

This  type I MOD dual number directed graph G3 has only 
four edges no loops. 

M4 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 0 0 2g
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
  

v1 

v4 
v7 

v2 

v5 v6 

v3 
2g 

4g 6g 

2+6g 
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The type I MOD dual number directed graph G4 is as 
follows. 

G4 = 

 
 

Figure 2.59 

So at one stage we will have Mn = (0) for some finite n, 
(n > 0). 

 Interested reader can work more such type I MOD dual 
number directed graphs.  

Now we proceed onto define type I MOD special dual like 
number directed graphs. 

 A type I MOD directed graph if it takes its edge weights 
from Zn  h = {a + bh / a, b  Zn, h2 = h} is defined as the 
type I MOD directed special dual like number graph.  

We will illustrate this situation by some examples. 

Example 2.27:  Let G be the MOD type I special dual like 
number directed graph with edge weights from  Z10  h.  

The following figure for G is given below: 

v1 v2 

v4 
2g 

v3 

v5 

v7 

v6 
2g 
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G = 

 

Figure 2.60 

The associated type I MOD matrix of G is as follows: 

N = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 5 0 0 0 0 0 0
v 0 0 0 4h 2 0 0 0 0
v 6 0 0 0 0 0 0 0
v 0 0 0 0 2 0 0 0
v 0 0 0 0 0 0 0 8h
v 0 0 2 3 0 0 0 0

0 0 0 0 0 4 0 0v
v 0 0 0 0 0 0 2 9h 0

 
  
 
 
 
 
 
 
 
 

  

. 

Now we proceed onto find N2.  Let the corresponding type I 
MOD graph associated with N2 be G2. 

v1 v2 
5 

v3 

v6 

v4 
v5 

v8 

v7 

6 

2 
3 

4h+2 

2 8h 

2+9h 4 
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N2 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 0 0 0 0 0 0
v 0 0 0 0 4 8h 0 0 0
v 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 6h

.
v 0 0 0 0 0 0 8h 0
v 2 0 0 0 6 0 0 0

0 0 8 2 0 0 0 0v
v 0 0 0 0 0 8 6h 0 0

 
  
 
 
 
 
 
 
 
 

  

The type I MOD special dual like number graph associated 
with N2 is as follows. 

G2
 =

Figure 2.61 

Now we find N3 in the following: 

v1 4+8hv2 

v5 

v3 

v4 

v6 v7 
v8 

6h 6 

2 

2 

8h 

8+6h 

8 
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N3 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0 6h
v 0 0 0 0 0 0 0 0
v 0 0 0 0 0 0 6h 0

.
v 0 0 0 0 0 2h 0 0
v 0 0 0 0 0 0 0 8h

8 0 0 0 4 0 0 0v
v 0 0 6 2h 4 8h 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

   

The type I MOD special dual like number directed graph G3 
associated with N3 is as follows: 

G3 = 

 
 

 

 

Figure 2.62 

There is no loops only weighted edges. 

 Likewise we can find the type I MOD directed graph with 
edge weights from Z10  h. 

 We now give one example of the type I MOD directed graph 
G with edge weights from  

v1 

v3 v6 

v8 

v4 

v5 
v2 

v7 
6h 

6h 

4+8h 

2h 

8h 
6+2h 

4+8h 
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Zn  k = {a + bk / a, b  Zn, k2 = (n – 1)k}, 
the graph G will also be known as the type I MOD special quasi 
dual number graph. 

Example 2.28:  Let G be the type I MOD directed special quasi 
dual number graph with edge weights from  

Z9  k = {a + bk / a, b  Z9, k2 = 8k}. 

The figure of G is as follows: 

 

Figure 2.63 

The type I MOD matrix of G is as follows: 

M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 8k 0 0 0 0 0
v 0 0 0 0 0 4 0
v 4 0 0 0 0 0 0
v 0 0 1 k 0 0 0 0
v 0 0 0 5 k 0 0 0
v 0 0 0 0 0 0 2 3k
v 0 0 0 0 1 0 0

 
 
 
 
 

 
 
 

 
  

. 

v1 
8k 

v3 

v7 

v6 

v2 

v4 

v5 

1 

5+k 

2+3k 

4 1+k 

4 

77



We give M2 in the following: 

M2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 0 5k 0
v 0 0 0 0 0 0 8 3k
v 0 5k 0 0 0 0 0
v 4 4k 0 0 0 0 0 0
v 0 0 5 5k 0 0 0 0
v 0 0 0 0 2 3k 0 0
v 0 0 0 5 k 0 0 0

 
  
 
 

 
 
 

 
  

. 

The type I MOD directed graph G2 is as follows. 

G2 = 

Figure 2.64 

Now we find M3 in the following: 

v2 
5+5k v1 

v3 

v6 
v7 

v5 

v4 

5k 

4+4k 

8+3k 

2+3k 

5k 5+k 
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M3 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 0 0 4k
v 0 0 0 0 8 3k 0 0
v 0 0 0 0 0 2k 0
v 0 0 0 0 0 0 0
v 2 2k 0 0 0 0 0 0
v 0 0 0 1 5k 0 0 0
v 0 0 5 5k 0 0 0 0

 
  
 
 
 
 
 

 
  

.

The MOD type I directed graph  G3 is as follows: 

G3 = 

Figure 2.65 

Now we find 

M4 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 4k 0 0
v 0 0 0 4 2k 0 0 0
v 0 0 0 0 0 0 7k
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 1 k 0 0 0 0
v 2 2k 0 0 0 0 0 0

 
  
 
 
 
 
 

 
  

.

v1 v2 

v3 

v6 v7 

v4 v5 

2+2k 
8+3k 

1+5k 

1+5k 
 2k 

5+5k 
4k 

79



 The type I MOD special quasi dual number directed graph G4 
associated with M4 is as follows. 

G4 = 

Figure 2.66 

 This is the way the product operation is performed using 
type I MOD special quasi dual number directed graphs with edge 
weights from  

Zn  k = {a + bk / k2 = (n – 1)k; a, b  Zn}. 

We now leave it for the reader to develop the properties of 
MOD directed graphs built using various sets like C(Zn) or 
Zn  I or Zn  g or Zn  h or Zn  k and analyse the 
special feature associated with them. 

We suggest the following problems for the interested 
reader. 

Problems 

1. Let G be the MOD graph with entries from Z7.

i) How many such MOD graphs can be got using Z7?
ii) Find the number of MOD graphs using Zn, (2 ≤ n < ∞).
iii) What are the special features enjoyed by these MOD

graphs?

v5 

v1 
v2 

v4 

v7 
v6 

v3 

7k 
1+k 

2+2k 

4+2k 
4k 

80



2. Let G be the MOD directed graph given by the following
figure with vertex the following figure with vertex set from
Z7.

G = 

Figure 2.67 

i) Find all MOD graphs isomorphic with G.
ii) All MOD graphs with seven vertices not isomorphic with

G.
iii) Find all MOD graphs (distinct) with  seven vertices.
iv) How many MOD graphs with six vertices from Z7 can be

constructed?
v) Study question (iv) for 5 and 4 vertices.
vi) Find the number of MOD graphs with three vertices from

Z7.

3. Study any other distinct feature associated with MOD
graphs.

4. Let G be the MOD neutrosophic graph with edge set from
Zn  I.

i) Show all MOD graphs are included in the MOD
neutrosophic graphs.

ii) Find the number of distinct MOD neutrosophic graphs
with |Zn  I| number of vertices.

v1 

v3 

v5 

v6 v7 

v4 

v2 
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iii) Find the number of MOD neutrosophic graphs with 5
vertices.

iv) Enumerate all special features associated with MOD
neutrosophic graphs.

5. What are the special and distinct features enjoyed by MOD
finite complex number graphs with vertex set from C(Zn)?

6. Show certainly these can find many application as we tred
over finite number of vertices.

7. Study MOD dual number graphs with vertex set from
Zn  g.

Show this will have lot of application when one works with
dual number as vertices.

8. Let {G} be the collection of all MOD special dual like
number graph with vertex set from Z6  h or subsets of
Z6  h.

i) How many graphs exist in {G}?
ii) Does these graphs enjoy any special property?
iii) How many of these MOD special dual like number

graphs with vertex set from Z6  h are complete
graphs?

9. Let B = {collection of all MOD special quasi dual number
vertex set graphs with vertex sety from Z10  k or subset
of {Z10  k}.

i) Find o(B).
ii) How many are complete MOD graphs?
iii) Compare the collection when Z10  k is replaced by

a) Z10,
b) Z10  g,
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c) Z10  I and
d) C(Z10).

10. What are the special features associated with type I MOD
directed graph?

11. Let G = {collection of all type I MOD directed graphs with
edge weights from subsets of Z9 or Zn}.

i) Find o(G).
ii) Hence find o(G) if Z9 is replaced by Zn, 2 ≤ n < ∞.
iii) If G is given by the following figure:

Figure 2.68 

a) Find the type I MOD connection matrix M1
associated with G1.

b) Find 2
1M , 3

1M , 4
1M , …., t

1M ; 2 ≤ t < ∞ and the 
corresponding type I MOD graphs.

c) Can we say Mn = (0) or Mn = Mt after a finite
number of products t = 1 or 2 or 3?

12. Distinguish between type I MOD directed graphs and MOD
graphs.

13. Let {G} be the collection of all type I MOD directed
neutrosophic graphs with edge weights from Z8  I.

v1 
3 

v3 v4 

v2 

v5 

v6 

G1 = 4 

7 
8 2 

3 

1 
5 2 
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a) Find o({G}).
b) Let H  {G} given by the following figure:

Figure 2.69 

If M is the type I MOD matrix find M2, M3 and so on and the 
related H2, H3 and so on. 

c) What type of Mt; 2 ≤ t < ∞ have loops?
d) When will Ms = (0); 2 ≤ s < ∞?
e) Find G1  {G} which has 10 vertices taking edge

weights from Z8  I.

14. Let {G} be the collection of all type I MOD finite complex
number directed graph with edge weights from C(Z12).

a) Find o({G}).
b) If H  {G} is given by the following figure:

G = 

Figure 2.70 

6 v1

v2 

v5 

v4 

v6 

v3 
3+

1 

I 

7+6I 

2 

2+3I 

4I

v1 v2 

v3 
v5 

v6 

v4 
2iF 

3+iF 

8+5iF 

4 

1 

7iF

5+8iF 

2 
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If M is the MOD associated matrix find the type I MOD 
graphs associated with M2, M3 and so on. 
c) Can we say Mt = M or Ms = (0)?

15. Let {H} be the collection of all type I MOD finite dual
number directed graph with edge weights from Z11  g.
i) Find o({H}).
ii) If H1 be a MOD finite dual number directed graph of

type I by the following figure:

H1 = 

Figure 2.71 

If M is the MOD matrix dual numbers associated with H1 
find M2, M3 and so on and obtain the corresponding MOD
type I graphs. 
iii) Which of the MOD type I graphs are free from loop?
iv) Enumerate all type I MOD directed graphs which has

loops.

16. Let {P} be the collection of all MOD type I directed special
dual like number graph with edge weights from

Z21  h = {a + bh / a, b  Z21, h2 = h}. 

a) Find o({P}).
b) If G1 be a graph in {P} with 7 vertices how many type I

MOD directed special dual like number graphs can be
obtained.

6+g 
v1 

v3 

v2 

v4 

v7 

v6 

v5 

1 

5g 
2g 

7+3g 

1+5g 
2 g 
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c) How many Gi’s are there?

d) Let H =

Figure 2.72 

be the type I  MOD directed special dual like number graph. 
M the associated type I MOD matrix. 

Find M2, M3, … the corresponding MOD directed special 
dual like number graphs, which of them have loop? 

17. Let {G} be the collection of type I MOD special quasi dual
number directed graphs with edge weights from

Z14  k = {a + bk / k2 = 13k, a, b  Z14}. 

i) Find o({G}).
ii) Let V be the type I special quasi dual number MOD

directed graph given by the following figure:

3 

v1 

v3 

v5 v6 

v7 v8 

2 
3h 

1 

4+h 

2 

v9 

v22+3h 

v4 8+h 

7

5 

8+20h 

1

4
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V  = 

Figure 2.73 

Find the type I MOD directed special quasi dual number 
MOD matrix M of V. 

iii) Find M2, M3 and M7 and their respective MOD type I
directed special quasi dual number graphs V2, V3 and
V7.

iv) Which of these graphs have loops?
v) Describe any other special feature associated with these

type I MOD directed special quasi dual number graphs.
vi) Compare this with type I MOD directed graphs, type I

MOD directed dual number graph and type I finite
complex number graph.

18. Describe and develop type II MOD directed graphs.

19. Let {G} be the collection of all MOD dual number directed
graphs of type II with edge weights from Z18  g.

i) Find o({G}).
ii) How many of the type II MOD directed dual number

graphs will have loops?
iii) Enumerate all special features enjoyed by type II MOD

directed dual number graphs.
iv) Compare type I MOD directed dual number graph with

type II MOD directed dual number graphs.

2 
v1 

v3 

v1 

v5 v4 

5k 

4 1 

3k 4+6k 

v6 

3 
11
1 v7 
10k 

k 
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 20. Study questions (i) to (iv) of problem 19 in case of type II
MOD directed neutrosophic graphs with edge weights from
Z29  I.

21. Study questions (i) to (iv) of problem 19 in case of type II
MOD directed finite complex number graphs with edge
weights from C(Z23).

22. Describe all special features associated with type III MOD
directed graphs using Zn or Zn  I  or Zn  g or Zn  h
or Zn  k or C(Zn).

23. Distinguish MOD type III directed graphs from MOD type II
directed graphs and MOD type I graphs.

24. Let G be the type III MOD directed graph G with vertex set
from Z6 and edge sets from {0, 1} given by the following
figure.

G  = 

Figure 2.74 

i) Find the type III MOD matrix M associated with G.
ii) Find M2 and the related graph G2. Does G2 have loops?
iii) Can we say there exist a n such that Mn = M?
iv) Is it possible Mt = (0) for 2 ≤ t < ∞?
v) Which is true in this case (iii) or (iv)?

25. Let G be the type II MOD dual number directed graph given
by the following figure with edge weights from Z16  g.

1 

v1 v2 

v4 

v5 v6 

1 1 
1 

1 

1 

1 

v3 
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 Figure 2.75 

i) Find M related with G.
ii) Find M3, M4

, M7 and M9 and the related graphs G3, G4,
G7 and G9 respectively.

iii) Can Mt (2 ≤ t < ∞) have loops?
iv) What is the smallest t so that Mt has loops?
v) Can Mt = (0) for some t, 2 ≤ t < ∞?
vi) Can Mt = M for some t, 2 ≤ t < ∞?
vii) Enumerate any other special and interesting feature

enjoyed by this type II MOD directed dual number graph
G.

26. Let G be the type II MOD directed finite complex number
graph given by the following figure with edge weights from
C(Z6).

Figure 2.76 

15g 

v1 v2 

v3 v4 

v5 

4 
5g 

8 
v6 8 

4g+8 5g+1 

v7 

v8 13+g 
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v1 v2 
3iF

v3 
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v4 
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v5 v6 

1+iF 4 

v7 v8 
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1 

2+3iF 

5+2iF 
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i) Find the MOD type II finite complex number matrix M
associated with G.

ii) Find M3, M6, M9 and M12 and the related MOD type II
directed finite complex number graphs.

iii) Which Mt has loops?
iv) Find the smallest t so that Gt has loops.
v) Will odd order M2n+1 or even order M2n contribute to

MOD type II graphs with loops?
vi) Will Mt = (0) or Mt = M?

27. Let V be the type II MOD directed graph with edge weights
from Z12 given by the following figure:

Figure 2.77 

i) Find M the type II MOD matrix associated with V.
ii) Find M2, M4, M8, M16 and M32 and the corresponding

V2, V4, V8, V16 and V32 respectively.
iii) For what power of M the relation type II MOD directed

graph has loops?
iv) Can Mt = (0)?
v) Can Mt = M or Ms= (0), (2 ≤ t, s < ∞)?

3 
v1 

v3 

v2 

4 

v6 

1
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v5 v7 
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Chapter Three 

MOD NATURAL NEUTROSOPHIC GRAPHS 
AND THEIR PROPERTIES

 In this chapter for the first time we introduce the notion of 
MOD natural neutrosophic graphs in a systematic way.  

However in [68] we have used this concept in the MOD 
natural neutrosophic Cognitive Maps model. 

 Further in this book we use zero dominant MOD natural 
neutrosophic product that is 0. 

t
mI = 0; t = n or g or h or c or I or 

k, m  Zn is a zero divisor or nilpotent or an idempotent. 

We will proceed onto describe this notion first by examples. 

Example 3.1:  Let G be the MOD natural neutrosophic graph 
with vertex set from subsets of I

6Z  or whole of I
6Z  by the 

following figures. 
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Figure 3.1 

There are several MOD natural neutrosophic graphs using 
I
6Z . 

Infact finding the number of MOD natural neutrosophic 
graphs with vertex set I

6Z  happens to be challenging problem. 

Conjecture 3.1: Let be the MOD natural neutrosophic set. 

Finding the total number of  MOD natural neutrosophic 
graphs happens to be a challenging one. 

6
2I

6
3I

3 2 

6
3I

0 

2 

5 

6
4I

6
0I

2+ 6
0I

1 

5 

0 

3 

6
3I

+2
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Example 3.2:  Let I
4Z  be the MOD natural neutrosophic set. 

G1= 

Figure 3.2 

The MOD natural neutrosophic graph with vertex set from 
I
4Z is given in Figure 3.2 

G2  = 

Figure 3.3 

is a MOD  natural neutrosophic graph with two vertices. 

G3 = 

Figure 3.4 

4
0I 2+ 4

2I

3+ 4
0I 2 

1 0 

4 4
0 2I I

3 

1 
4
0I

3+
4
0I

0 

4
2I

3 

1+ 4
2I
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G4 = 

Figure 3.5 

G1, G2, G3 and G4 are the MOD natural neutrosophic graphs 
with vertex set from I

4Z . 

Example 3.3:  Let G be the MOD natural neutrosophic graph 
with entries from I

10Z  given by the following figures: 

 = H1 

Figure 3.6 

H2 = 

Figure 3.7 
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4
0I
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4 

10 10
6 0I I
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0I
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0I
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Next we can construct MOD natural neutrosophic finite 
complex number graph with vertex set from CI(Zn).  

This will be described by the following examples. 

Example 3.4: Let G1 be the MOD natural neutrosophic finite 
complex numbers with vertex set from CI(Z12). 

 = K1 

Figure 3.8 

K2 = 

Figure 3.9 

 K1 and K2 are MOD natural neutrosophic finite complex 
number graphs with vertex set from CI(Zn). 
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3iF 12
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F
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3iI

1+ 12
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12
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Example 3.5:  Let G be the MOD natural neutrosophic finite 
complex number graph with vertex set from CI(Z5). 

Figure 3.10 

Next we just give an example or two of MOD natural 
neutrosophic dual number graphs in the following. 

 A MOD graph which takes its vertex set from the MOD 
natural neutrosophic dual number set  
Zn  g = {a + bg / a, b  Zn, g2 = 0} will be known as the MOD
natural neutrosophic dual number graph. 

Example 3.6: Let G be the MOD natural neutrosophic dual 
number graph with vertex set from set Z9  g. G is given by 
the following figure: 

Figure 3.11 3g 

g
5g 6I  g

0I

5g+1 

g
2gI

g
3 8gI 

8 

5
0I

2 

3 4iF 

5
0I + 

3iF 
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We next give one more example of MOD natural 
neutrosophic dual number graphs. 

Example 3.7: Let G be the MOD natural neutrosophic dual 
number graph with vertex set from Z3  g given by the 
following figure: 

Figure 3.12 

When we need labeling differently these MOD graphs will 
play a vital role. 

For the labeled graphs can get the labeling from I
nZ  or 

CI(Zn) or Zn  g or Zn  I or Z3  k or Z3  h. 

 We can also obtain the adjacency matrix of a labeled graph. 
Thus both MOD graphs and MOD natural neutrosophic graphs 
can take the vertex values or distinctly labeled as per need.   

3
gI g

0I +2 

g 
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g
2gI

g g
g 2g

g
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I I

I




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2g 
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Vertex labeling as usual realized as a function from vertex 

set to Zn or Zn  g or Zn  h or C(Zn) or Zn  I or Zn  k 
or I

nZ  or Zn  II or Zn  gI  or Zn  hI or CI(Zn). 

 So these vertex labeled graphs will also be known as MOD 
graphs MOD dual number graphs so on and MOD natural 
neutrosophic graphs or MOD natural neutrosophic dual number 
graphs and so on as the vertex set is from these sets. 

All properties associated with vertex labeled graphs can be 
also developed for these all types of MOD graphs. 

Now we will first given an example of a adjacency matrix 
and describe the MOD natural neutrosophic special dual like 
number graphs by a few examples. 

Example 3.8:  Let G be the MOD natural neutrosophic number 
graph with vertex set from  I

12Z  given by the following figure 

 G = 

Figure 3.13 

The MOD adjacency matrix associated with G is as follows: 

12
0I 12

6I
5



 5 
 6 

12
3I

12
2I

1 

3+ 12
4I
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12 12 12 12 12
0 2 3 4 6

12
0
12
2
12
3

12
4
12
6

1 5 6 I I I I 3 I 5
1 0 0 1 0 0 0 1 0
5 0 0 0 1 0 0 0 1
6 1 0 0 0 0 1 0 1

I 0 1 0 0 0 1 0 1
I 0 0 0 0 0 1 1 0
I 0 0 1 1 1 0 0 0

3 I 1 0 0 0 1 0 0 0
5 I 0 1 1 1 0 0 0 0

 




. 

Thus the MOD natural neutrosophic graph which takes its 
vertex set from Zn  hI will be defined as MOD natural 
neutrosophic special dual like number graph. 

Example 3.9: Let H be the MOD natural neutrosophic special 
dual like number graph with vertex set from Z11  hI given by 
the following figure: 

Figure 3.14 

The MOD adjacency special dual like number matrix M is 
follows: 

10

h
3I 3

6+h

7h+12+h
0

h
3hI
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M = 

h h
3 3h

h
3
h
3h

0 3 10 h 2 7h 1 6 h I I
0 0 0 1 0 0 0 1 0
3 0 0 1 1 0 0 0 0

10 1 1 0 0 0 0 1 0
2 h 0 1 0 0 1 0 0 0
7h 1 0 0 0 1 0 1 0 0
6 h 0 0 0 0 1 0 0 1

I 1 0 1 0 0 0 0 1
I 0 0 0 0 0 1 1 0

  





. 

Interested reader can work more with such MOD  natural 
neutrosophic special dual like number graphs which are nothing 
but a special type of labeled graphs with vertex set from 
Z12  hI. That is there is a function from the vertex set to the 
set Zn  hI. 

 The reader is expected to work with more examples and 
derive all properties associated with labeled graphs.  

Next we proceed onto define and describe the new notion of 
MOD natural neutrosophic graphs of type I in the following. 

Let G be the MOD natural neutrosophic directed type I graph 
with edge weights from I

nZ  and vertex set can be anything. 

We give some examples of them. 

Example 3.10: Let G be the MOD natural neutrosophic directed 
type I graph with edge weights from I

10Z  given by the following 
figure: 
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Figure 3.15 

 Let M be the MOD type I connection matrix of G which is 
given in the following. 

M = 

1 2 3 4 5 6 7

10 10
1 5 2

10 10
2 0 6

3

4

5

6

7

v v v v v v v
v 0 5 I 0 0 I 0
v 0 0 0 0 I I 0 0
v 0 0 0 3 0 0 0
v 0 4 0 0 0 0 0
v 0 0 0 0 0 6 0
v 0 0 0 0 0 0 0
v 0 0 0 0 4 0 0

 
  
 
 
 
 
 
 
 
 

.

We can find M2 and the corresponding type I MOD directed 
graph G2 and so on for M3 and M4 in the following: 

v1

v3

v4 v6

v5

v7

v2
5 

4 

6 4 3 

10
5I

10
2I

10 10
0 6I I
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M2 = 

1 2 3 4 5 6 7

10 10 10
1 5 0 6

10 10
2 0 6

3
10 10

4 0 6

5

6

7

v v v v v v v
v 0 0 0 I I I 0 0
v 0 0 0 0 0 I I 0
v 0 2 0 0 0 0 0
v 0 0 0 0 I I 0 0
v 0 0 0 0 0 6 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 4 0

 
  
 
 

 
 
 
 
 
 

The MOD directed graph G2 of natural neutrosophic type I is 
as follows. 

Figure 3.16 

We now find M3 in the following. 

v7v6

10 10
0 6I I

v1

10 10
0 6I I

v4

v5

v2 v3

2 

10 10
0 6I I

10
5I

4 

6 
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M3 = 

1 2 3 4 5 6 7

10 10 10
1 5 0 6

10 10
2 0 6

10 10
3 0 6

10 10
4 0 6

5

6

7

v v v v v v v
v 0 I 0 0 0 I I 0
v 0 0 0 0 0 I I 0
v 0 0 0 0 I I 0 0
v 0 0 0 0 0 I I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 4 0 0

 
  
 
 

 
 
 
 
 
 

Let G3 be the type I MOD natural neutrosophic directed 
graph. 

G3 = 

Figure 3.17 

Now we find M4 in the following. 

v1

10
5I

v2 v3

v6 v4

v4

10 10
0 6I I

10 10
0 6I I

v5

10 10
0 6I I

10 10
0 6I I

4
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M4 = 

1 2 3 4 5 6 7

10 10 10
1 0 0 6

2
10 10

3 0 6
10 10

4 0 6

5

6

7

v v v v v v v
v 0 0 0 0 I I I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 I I 0
v 0 0 0 0 0 I I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0

 
 
 
 
 

 
 
 
 
 
 

Let G4 be the type I MOD natural neutrosophic directed graph. 

G4 = 

Figure 3.18 

We next find M6 in the following. 

v1

10 10
0 6I I

v3 v6

v4

v2

10 10
0 6I I

v510 10
0 6I I

v7

10
0I
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M6 =

1 2 3 4 5 6 7

10
1 0

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 0 I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

. 

Thus the MOD natural neutrosophic directed graph of type I 
G6 is as follows. 

G6 = 

Figure 3.19 

Now we find M5 in the following: 

M5 = 

1 2 3 4 5 6 7

10
1 0

2
10 10

3 0 6

4

5

6

7

v v v v v v v
v 0 0 0 0 0 I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 I I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 

. 

v1

v5

v2
10
0I

v4v3

v6

v7
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The type I MOD natural neutrosophic directed graph G5 is as 
follows. 

G5 = 

 

Figure 3.20 

The reader is left with the task of find the n such that 
Mn = (0). 

Example 3.11:  Let G be the type I MOD natural neutrosophic 
finite complex number directed graph with edge weights from 
C(Z6) in the following figure 

Figure 3.21 

Let M be the MOD type I finite complex matrix is given in 
the following: 

v1 v2

v3 v6

10
0I

v4

v1 v2

v3

v5

v4

4 

5 
2 

6
3I

6
0I

3iF 

10 10
0 6I I

v5
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M = 

1 2 3 4 5
6

1 3

2
6

3 0

4

5 F

v v v v v
v 0 I 0 0 5
v 0 0 0 4 0
v 0 0 0 I 0
v 0 0 0 0 2
v 0 0 3i 0 0

. 

We first find M2 in the following : 

M2 = 

1 2 3 4 5
6

1 F 3

2
6

3 0

4
6

5 0

v v v v v
v 0 0 3i I 0
v 0 0 0 0 2
v 0 0 0 0 I
v 0 0 0 0 0
v 0 0 0 I 0

. 

The MOD type I directed graph G2 associated with the MOD finite 
complex number matrix is as follows. 

G2 = 

Figure 3.22 

We find now M3 in the following : 

v1 3iF

v3v2

v4
v5

2 

6
0I

6
3I

6
0I

107



M3 = 

1 2 3 4 5
6 6

1 0 3

2

3
6

4 0
6

5 0

v v v v v
v 0 0 0 I I
v 0 0 0 0 0
v 0 0 0 0 0
v 0 0 0 I 0
v 0 0 I 0 0

 . 

The type I MOD directed graph G3 associated with M3 is as 
follows: 

G3  = 

Figure 3.23 

We find now M4 in the following 

M4 = 

1 2 3 4 5
6

1 0
6

2 0
6

3 0

4

5

v v v v v
v 0 0 0 0 I
v 0 0 0 I 0
v 0 0 0 I 0
v 0 0 0 0 0
v 0 0 0 0 0

.

 Let G4 be the MOD natural neutrosophic finite complex 
number directed graph is given in the following: 

v1

6
0I

v4

v2
6
0I

v5

v3
6
0I

6
3I
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G4  = 

Figure 3.24 

We find M6 in the following 

M6 = 

1 2 3 4 5
6 6

1 0 0

2

3
6

4 0

5

v v v v v
v 0 0 I I 0
v 0 0 0 0 0
v 0 0 0 0 0
v 0 0 0 I 0
v 0 0 0 0 0

. 

This is the way MOD graphs associated with powers of M, M the 
adjacency matrix associated with G. 

 The MOD graph of  natural neutrosophic elements of type I 
is as follows. 

G6 = 

Figure 3.25 

v1
6
0I

v5

v3 6
0I

v4

6
0I

v2

v1

v3

6
0I

v4
6
0I

v2

v5

6
0I
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Next we proceed onto describe type I MOD  natural 
neutrosophic-neutrosophic directed graphs.  

Let G be a type I MOD natural neutrosophic directed graph 
with edge weights from Zn  II. 

Then G is defined as n the type I MOD natural neutrosophic - 
neutrosophic directed graph.  

We will give examples of them. 

Example 3.12:  Let G be a type I MOD natural neutrosophic- 
neutrosophic directed graph G with edge weights from Z4  II, 
given by the following figure:

G = 

Figure 3.26 

The MOD type I connection matrix M associated with is as 
follows: 

v1

v2

v6

I
0I

v4

v3

1 2 

v5

2 

3 

I
2I

I
II
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M = 

1 2 3 4 5 6

1
I

2 0
I

3 2
I

4 I

5

6

v v v v v v
v 0 1 0 2 0 0
v 0 0 I 0 0 0
v 0 0 0 0 I 0
v 0 0 I 0 0 0
v 0 0 0 0 0 3
v 0 0 0 2 0 0

. 

We now find M2 in the following 

M2 = 

1 2 3 4 5 6
I I

1 0 I
I

2 0
I

3 2
I

4 2I

5
I

6 I

v v v v v v
v 0 0 I I 0 0 0
v 0 0 0 0 I 0
v 0 0 0 0 0 I
v 0 0 0 0 I 0
v 0 0 0 2 0 0
v 0 0 I 0 0 0



. 

Let G2 be the type I MOD natural neutrosophic-neutrosophic 
directed graph, which is given in the following: 

G2 = 

Figure 3.27 

v1

v4

v3

2 
v5

I
IIv2

I
0I

I I
0 II I

v6

I
2II

I
2I
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Next we find M3 in the following. 

M3 = 

1 2 3 4 5 6
I I

1 0 2I
I

2 0
I

3 2
I

4 2I
I

5 I
I

6 2I

v v v v v v
v 0 0 0 0 I I 0
v 0 0 0 0 0 I
v 0 0 0 I 0 0
v 0 0 0 0 0 I
v 0 0 I 0 0 0
v 0 0 0 0 I 0



. 

The type I MOD natural neutrosophic-neutrosophic graph G3 
associated with M3 is given by the following figure. 

G3 = 

Figure 3.28 

 Interested reader can work with any Mt; 2 ≤ t < ∞ and get 
the corresponding type I MOD natural neutrosophic neutrosophic 
directed graph G4.  

We give get another example of this situation. 

Example 3.13:  Let G be the MOD natural neutrosophic 
neutrosophic directed graph of type I with edge weights from 
Z10  II given by the following figure: 

I
0I

I
2II

v5

v3

I
2 II

I
II

v1

v2

I I
0 2II I

v6v4

I
2I
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Figure 3.29 

Let M be the MOD connection matrix associated with  G given 
in the following. 

M  = 

1 2 3 4 5
I

1 6I
I

2 6
I

3 0

4

5

v v v v v
v 0 I I 5 0
v 0 0 0 I 0
v 0 0 0 I 0
v 0 0 0 0 2
v 0 0 4 0 0

Now we find M2, 

M2 = 

1 2 3 4 5
I I

1 6I 0
I

2 6
I

3 0

4
I

5 0

v v v v v
v 0 0 0 I I 0
v 0 0 0 0 I
v 0 0 0 0 I
v 0 0 8 0 0
v 0 0 0 I 0



 . 

Let G2 be the MOD directed natural neutrosophic-
neutrosophic type I graph associated with M2. 

v1

I 

v2 v4

v3

v5

2 

5 

I
6I

I
6II

I
0I

4 
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G2 

Figure 3.30 

Now we find M3 in the following 

M3 = 

1 2 3 4 5
I I

1 6I 0
I

2 6
I

3 0
I

4 0
I

5 0

v v v v v
v 0 0 0 0 I I
v 0 0 I 0 0
v 0 0 I 0 0
v 0 0 0 I 0
v 0 0 0 0 I



. 

Now we give the type I MOD directed natural neutrosophic 
neutrosophic type I graph G3 in the following. 

 G3 = 

Figure 3.31 

There three loops and two edges.  

v1
I I
6 I 0I I

v2

v4v3

v5
I
0I

I
6I

I
0I

8 

I
0I

v1

I
0I

v3

v2
I
6I

v5

v4
I I
6 I 0I I

I
0I

114



Next we find 

M4 = 

1 2 3 4 5
I I

1 6I 0
I

2 0
I

3 0
I

4 0
I

5 0

v v v v v
v 0 0 I I 0 0
v 0 0 0 I 0
v 0 0 0 I 0
v 0 0 0 0 I
v 0 0 I 0 0



. 

Let G4 be the type I MOD directed natural neutrosophic 
neutrosophic graph associated with M4. 

G4 =   

Figure 3.32 

The graph G3 has only 5 edges no loops. 

We now proceed onto find M5 and M6 and the 
corresponding MOD natural neutrosophic-neutrosophic directed 
graphs G5 and G6 of type I respectively. 

M5 = 

1 2 3 4 5
I I

1 0 0
I

2 0
I

3 0
I

4 0
I

5 0

v v v v v
v 0 0 0 I I
v 0 0 0 0 I
v 0 0 0 0 I
v 0 0 I 0 0
v 0 0 0 I 0

. 

v1

v3

6 I
6I 0I I

v4

I
0I

v2

v5
I
0I

I
0I

I
0I
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Let G5 be the type I MOD directed natural neutrosophic- 
neutrosophic graph given by the following figure: 

G5 = 

Figure 3.33 

This graph has only give edges. 

Now we proceed onto find M6; 

M6 = 

1 2 3 4 5
I

1 0
I

2 0
I

3 0
I

4 0
I

5 0

v v v v v
v 0 0 0 0 I
v 0 0 I 0 0
v 0 0 I 0 0
v 0 0 0 I 0
v 0 0 0 0 I

. 

Now let G6 be the type I MOD directed natural neutrosophic 
neutrosophic graphs associated with M6 given by the following 
figure. 

 G6 = 

Figure 3.34 

v1

I
0I

v2

v3

v4

v5

I
0I

I
0I

I
0I

I
0I

v1 v2

v3

v4

v5

I
0I

I
0I

I
0I I

0I

I
0I

I
0I
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This is the same as graph G3 with only a little variation in 
the edge weight v1 to v6.  

Interested reader can work for the following result. 

i) Can we find at and s so that Mt = Ms 2 ≤ t, s < ∞?
ii) Can Mn = (0); 2 ≤ t, s < ∞?
iii) Will even power of M or odd powers of M alone

contribute for loops?
iv) Obtain any other special feature associated with M.

Next we proceed onto work with type I MOD natural 
neutrosophic directed dual number graphs? 

 Let G be a type I MOD natural neutrosophic directed graph 
with edge weights from Zn  gI.  

G will be defined as the type I MOD natural neutrosophic 
dual number directed graph. We will first illustrate this situation 
by some examples. 

Example 3.14: Let H be the type I MOD directed natural 
neutrosophic dual number graph with edge weights from 
Z10  gI given by the following figure: 

Figure 3.35 

v1 v2

g
0I

v3

v5

v4

v6

g
7gI2g+4 

6g
g
5I

g

5
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Let N be the MOD natural neutrosophic dual number matrix 
associated with the graph H 

N = 

1 2 3 4 5 6
g

1 0
g

2 7g

3
g

4 5

5

6

v v v v v v
v 0 I 0 0 0 0
v 0 0 0 I 0 0
v 2g 4 0 0 0 0 0
v 0 0 0 0 I 5
v 0 0 6g 0 0 g
v 0 0 0 0 0 0

 . 

We now find N2; 

N2 = 

1 2 3 4 5 6
g

1 0
g g

2 5g 7g
g

3 0
g g

4 5 5

5

6

v v v v v v
v 0 0 0 I 0 0
v 0 0 0 0 I I
v 0 I 0 0 0 0
v 0 0 I 0 0 I
v 4g 0 0 0 0 0
v 0 0 0 0 0 0

 Let H2 be the type I MOD directed natural neutrosophic dual 
number graph associated with N2 

H2 = 

Figure 3.36 

g
5I

v1 v2

v3

v5
v6

v4

g
7gI4g

g
5I

g
5gI

g
0I

g
0I
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Now find N3 

N3  = 

1 2 3 4 5 6
g

1 0
g g

2 5g 5g
g

3 0
g

4 5
g

5 0

6

v v v v v v
v 0 0 0 0 0 I
v 0 0 I 0 0 I
v 0 0 0 I 0 0
v I 0 0 0 0 0
v 0 I 0 0 0 0
v 0 0 0 0 0 0

.

The type I MOD directed natural neutrosophic dual number 
graph H3 is as follows: 

H3 = 

Figure 3.37 

Now we find 

v3

v5

g
5gI

g
5Iv1 v2

v4

g
5gI

g
5I

g
0I

g
0I v6

g
0I
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N4 = 

1 2 3 4 5 6
g g

1 0 0
g

2 5g
g g

3 0 0
g

4 0
g

5 0

6

v v v v v v
v 0 0 I 0 0 I
v I 0 0 0 0 0
v 0 0 0 0 I I
v 0 I 0 0 0 0
v 0 0 0 I 0 0
v 0 0 0 0 0 0

. 

The type I MOD directed natural neutrosophic dual number 
graph H4 is as follows: 

H4  = 

Figure 3.38 

Next  we proceed onto describe type I MOD directed natural 
neutrosophic special dual like number graphs.  

Let G be a type I MOD directed natural neutrosophic graph 
with edge weights from Zn  hI, then we define G to be a type 
I MOD natural neutrosophic special dual like number directed 
graph. 

We will provide examples of them. 

Example 3.15: Let G  be the type I MOD directed special dual 
like number natural neutrosophic graph with edge weights from 
Z7  hI given by the following figure: 

v1 v2

v5

g
0I

v4

v6

v3

g
0I g

0I

g
0I

g
0I

g
5gI
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Figure 3.39 

Let S be the MOD natural neutrosophic special dual like 
number type I matrix associated with the graph G. 

S = 

1 2 3 4 5 6
h

1 0

2
h

3 0

4

5

6

v v v v v v
v 0 h 0 I 0 0
v 0 0 0 1 0 0
v 0 0 0 0 0 I
v 0 0 5 0 0 0
v 0 4 0 0 0 0
v 0 0 0 0 2 0

. 

S2 of the matrix S is as follows 

S2 = 

1 2 3 4 5 6
h

1 0

2
h

3 0
h

4 0

5

6

v v v v v v
v 0 0 I h 0 0
v 0 0 5 0 0 0
v 0 0 0 0 I 0
v 0 0 0 0 0 I
v 0 0 0 4 0 0
v 0 1 0 0 0 0

. 

v1
v2

h 

v5
v4

h
0I

v3

v6

5 

h
0I 2 

4 
1 
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Let G2 be the type I MOD directed natural neutrosophic 
special dual like number graph associated with S2. 

G2  = 

Figure 3.40 

Now we find S3 in the following 

S3  = 

1 2 3 4 5 6
h

1 0
h

2 0
h

3 0
h

4 0

5

6

v v v v v v
v 0 0 5h 0 0 I
v 0 0 0 0 0 I
v 0 I 0 0 0 0
v 0 0 0 0 I 0
v 0 0 6 0 0 0
v 0 0 0 1 0 0

. 

The MOD type I directed natural  neutrosophic dual like number 
graph G3 associated with the matrix S3 is as follows. 

G3 = 

Figure 3.41 

v2

1 
v3

v1

v4

v5
v6

5 

4 

h
0I

h
0I h

0I

v2

1 

v3

v1 

v4

v5
v6

5h 

h
0I

h
0I

h
0I

h
0I

6 

h 
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We just find S5 in the following. 

S5 = 

1 2 3 4 5 6
h h

1 0 0
h

2 0
h

3 0
h

4 0
h

5 0
h

6 0

v v v v v v
v 0 I 0 0 I 0
v 0 I 0 0 0 0
v 0 0 I 0 0 0
v 0 0 0 I 0 0
v 0 0 0 0 I 0
v 0 0 0 0 0 I

. 

The type I MOD graph G5 associated with S5 is as follows: 

G5 = 

Figure 3.42 

 In similar ways one can find MOD type I graphs Gt using the 
matrix St; 2 ≤ t < ∞.  Finding the number of loops and edges of 
these graphs happens to be an interesting research. 

This is left as an exercise to the reader. 

Problem 3.1:  Can we have a MOD type I natural neutrosophic 
graph G which has M to be the related matrix such that Gt 
corresponding to Mt = 

t times

M M ... M


    for all t; 2 ≤ t < ∞ has no

loops? 

Next we provide one more example. 

v4

v1

v5

v3 h
0I

v2
h
0I

h
0I
a

h
0I

v6
h
0Ih

0I
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Example 3.16: Let K be the type I MOD directed natural 
neutrosophic special dual like number graph with edge weights 
from Z6  hI given  by the following figure. 

K = 

Figure 3.43 

Let P be the MOD type I matrix associated with the type I 
MOD graph K. 

P  = 

1 2 3 4 5 6
h

1 0

2

3
h

4 3

5

6

v v v v v v
v 0 h 0 2 I 0 3
v 0 0 0 1 0 0
v 2 0 0 0 0 0
v 0 0 0 0 2 I
v 0 4 0 0 0 0
v 0 0 3h 0 0 0



We find 

P2 = 

1 2 3 4 5 6
h h h

1 0 3 0
h

2 3
h

3 0
h

4 3

5

6

v v v v v v
v 0 0 3h h 4 I I I
v 0 0 0 0 2 I
v 0 2h 0 4 I 0 0
v 0 2 I 0 0 0
v 0 0 0 4 0 0
v 4 0 0 0 0 0

 

 . 

v2

v3

v1

v4

v6

v5

2 

h
3I

h
02 I

3h 

4 

2 

h 

3 
1 
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Let K2 be the MOD directed special dual  like number graph 
associated the matrix P2. 

K2 = 

Figure 3.44 

 Now we see K has only 8 edges where as the type I MOD 
graph K2 has 11 edges. We find P3 in the following. 

P3 = 

1 2 3 4 5 6
h h h h

1 0 3 0 3
h

2 3
h h h

3 0 3 0
h

4 3
h

5 3
h

6 0

v v v v v v
v 0 4 I I I 0 2h I
v 0 2 I 0 0 0
v 0 0 0 2h 4 I I I
v I 0 0 2 0 0
v 0 0 0 0 2 I
v 0 4h 0 2 I 0 0

 

 



. 

The MOD type I graph K3 associated with P3 is as follows: 

v1

v3

v4

v2

v6

I h
3 0I I

4+ h
0I

h
3I

3h

v5

2h 42

2

4 

4+ h
0I

h
3I
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K3 = 

Figure 3.45 

This MOD graph K3 has more number of edges than K2 and 
K1. K3 has two loops.  

Just we find P4 

P4 = 

1 2 3 4 5 6
h h h h

1 3 0 3 0
h

2 3
h h h h

3 0 3 0 3
h h h h

4 3 0 3 3
h

5 3
h h h

6 0 3 0

v v v v v v
v I I 2h I I 4 0 0
v I 0 0 2 0 0
v 0 2 I I I 0 4h I
v 0 I 0 I I 4 I
v 0 2 I 0 0 0
v 0 0 0 4h 4 I I I

 

 


 

. 

The type I MOD graph K4 associated with P4 is as follows: 

h 

v1

v5

v2

v4v3

v6

h h
0 3I I

4+ h
0I

4h 

2 

h
3I

2+ h
0I

2h 
2h 

h h
0 3I I

h
3I

h
3I

2 

h
3I

4+ h
0I

2 
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K4 = 

Figure 3.46 

Clearly K4 has more edges and more loops than K3, K2 and 
K. 

 So we leave it for the reader to find the maximum t so that 
Kt has maximum number of edges or loops. 

We just for interest sake find. 

P5 = 
1 2 3 4 5 6
h h h h h h h h h h h

1 3 0 3 0 3 0 3 0 3 0 3
h h h h h h h

2 3 0 3 3 3 0 3
h h h h h h h h h h h h

3 3 0 3 0 3 0 3 0 3 0 3 0
h h h h h h h h h h

4 3 3 0 3 3 0 3 0 3 0
h h h h h h h h h

5 3 3 0 3 0 3 0 3 3

v v v v v v
v I I I I I I I I 2 I I I
v I I I I I I 2 I
v I I I I 2 I I I I I I I I
v I 2 I I I I I I I I I
v I I I I I I I 2h I I

     
 
      

    
     h

0
h h h h h h h h h h

6 3 0 3 0 3 0 3 0 3 0

I
v 0 2 I I I I I I 2h I I I I      

h
3I

v1 v2

v6v5

v4

2 

h
04 I

h h
3 0I I

v3

4 

2h 

4h 

2 

4h 

h h
0 3I I

h
3I

h
3I

h
3I

h
04 I

h
02 I

h h
3 0I I

h h
0 3I I

h
3I

h
3I
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We see the number edges and loops have increased. 
Interested reader can draw the type I MOD natural neutrosophic 
directed special dual like number graph K8. 

 Next we proceed onto describe and define type I MOD 
natural neutrosophic special quasi dual number graphs. 

Let G be the type I MOD natural neutrosophic number 
directed graph with edge weights from Zn  kI.   

Then we define G to be the type I MOD natural neutrosophic 
special quasi dual number directed graph with edge weights 
from Zn  kI. 

We will illustrate this by some examples. 

Example 3.17: Let G be the type I MOD natural neutrosophic 
special quasi dual number directed graph with edge weights 
from Z12  kI given by the following figure: 

Figure 3.47 

Let L be the type I MOD matrix associated with G. 

v1

4 

v2

v4

v3

v5

v6

k

3 2 

6

k
6I

G 
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L = 

1 2 3 4 5 6

1

2

3
k

4 6

5

6

v v v v v v
v 0 0 0 3 0 0
v k 0 0 0 0 0
v 4 0 0 0 0 0
v 0 0 I 0 0 0
v 0 0 2 0 0 0
v 0 0 0 0 6 0

. 

We find L, 

L2 = 

1 2 3 4 5 6
k

1 6

2

3
k

4 6

5

6

v v v v v v
v 0 0 I 0 0 0
v 0 0 0 3k 0 0
v 0 0 0 0 0 0
v I 0 0 0 0 0
v 8 0 0 0 0 0
v 0 0 0 0 0 0

. 

Figure 3.48 

The MOD type I natural neutrosophic special quasi dual 
number directed graph associated with L2.   

The edges have reduced from 6 to four. 

v3

v5

v2

v4
k
6I

3k 

8

k
6I G2

v1
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We now find L3 and the corresponding MOD graph G2. 

L3 = 

1 2 3 4 5 6
k

1 6
k

2 6
k

3 6

4

5

6

v v v v v v
v I 0 0 0 0 0
v 0 0 I 0 0 0
v 0 0 I 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0

. 

The type I MOD graph G3 associated with L3 is as follows. 

Figure 3.49 

Next we find matrix L4 in the following. 

L4 = 

1 2 3 4 5 6

1
k

2 6

3
k

4 0
k

5 6

6

v v v v v v
v 0 0 0 0 0 0
v I 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 I 0 0 0
v 0 0 I 0 0 0
v 0 0 0 0 0 0

. 

Let G4 be the type I MOD natural neutrosophic directed 
graph G4 of special quasi dual numbers. 

v1

k
6I

G3

v3

k
6I

v2

k
6I v4

v5 v6
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G4  = 

Figure 3.50 

Next we find L5 in the following. 

L5 = 

1 2 3 4 5 6
k

1 0

2

3
k

4 0
k

5 6

6

v v v v v v
v 0 0 I 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v I 0 0 0 0 0
v I 0 0 0 0 0
v 0 0 0 0 0 0

. 

The type I MOD directed natural  neutrosophic special quasi 
dual number graph G5 associated with L5. 

G5   = 

Figure 3.51 

v1 v2

k
6I

v3 v4

v5

k
0I

k
6I

v6

v1

v3

k
0I

v2

v4

v5

k
6I

v6

k
0I
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 We give L10 in the following. 

L10 = 

1 2 3 4 5 6

1

2

3
k

4 0
k

5 0

6

v v v v v v
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 I 0 0 0
v 0 0 I 0 0 0
v 0 0 0 0 0 0

. 

The graph G10 associated with L10 is 

G10 = 

Figure 3.52 

Thus we see this graph G is such that Gt gives only a vertex 
set here for some t. 

Next we proceed onto describe type II MOD directed natural 
neutrosophic graph with takes its edge weights and vertex set 
from I

nZ or Zn  II or Zn  gI or Zn  hI or 
Zn  kI or CI(Zn). 

We will illustrate all these situations by some examples. 

Example 3.18: Let G be the type II directed MOD natural 
neutrosophic graph with edge weights from I

9Z given by the 
following figure: 

v1 v2

v3 v4

v5 v6

k
0I

k
0I
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Figure 3.53 

Let N be the MOD type II matrix associated with the type II 
MOD graph G. 

N = 

1 2 3 4 5 6 7

1
9

2 6

3

4

5

6
9

7 3

v v v v v v v
v 0 3 0 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 1
v 0 0 0 0 5 0 0
v 0 0 0 0 0 6 0
v 0 2 0 0 0 0 0
v 0 0 0 I 0 0 0

. 

We find the N2 in the following. 

N2 = 

1 2 3 4 5 6 7
9

1 6
9

2 6
9

3 3

4

5
9

6 6
9

7 3

v v v v v v v
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 I 0 0 0
v 0 0 0 0 0 3 0
v 0 3 0 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 0 I 0 0

. 

1 

v1

v3

v5

v4

v7

v6

v2

9
3I

6 

5 

9
0I

9
6I

3 

2 G 
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The related MOD directed graph associated with N2 is as 
follows. 

G2 

Figure 3.54 

Now we found N3 in the following 

N3
 = 

1 2 3 4 5 6 7
9

1 6
9

2 0
9

3 3

4
9

5 6
9

6 6
9

7 3

v v v v v v v
v 0 0 0 0 0 0 I
v 0 0 0 I 0 0 0
v 0 0 0 0 I 0 0
v 0 6 0 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 0 0 I 0

. 

The MOD directed graph associated with N3 is as follows 

G3 = 

Figure 3.55 

v3

v6 v7

v2v1

v4 v5

9
6I

9
6I

9
3I

3 9
6I

9
3I

3

v1

v3

v5

9
3I

9
6I

v2

v4

9
0I

6 

v6

v7

9
3I

9
6I

9
6I

9
3I
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Now we find N4 in the following. 

N4 = 

1 2 3 4 5 6 7
9

1 0
9

2 0
9

3 3
9

4 6
9

5 6
9

6 0
9

7 3

v v v v v v v
v 0 0 0 I 0 0 0
v 0 0 0 0 I 0 0
v 0 0 0 0 0 I 0
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 I 0 0 0
v 0 I 0 0 0 0 0

. 

Let G4 be the type II MOD directed natural neutrosophic 
graph in the following figure: 

G4 = 

Figure 3.56 

Now we find N5 in the following : 

v1

v4

v2

v7

v5
v6

v3

9
3I

9
6I

9
0I 9

0I

9
6I

9
0I

9
0I
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N5 = 

1 2 3 4 5 6 7
9

1 0
9

2 0
9

3 3
9

4 6
9

5 0
9

6 0
9

7 0

v v v v v v v
v 0 0 0 0 I 0 0
v 0 0 0 0 0 I 0
v 0 I 0 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 I 0 0 0
v 0 0 0 0 I 0 0
v 0 0 I 0 0 0 0

. 

The MOD directed type II graph G5 in the following. 

G5 = 

 Figure 3.57 

N6 is given in the following. 

N6  =  

1 2 3 4 5 6 7
9

1 0
9

2 0
9

3 0
9

4 0
9

5 0
9

6 3
9

7 0

v v v v v v v
v 0 0 0 0 0 I 0
v 0 I 0 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 I 0 0 0
v 0 0 0 0 I 0 0
v 0 0 0 0 0 I 0
v 0 0 0 0 0 0 I

. 

v1

v5

9
0I

9
0I

v2

v7

v3

v4

v69
3I

9
0I

9
0I

9
0I

9
6I
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Let G6 be the type II MOD directed graph given by the 
following figure: 

G6 = 

Figure 3.58 

We see there are 6 loops and only one edge. Now we find N7 in 
the following : 

N7 = 

1 2 3 4 5 6 7
9

1 0
9

2 0
9

3 0
9

4 0
9

5 0
9

6 0
9

7 0

v v v v v v v
v 0 I 0 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 0 I 0 0
v 0 0 0 0 0 I 0
v 0 I 0 0 0 0 0
v 0 0 I 0 0 0 0

. 

The graph G7 associated with N7 is as follows: 

G7  = 

Figure 3.59 

v6

v1

9
0I

v2

v4

9
0I

9
0I

v3
9
0I

v5
9
0I

v7
9
0I

v1
v2

v39
0I

9
0I

v4

v7
v6

v5

9
0I 9

0I

9
0I

9
0I

9
0I

9
0I
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We see G7 has no loops.  
We find N8 in the following: 

N8 = 

1 2 3 4 5 6 7
9

1 0
9

2 0
9

3 0
9

4 0
9

5 0
9

6 0
9

7 0

v v v v v v v
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 I 0 0 0
v 0 0 0 0 0 I 0
v 0 I 0 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 0 I 0 0

. 

We now give the MOD graph G8 in the following: 

G8 = 

Figure 3.60 

 We give one more example of this situation. 

Example 3.19: Let G be the type II MOD natural neutrosophic 
directed graph with edge weights from I

12Z .  

The vertex set is also from I
12Z . 

G is given below: 

v4

v6
v7

v2

v1

9
0I

9
0I

9
0I

v3

9
0I

v5

9
0I

9
0I
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G = 

Figure 3.61 

Let S be the type I MOD matrix which is as follows: 

S = 

1 2 3 4 5 6

1

2

3
12 12

4 4 3

5

6

v v v v v v
v 0 4 0 0 0 0
v 0 0 2 0 0 0
v 0 0 0 0 6 0
v 0 I I 0 0 6
v 1 0 0 0 0 0
v 0 0 0 0 5 0

. 

We find S2 in the following. 

S2 = 

1 2 3 4 5 6

1

2

3
12 12

4 4 3

5

6

v v v v v v
v 0 0 8 0 0 0
v 0 0 0 0 0 0
v 6 0 0 0 0 0
v 0 0 I 0 I 6 0
v 0 4 0 0 0 0
v 5 0 0 0 0 0



. 

The MOD graph G2 associated with S2 is as follows: 

v1

v5

v2

v3

v6

v4

12
4I

12
3I

65

1
6

2
4
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G2 = 

Figure 3.62 

We find S3 in the following : 

S3 = 

1 2 3 4 5 6

1

2

3
12

4 3

5

6

v v v v v v
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 6 I 0 0 0 0 0
v 0 0 8 0 0 0
v 0 8 0 0 0 0


. 

The MOD type II directed graph associated with S3 is as 
follows. 

G3  = 

Figure 3.63 

4

v3

v5

8
12
4I v4

12
4I

v6

v1

5

v2

v1

v3

v2

v5

v48

12
36 I

8

12
36 I

6

v6
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Now we find S4 in the following: 

S4 = 

1 2 3 4 5 6

1

2

3
12 12

4 4 3

5

6

v v v v v v
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v I I 6 0 0 0 0
v 0 0 0 0 0 0
v 6 0 0 0 0 0



. 

Let G4 be the MOD directed graph given by the following 
figure: 

G4 = 

Figure 3.64 

Interested reader can find more powers of S and their 
corresponding MOD graphs of type II of natural neutrosophic 
numbers with edge weights and vertex set from I

nZ . 

 Now we proceed onto describe type II MOD natural 
neutrosophic finite complex number graphs. 

v1

v3

12
36 I

v2

12
4I

v5

v4

v6

6
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 Let G be a MOD natural neutrosophic type II graph with 
edge weights and vertex sets from CI(Zn), then we define G to 
be a MOD natural neutrosophic finite complex number graph of 
type II.  

We will illustrate this situation by some examples. 

Example 3.20:  Let G be the type II MOD natural neutrosophic 
finite complex number directed graph with vertex set and edge 
weights from CI(6) given by the following figure: 

G = 

v1 = 1 + iF, v2 = 3iF  v3 = 2, v4 = 5 and v6 = 
F

C
3i 4I  . 

Figure 3.65 

Let B be the MOD natural neutrosophic finite complex 
number type II matrix associated with the graph G. 

v1

v3

v2

v4

v6v5

F

C
2iI 4

C
3I

2iF

1 

3 

2 

4 
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B = 

F

1 2 3 4 5 6

1 F
C

2 3

3
C

4 2i

5

6

v v v v v v
v 0 2i 0 0 0 0
v 0 0 0 I 0 0
v 1 0 0 0 0 0
v 0 0 3 0 0 I 4

v 0 0 0 2 0 0
v 0 0 0 0 4 0



. 

We find B2 = 

F

F

1 2 3 4 5 6
C

1 3
C C C

2 3 3 0

3 F
C

4 2i

C
5 2i

6

v v v v v v
v 0 0 0 I 0 0
v 0 0 I 0 0 I I
v 0 2i 0 0 0 0
v 3 0 0 0 4 I 0

v 0 0 0 0 0 2 I

v 0 0 0 2 0 0







 . 

The type II MOD directed natural neutrosophic finite 
complex number graph G2 is as follows: 

G2 = 

Figure 3.66 

12
3I

v3

v2

v4

v1 2iF
C
3I

C
3I

v5

F

C
2i4 I

3

F

C
2i2 I

v6

2
C C
0 3I I
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Clearly the type II MOD natural neutrosophic complex 
valued graph G2 has no loops. The edges has increased by one 
edge. 

Now we find B3 in the following: 

B3 = 

F

F

F

1 2 3 4 5 6
C C C

1 3 3 0
C C C

2 3 3 0
C

3 3
C

4 2i

C
5 2i

C
6 2i

v v v v v v
v 0 0 I 0 0 I I
v I 0 0 0 I I 0
v 0 0 0 I 0 0
v 0 0 0 2 I 0 0

v 0 0 0 0 2 I 0

v 0 0 0 0 0 I 2










. 

The MOD type II natural neutrosophic finite complex 
number graph G3 associated with B3 is as follows. 

G3 = 

Figure 3.67 

Thus the type II MOD natural neutrosophic complex number 
graph G3 has three loops and five edges. 

C
3I

C
3I

C
3I

F

C
2iI 2

C C
3 0I I

F

C
2i2 I

C C
3 0I I

v1 v2

v3 v4

v5

v6F

C
2i2 I
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 Next we find B4 and the corresponding graph G4 in the 
following. 

B4  = 

F

F

F

1 2 3 4 5 6
C C C

1 3 3 0
C C C

2 3 3 0
C C C

3 3 3 0
C C C

4 3 2i 2

C
5 2i

C
6 2i

v v v v v v
v I 0 0 0 I I 0
v 0 I 0 I I 0 0
v 0 0 I 0 0 I I
v 0 0 0 I 0 2 I I

v 0 0 0 4 I 0 0

v 0 0 0 0 2 I 0





 





. 

Now we give the related MOD type II directed graph G4 of 
B4 in the following. 

Figure 3.68 

This has four loops and six edges. 

 Interested reader can work with graph Gt related to matrix 
Bt; 2 ≤ t < ∞. 

v1

v3

v5 v6

v4

v2
C
3I

C C
3 0I I

C
3I

F

C C
2 2i2 I I F

C
2i4 I

C C
3 0I I

C C
3 0I I

C
3I

C
3I

F

C
2i2 I
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Example 3.21: Let  V be the type II MOD natural neutrosophic 
directed finite complex number graph with edge weights from 
CI(Z12) and vertices from CI(Z12) given by the following figure: 

V = 

Figure 3.69 

The type II MOD matrix associated with V is as follows: 

P  = 
F

1 2 3 4 5

1

2
C

3 3i

C
4 0

5

v v v v v
v 0 2 6 0 0
v 0 0 4 0 0
v 0 0 0 I 0

v 0 4 0 0 I
v 0 0 3 0 0

. 

We see V has 7 edges and no loops. We now find P2; 

P2 = 

F

F

F

F

1 2 3 4 5
C

1 3i

C
2 3i

C C
3 3i 0

C
4 0

C
5 3i

v v v v v
v 0 0 8 I 0

v 0 0 0 I 0

v 0 I 0 0 I

v 0 0 4 I 0 0
v 0 0 0 I 0



. 

v1

4
v2

v5

v4

v3
C
0I

2

4

6

3

F

C
3iI
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 Let V2 be the MOD type II directed natural neutrosophic 
graph associated with the matrix P2. 

V2  = 

Figure 3.70 

Now we find P3 in the following: 

P3 = 

F F

F

F

F

F

1 2 3 4 5
C C C

1 3i 3i 0

C C
2 3i 0

C C
3 3i 0

C C
4 0 3i

C C
5 3i 0

v v v v v
v 0 I 0 I I

v 0 I 0 0 I

v 0 0 I I 0 0

v 0 0 0 I I 0

v 0 I 0 0 I





 . 

The type II MOD directed graph V3 associated with the MOD 
matrix P3 is as follows: 

8 

v4

v2

v5

v3

F

C
3iI

F

C
3iI

v1

F

C
3iI

F

C
3iI C

0I
C
04 I
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V3 = 

Figure 3.71 

We find P4 in the following: 

P4  = 

F F

F

F

F

1 2 3 4 5
C C C C

1 3i 0 3i 0

C C
2 0 3i

C C
3 3 0

C C C
4 0 3i 0

C C
5 0 3i

v v v v v
v 0 I I I 0 I

v 0 0 I I 0 0

v 0 0 0 I I 0
v 0 I I 0 0 I

v 0 0 I I 0 0










. 

Let V4 be the MOD type II natural neutrosophic finite 
complex number directed graph associated with P4. 

V4  = 

Figure 3.72 

v4

v2

v3

F

C
3iI

F

C
3iI

v1

F

C
3iI

C
0I

F

C
3iI

F

C C
0 3iI I

v5

F

C
3iI

F

C C
0 3iI I

C
0I

C
0I

v2 v3

v1

F

C
3iI

F

C C
0 3iI I

C
0I

F

C C
0 3iI I

v5

F

C C
0 3iI I

v4

F

C C
0 3iI I

C
0I

C C
0 3I I
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 We can find the MOD natural  neutrosophic directed 
complex finite integer graph Vt of type II for any Pt; 2 ≤ t < ∞.  

Such work is left as an exercise to the reader. 

 Next we develop and describe MOD natural neutrosophic 
neutrosophic type II directed graph using edge weights and 
vertices from Zn  II.   

Let G be a type II MOD natural neutrosophic directed graph 
with edge weights and vertex set from Zn  II, then G is 
defined as the MOD natural neutrosophic-neutrosophic directed 
graph of type II. 

We provide a few examples of them. 

Example 3.21: Let K be the type II MOD natural neutrosophic -
neutrosophic directed graph with vertex set and edge weights 
from Z8  II given by the following figure: 

K = 

Figure 3.73 

Let M be the type II MOD matrix associated with K. 

v1

I

v3

v2

v4

v6

v5

v7

I
3 II I

0I

1

2+2I
2

4

2

6
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M = 

1 2 3 4 5 6 7

1

2

3
I

4 3I
I

5 0

6

7

v v v v v v v
v 0 1 I 0 0 0 0
v 0 0 0 2 0 0 0
v 0 0 0 2 2I 0 0 0
v 0 0 0 0 6 0 I
v 0 0 0 0 0 0 I
v 0 0 2 0 0 0 0
v 0 0 0 0 0 4 0


. 

We find M2 in the following: 

M2 = 

1 2 3 4 5 6 7

1
I

2 3I
I

3 3I
I I

4 3I 0
I

5 0

6

7

v v v v v v v
v 0 0 0 2 4I 0 0 0
v 0 0 0 0 4 0 I
v 0 0 0 0 4 4I 0 I
v 0 0 0 0 0 I I
v 0 0 0 0 0 I 0
v 0 0 4 4I 0 0 0 0
v 0 0 0 0 0 0 0







. 

The type II MOD natural neutrosophic-neutrosophic directed 
graph K2 is as follows: 

K2 = 

 

Figure 3.74 

v1

4+4I

v4

v7v6v5

v3

v2

I
3 II

4+4I

4

2+4I

I
3 II

I
3 II

I
0I

I
0I
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Now we find M3 in the following : 

M3 = 

1 2 3 4 5 6 7
I

1 3I
I I

2 3I 0
I I

3 3I 0
I

4 0

5
I

6 3I

7

v v v v v v v
v 0 0 0 0 4 0 I
v 0 0 0 0 0 I I
v 0 0 0 0 0 I I
v 0 0 0 0 0 I 0
v 0 0 0 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 0 0 0 0

. 

The MOD type II natural neutrosophic - neutrosophic 
directed graph K3 associated with M3 

K3   = 

Figure 3.75 

 We now find the MOD type II natural neutrosophic-
neutrosophic matrix M4 is found in the following. 

v1

v4

v6v5

v2

I
3 II
 

4

I
3 II

I
3II

v3

v7

I
0I

I
3 II

I
0I

I
0I
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M4 = 

1 2 3 4 5 6 7
I I

1 3I 0
I

2 0
I

3 0
I

4 3I
I

5 0
I

6 3I

7

v v v v v v v
v 0 0 0 0 0 I I
v 0 0 0 0 0 I 0
v 0 0 0 0 0 I 0
v 0 0 I 0 0 0 0
v 0 0 I 0 0 0 0
v 0 0 0 0 0 0 I
v 0 0 0 0 0 0 0

. 

The MOD type II directed graph K4 associated with M4 is as 
follows. 

K4 = 

Figure 3.76 

The author is left with the task of finding MOD type I graphs 
associated with powers of M. 

Next we provide one more example of this same type of 
graph. 

Example 3.22: Let W be the type II MOD natural  neutrosophic 
neutrosophic directed graph with edge weights and vertex set 
from Z7  II given by the following figure: 

v3

v5

v7

v6

v4

v2

I
0I

I
0I

I
3 II

I
0I

I
3 II

I
0I

I
3 II

v1

152



W = 

Figure 3.77 

The MOD matrix L associated with W is as follows: 

L = 

1 2 3 4 5
I

1 0

2

3
I

4 2I

5

v v v v v
v 0 I I 0 0
v 0 0 4 0 0
v 0 0 0 2 0
v 2I 0 0 0 I
v 0 0 1 0 0

 . 

We find L2 in the following 

L2 = 

1 2 3 4 5
I

1 0

2
I

3 2I
I I

4 0 2I

5

v v v v v
v 0 0 4I I 0
v 0 0 0 1 0
v 4I 0 0 0 I
v 0 2I I I 0 0
v 0 0 0 2 0



 . 

Let W2 be the type II MOD natural neutrosophic- 
neutrosophic directed graph associated with L2. 

v1 2I

v3

v2 v4

v5

I
0I

I
2II

1

2
4

I
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W2   =  

Figure 3.78 

Next we find L3 in the following. 

L3 = 

1 2 3 4 5
I I

1 0 0
I

2 2I
I I

3 0 2I
I I

4 0 2I
I

5 2I

v v v v v
v I 0 0 I I
v 2I 0 0 0 I
v 0 4I I I 0 0
v 0 0 I I I 0
v 4I 0 0 0 I




. 

Let W3 be the MOD type II natural neutrosophic neutrosophic 
directed graph associated with L3. 

W3 = 

 Figure 3.79 

v1

v3

v5

v2

v4

I
0I

I I
0 2II I

4I

I
2 II 2

2I 14I

v1

4I
v2

v4

v3

v5

I
0I

I I
0 2II I

I
2 II

4I2I

I II

I
0I

I
2 II

I I
0 2II I
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We see W3 has four loops and 8 edges. 

Now we find L4 in the following and the corresponding type 
II MOD graph W4 using L4 

L4 = 

1 2 3 4 5
I I

1 0 0
I I

2 0 2I
I I

3 0 2I
I I I I

4 0 2I 0 4I
I I

5 0 2I

v v v v v
v 2I I I 0 0
v 0 2I I I 0 0
v 0 0 2I I I 0
v I I 0 0 2I I I
v 0 4I I I 0 0




 


 . 

Let W4 be the type II MOD interval neutrosophic- 
neutrosophic directed graph associated with L4. 

W4 = 

Figure 3.80 

 Likewise interested reader can find out the type II MOD 
graphs associated with any power of L. 

 Next we proceed onto describe and develop the notion of 
type II MOD natural neutrosophic dual number directed graphs. 

Let A be the type II MOD natural neutrosophic directed 
graph with edge weights from Zn  gI.  

I
0I

v1

v3

v5

v4

v2

I
0I

2I

2I
I I
0 2II I

I I
0 4II I

I I
0 2II I

I I
0 2II I

I I
0 2II I

2I

2I

4I
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A is defined as the type II MOD natural neutrosophic dual 
number directed graph, as the edge weights are from Zn  gI. 

We will describe this situation by some examples. 

Example 3.23:  Let B be the type II MOD natural neutrosophic 
dual number directed graph with entries from Z10  gI given 
by the following figure: 

Figure 3.81 

Let S be the MOD matrix associated with the graph B. 

S = 

1 2 3 4 5 6

1
g

2 5g 2

3

4
g

5 0

6

v v v v v v
v 0 2 0 0 0 0
v 0 0 0 I 0 0
v 0 g 0 0 0 0
v 0 0 0 0 0 5
v 0 0 I 2g 0 0
v 0 0 0 0 4 0



. 

We find S2 in the following. 

v1

B = v4

v5

v2

v3

v6

g
0I

4

2g

g

5

2
g
5g 2I 
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S2 = 

1 2 3 4 5 6
g

1 5g 2
g

2 5g 2
g

3 5g 2

4
g

5 0
g

6 0

v v v v v v
v 0 0 0 I 0 0
v 0 0 0 0 0 I
v 0 0 0 I 0 0
v 0 0 0 0 0 0
v 0 I 0 0 0 0
v 0 0 I 8g 0 0





  . 

To find the MOD type II graph B2 associated with S2 is as 
follows. 

B2 

Figure 3.82 

We find S3 in the following. 

S3 = 

1 2 3 4 5 6
g

1 5g 2

2
g

3 5g 2
g

4 0
g

5 0
g

6 0

v v v v v v
v 0 0 0 0 0 I
v 0 0 0 0 0 0
v 0 0 0 0 0 I
v 0 0 I 0 0 0
v 0 0 0 I 0 0
v 0 I 0 0 0 0



 . 

 Let B3 be the type II MOD natural neutrosophic dual number 
directed graph associated with S3 is given below: 

v1

v6

v2

g
0I

8g 

g
5g 2I 

v4

v5

v3
g
0I

g
5g 2I 

8g 
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B3 = 

Figure 3.83 

We now find S4 in the following 

S4 =  

1 2 3 4 5 6

1
g g

2 0 5g 2

3

4
g

5 0
g

6 0

v v v v v v
v 0 0 0 0 0 0
v 0 0 I I 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 0
v 0 0 0 0 0 I
v 0 0 0 I 0 0



 . 

 Let B4 be the type II MOD natural neutrosophic dual number 
directed graph associated with S4 

B4  = 

Figure 3.84 

v1

v2

v4 v5

v3

g
5g 2I 

g
5g 2I 

g
0I

g
0I

g
0I

v6

v5
v6

v4

v2

v3

v1

g
0I

g
0I

g
5g 2I 

g
0I
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Interested reader can find the type II MOD directed graphs 
associated with St; 2 ≤ t < ∞. 

Example 3.24:  Let D be the type II MOD natural neutrosophic 
dual number directed graph given by the following figure with 
edge weights and vertex set from Z5  gI. 

D   = 

Figure 3.85 

Let N be the MOD matrix associated with D 

N = 

1 2 3 4 5

1
g

2 3g

3

4
g

5 0

v v v v v
v 0 4 2 0 0
v 0 0 0 I 0
v 0 0 0 4 0
v 0 0 0 0 g 3
v I 0 0 0 0



 . 

Now we find N2 using N in the following: 

v1

g
0I

v5

v4

v2

v3

g
3gI  2 

4 

4 

g+3
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N2 = 

1 2 3 4 5
g

1 3g
g

2 3g

3
g

4 0
g g

5 0 0

v v v v v
v 0 0 0 I 3 0
v 0 0 0 0 I
v 0 0 0 0 4g 2
v I 0 0 0 0
v 0 I I 0 0




. 

Let D2 be the type II MOD natural neutrosophic dual number 
directed graph given in the following. 

D2 = 

Figure 3.86 

Now we find N3
 using N 

N3
 =

1 2 3 4 5
g

1 3g
g

2 0
g

3 0
g g

4 0 0
g

5 0

v v v v v
v 0 0 0 0 3g 4 I
v I 0 0 0 0
v I 0 0 0 0
v 0 I I 0 0
v 0 0 0 I 0

 

. 

Using N3 we find the MOD type II natural neutrosophic dual 
number directed graph D3 is as follows: 

g
0I

v1

v5

v4

v3

v2

g
3gI

g
0I

g
3gI 3

g
0I 4g+2
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D3 = 

Figure 3.87 

We find N4 using N in the following: 

N4  = 

1 2 3 4 5
g

1 0
g g

2 0 0
g g

3 0 0
g

4 0
g

5 0

v v v v v
v I 0 0 0 0
v 0 I I 0 0
v 0 I I 0 0
v 0 0 0 I 0
v 0 0 0 0 I

. 

The type II MOD natural neutrosophic dual number directed 
graph D4 is as follows. 

 D4 = 

Figure 3.88 

v1

v3

v2

v4

g
0I

g
0I

3g+4+ g
3gI

g
0I

g
0I

g
0I

v5

v1
g
0I

v3

v2g
0I

g
0I

g
0I

v4

g
0I

g
0I

v5
g
0I
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 The reader is expected to find the MOD directed graph 
relative to Nt for 2 ≤ t < ∞. 

Next we proceed onto describe the MOD natural 
neutrosophic special dual like number graph of type II by the 
following example. 

Example 3.25:  Let G be the MOD natural neutrosophic special 
dual like number directed graph of type II with edge weights 
and vertex set from Z6  hI given by the following figure. 

G = 

Figure 3.89 

Let P be the MOD matrix associated with 

P = 

1 2 3 4 5 6

1

2

3

4

5
h h

6 3 2

v v v v v v
v 0 2 3 0 0 0
v 0 0 0 2h 0 0
v 0 0 0 4 0 0
v h 0 0 0 0 0
v 0 0 3h 4 0 0
v 0 I 0 0 I 0

. 

Now we find N2 using N in the following. 

v1

h
3I  v3

v6

v2

2 

v5

v4
4 

4

2h 

3h 

h
2I

3 h
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N2 = 

1 2 3 4 5 6

1

2

3

4

5
h h h

6 2 3 2

v v v v v v
v 0 0 0 4h 0 0
v 2h 0 0 0 0 0
v 4h 0 0 0 0 0
v 0 2h 3h 0 0 0
v 4h 0 0 0 0 0
v 0 0 I I I 0 0

. 

Let P2 be the type II MOD natural neutrosophic special dual like 
number directed graph. 

P2 = 

Figure 3.90 

We now find N3 in the following 

N3 = 

1 2 3 4 5 6

1

2

3

4

5
h h

6 3 2

v v v v v v
v 4h 0 0 0 0 0
v 0 4h 0 0 0 0
v 0 2h 0 0 0 0
v 0 0 0 4h 0 0
v 0 2h 0 0 0 0
v I I 0 0 0 0 0

.

v1

h h
3 2I I

v5 v6

v2

v4v3
4h

2h
2h

4h
3h

h
2I

4h
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Let P3 be the type II MOD natural neutrosophic special dual 
like number directed graph associated with N3. 

P3  = 

Figure 3.91 

This graph has 3 loops and 3 edges. 

Interested reader can find any type II MOD graphs associated 
with Nt; 2 ≤ t < ∞. 

We give another example. 

Example 3.26: Let S be the type II MOD natural neutrosophic 
special dual like number directed graph with edge weights and 
vertex set from Z3  h. 

S  = 

Figure 3.92 

v14h 4h

v6

v4
4h

2h

v3

v2

v5

2h
h h
3 2I I

h
2hI

v1

h
v2

v3 v4

1

v5

1h
0I

2

1
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 Let x be the related MOD connection matrix associated with 
S is as follows. 

x = 

1 2 3 4 5

1

2

3

4
h

5 2h

v v v v v
v 0 h 1 0 0
v 0 0 h 0 0
v 0 0 0 1 0
v 0 1 0 0 0
v 0 0 2 I 0

. 

We find x2 in the following. 

x2 = 

1 2 3 4 5

1

2

3

4
h

5 2h

v v v v v
v 0 0 h 1 0
v 0 0 0 h 0
v 0 1 0 0 0
v 0 0 h 0 0
v 0 I 0 2 0

. 

The MOD type II graph S2 associated with x2 is as follows: 

S2  = 

Figure 3.93 

Now we find x3 in the following  

v1

v3

v2

v4

v5

1 

h 

h 
h
2 hI

1 h 

2 
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x3 = 

1 2 3 4 5

1

2

3

4
h

5 2h

v v v v v
v 0 1 0 h 0
v 0 h 0 0 0
v 0 0 h 0 0
v 0 0 0 h 0
v 0 2 I 0 0

. 

The type II MOD directed graph S3 associated with matrix x3 
is as follows. 

S3 = 

Figure 3.94 

We find x4 in the following 

x4 = 

1 2 3 4 5

1

2

3

4
h

5 2h

v v v v v
v 0 h h 0 0
v 0 0 h 0 0
v 0 0 0 h 0
v 0 h 0 0 0
v 0 0 2h I 0

. 

Let S4 be the MOD type II graph associated with the matrix 
x4. 

h
2hI

v1 v2
1 h

v4
2

h

v5

h

v3
h
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S4 = 

Figure 3.95 

 The task of finding type II MOD graphs associated with xt 
for 2 ≤ t < ∞ is left as an exercise to the reader. 

 Next we proceed onto describe the type II MOD natural 
neutrosophic special quasi dual number directed graphs. 

 Let G be any type II MOD natural neutrosophic graph if the 
edge weights and vertex sets are taken from Zn  kI then we 
define G to be a type II MOD natural neutrosophic special quasi 
dual number directed graphs. 

We will illustrate this situation by an example or two. 

Example 3.27: Let G be the type II MOD natural neutrosophic 
special quasi dual number directed graphs with vertex set and 
edge weights from Z6  kI given by the following figure. 

v1

v2

h
2hI

h

v4 v5

v3

2h 

h

h 
h

h
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G = 

Figure 3.96 

Let B be the MOD natural neutrosophic matrix associated 
with G. 

B = 

1 2 3 4 5 6 7

1

2
k

3 3
k

4 2k

5

6
k

7 0

v v v v v v v
v 0 1 0 4 0 0 0
v 0 0 3k 4 0 0 0 0
v 0 0 0 I 0 0 0
v 0 0 0 0 3 I 0
v 0 3k 0 0 0 0 0
v 0 0 0 0 0 0 2
v 0 0 0 0 I 0 0



. 

We find B2 in the following. 

v1

v2 v3

v5

v4

v7

v6
k
0I
a

k
2kI
a

k
3I
a 

3k+4

4

1

3k 

3

2
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B2 = 

1 2 3 4 5 6 7
k

1 2k
k

2 3
k k

3 3 0
k

4 2k

5
k

6 0
k

7 0

v v v v v v v
v 0 0 3k 4 0 0 I 0
v 0 0 0 I 0 0 0
v 0 0 0 0 I I 0
v 0 3k 0 0 0 0 I
v 0 0 3k 0 0 0 0
v 0 0 0 0 I 0 0
v 0 I 0 0 0 0 0



. 

 Let G2 be the type II MOD natural neutrosophic graph 
associated with B2. 

G2  = 

Figure 3.97 

We now find B3 in the following  : 

k
0I

k
3Ik

2kI

3k 3k+4 
3k 

k
2kI

k
3I

k
0I

v2v1

v3

v7

v4 v5

v6

k
3I
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B3 = 

1 2 3 4 5 6 7
k k

1 3 2k
k k

2 3 0
k k

3 3 0
k

4 0
k

5 3
k

6 0
k

7 0

v v v v v v v
v 0 0 0 I 0 0 I
v 0 0 0 0 I I 0
v 0 I 0 0 0 0 I
v 0 0 3k 0 I 0 0
v 0 0 0 I 0 0 0
v 0 I 0 0 0 0 0
v 0 0 I 0 0 0 0

. 

Let G3 be the MOD natural neutrosophic special quasi 
dual number directed graph associated with the MOD matrix B3. 

G3  = 

Figure 3.98 

This is the way we can work with MOD type II natural 
neutrosophic special quasi dual number directed graphs and 
then associated power of matrices. 

We just give one more example of this situation. 

Example 3.28:  Let G be the type II MOD natural number graph 
with vertex set and edge weights from Z11  kI given by the 
following figure: 

k
3I

v3

v2

v6 v7

v4

v5

k
3I

k
3Ik

3I

k
2kI

v1

k
2kI

k
0I

k
0I k

0I
3k
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Figure 3.99 

 Let B be the MOD matrix associated with the type II MOD 
graph G. 

B  = 

1 2 3 4 5

1
k

2 0

3
k

4 2k

5

v v v v v
v 0 0 4k 0 0
v 2 0 3 I 0
v 0 0 0 0 1
v 0 0 0 0 I
v 0 4 0 0 0

 .

We  find B2 in the following. 

B2 = 

1 2 3 4 5

1
k

2 0

3
k

4 2k
k

5 0

v v v v v
v 0 0 0 0 4k
v 0 0 8k 0 3 I
v 0 4 0 0 0
v 0 I 0 0 0
v 8 0 1 I 0


 . 

k
0I
a

v1

v2

v4 v5

v3

2

1

3

4k 

k
2kI
a

4 
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The MOD type II natural neutrosophic special quasi dual 
number graph G2 associated with B2 is as follows: 

G2  = 

Figure 3.100 

Next we just find B4 in the following. 

B4 = 

1 2 3 4 5
k

1 0
k k k

2 0 0 0
k

3 0
k k k

4 2k 2k 0
k

5 0

v v v v v
v 10k 0 4k I 0
v 2 I 10k 3 I I 0
v 0 0 10k 0 1 I
v 0 0 I 0 I I
v 0 4 I 0 0 10k

 





. 

Let G4 be the MOD type II directed graph associated with B4. 

v1

v4

v2

v3

v5

3+ k
0I k

0I

k
2kI

4k 

8k 

4 

8 

1 
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G4 = 

Figure 3.101 

The reader is given the task of finding type II MOD directed 
graphs Gt using the power of matrices Bt; 2 ≤ t < ∞. 

Now we wish to discuss about the special features 
associated MOD natural neutrosophic special quasi dual number 
graphs of type II and also all type II MOD natural neutrosophic 
graphs built using Zn  II, Zn  hh , CI(Zn) and I

nZ . 

In the case of type II MOD directed graphs we see they are 
labeled with elements of I

nZ  (or Zn  gI or Zn  hI or Zn  
kI or CI(Zn)) as well they take edge values also from these 
respective sets. 

Thus these MOD type II directed graphs described here have 
the edge weights and labels to be from the MOD natural 
neutrosophic sets I

nZ , CI(Zn) and so on. 

Thus the labeling which does on face values is very unique 
and innovative as the values can be real or complex or 

v1

10k

v4

10k 

2+ k
0I

v3 10k 

10k 

v2

4+ k
0I

v5

k k
0 2 kI I

k
2kI

k
0I

k
0I

4k

k
01 I
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neutrosophic or dual or special dual like or special quasi dual or 
mixed or neutrosophic idempotent or nilpotents or zero divisors. 

Such diversity cannot be imagined with usual labeling. 
Further these graphs can be used in networking where the 
indeterminacy concept or dual number concept or imaginary 
value concept are used. 

Further these MOD graphs can also be used in automation 
and semi automation as we have only finite number of elements 
in I

nZ or CI(Zn) or Zn  II or Zn  gI or Zn  hI or Zn  kI. 

However we have not used any algebraic structure or 
operations on them in a systematic way.  

But these graphs have been used in [ ] for MOD Cognitive 
Maps model and their generalizations.  

These mathematical models can be exploited in medical 
sciences, technological research apart from taking social 
problems where indeterminacy of all types are involved. 

Next we proceed onto describe type III MOD directed graphs 
using I

nZ , CI(Zn), Zn  gI, Zn  hI or Zn  II or 
Zn  kI in the following. 

These graphs get their edge weighs from {0, 1} but the 
vertex set from I

nZ  or CI(Zn) or Zn  gI or so on. 

We will describe them by examples. 

Example 3.29: Let G  be the MOD directed graph whose vertex 
set is from I

10Z and edge weights are from the set {0, 1}. 

G will be known as type III MOD natural neutrosophic 
directed graph. 

The figure of graph G is as follows: 
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Figure 3.102 

v1 = 9,  v2 = 4   v3 = 10
5I , v4 = 10

2I  + 3, v5 = 10
2I  + 10

0I + 8, 
v6 = 10

8I , v7  6, v8 = 5, vi  I
10Z , 1 ≤ i ≤ 8. 

The MOD matrix P associated with G is as follows. 

P = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 1 0 0 0 0 0
v 1 0 0 0 0 0 0 0
v 0 0 0 1 0 0 0 0
v 0 0 0 0 0 1 0 0
v 0 0 0 0 0 0 0 1
v 0 0 0 0 1 0 0 0
v 0 0 0 1 0 0 0 0
v 0 0 1 0 0 0 0 0

. 

v1

v2

1

v3

v4

v6

v5

v8
v7

1 

1 
1 

1 

1 

1 

= G 
1

1 
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We can find P2 

P2 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 0 1 0 0 0 0
v 0 0 1 0 0 0 0 0
v 0 0 0 0 0 1 0 0
v 0 0 0 0 1 0 0 0
v 0 0 1 0 0 0 0 0
v 0 0 0 0 0 0 0 1
v 0 0 0 0 0 1 0 0
v 0 0 0 1 0 0 0 0

. 

The type III MOD natural neutrosophic directed graph G2 
associated with P2 is as follows : 

G2 = 

Figure 3.103 

We see there are  no loops only edges and this type III MOD 
graph G2 is an edge shuffled type III MOD graph of G.   

v1

1 

v4 v5

v3

v2

1 

1 

1 

v6 v7

v8

1 

1 
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For only the edges are changed. 

Now we find P3 in the following. 

P3 = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 0 0 0 1 0 0
v 0 0 0 1 0 0 0 0
v 0 0 0 0 1 0 0 0
v 0 0 0 0 0 0 0 1
v 0 0 0 1 0 0 0 0
v 0 0 1 0 0 0 0 0
v 0 0 0 0 1 0 0 0
v 0 0 0 0 0 1 0 0

. 

We now proceed onto give the MOD natural neutrosophic 
directed graph G2 of type III in the following. 

G3 

Figure 3.104 

v1 v2

v3

v5v4

v6

v8v7

1

1
1

1

1

1

1
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  We see the MOD type III graph has no loops only the edges 
are reshuffled from the original G1. 

Next we find the type III MOD matrix P4; 

P4  = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

v v v v v v v v
v 0 0 0 0 1 0 0 0
v 0 0 0 0 0 1 0 0
v 0 0 0 0 0 0 0 1
v 0 0 1 0 0 0 0 0
v 0 0 0 0 0 1 0 0
v 0 0 0 1 0 0 0 0
v 0 0 0 0 0 0 0 1
v 0 0 0 0 1 0 0 0

. 

Let G4 be the MOD type III natural neutrosophic graph 
associated with the matrix P4.

G4 = 

Figure 3.105 

v1

v3

v4

v7

1
v5

v2

v8

v6
1

1 

1

1

1

1

1
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This also has no loops, only the edges are reshuffled. We 
can say that after finite number of product we may get Pt = P so 
the original type III MOD natural neutrosophic directed graph is 
obtained. 

Thus if a MOD directed graph G takes edge weights from {0, 
1} and the vertex set from I

nZ we define G to be a type III MOD 
natural  neutrosophic directed graph. 

 Next we proceed onto describe and develop the notion of 
type III MOD natural neutrosophic finite complex number 
directed graph in the following. 

 Let G be a type III MOD  natural neutrosophic directed 
graph, if the edge weights are taken from {0, 1} and vertex set 
from CI(Zn) then we call or define G be a MOD natural 
neutrosophic directed finite complex number graph of type III. 

We will illustrate this situation by some examples. 

Example 3.30:  Let K be the type III MOD natural neutrosophic 
finite complex number directed graph with edge weights from 
{0, 1} and vertex set from CI(Z9) given by the following figure. 

Figure 3.106 

v1

1

v3

v5 v6

v7

v4

1

1

1

v2
1

1
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Here v1 = 3 + 4iF, v2 = C
3 3kI  , v3 = C

4 kI   C
6I = v4  v5 = 7, 

v6 = 3, v = C
0I . 

The MOD connection matrix B associated with K is as follows: 

B = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 1 0 0 0 0 0
v 0 0 0 1 0 0 0
v 1 0 0 0 0 0 0
v 0 0 0 0 1 0 0
v 0 0 1 0 0 0 0
v 0 0 0 0 1 0 0
v 0 0 0 1 0 0 0

. 

We now find B2 in the following. 

B2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 1 0 0 0
v 0 0 0 0 1 0 0
v 0 1 0 0 0 0 0
v 0 0 1 0 0 0 0
v 1 0 0 0 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 0 1 0 0

. 

We give the MOD directed graph K2 of type III associated 
with B2 in the following. 
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K2  = 

Figure 3.107 

Now we find B3 in the following: 

B3 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 1 0 0
v 0 0 1 0 0 0 0
v 0 0 0 1 0 0 0
v 1 0 0 0 0 0 0
v 0 1 0 0 0 0 0
v 1 0 0 0 0 0 0
v 0 0 1 0 0 0 0

. 

 Let K3 be the type III MOD natural  neutrosophic directed 
complex number graph associated with the matrix B3. 

v1

1

v5

v3

v2

v4

v6

v7

1

1 1

1
1

1
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K3   = 

Figure 3.108 

We see this type III MOD natural neutrosophic complex 
number directed graph has no loops only the edges are 
reshuffled in K3. 

Finally we find B4 in the following. 

B4 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 1 0 0 0 0
v 1 0 0 0 0 0 0
v 0 0 0 0 1 0 0
v 0 1 0 0 0 0 0
v 0 0 0 1 0 0 0
v 0 1 0 0 0 0 0
v 1 0 0 0 0 0 0

. 

We now give in the following type III MOD natural 
neutrosophic finite complex number directed graph K4 
associated with the MOD matrix B4. 

v1

1
v4v3

v2

v5

v7

v6

1

1

1

1

1

1
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K4 = 

Figure 3.109 

The reader is expected to prove that there exist 0 < t < ∞ 
such that Bt = B their by implying Kt = K. 

 Next we proceed onto describe and develop MOD natural 
neutrosophic-neutrosophic type III directed graphs using edge 
weights from {1, 0} and vertex elements from Zn  II. 

 Let G be a type III MOD natural neutrosophic-neutrosophic 
directed graph with vertex set from  Zn  II and edge sets from 
{0, 1}.  

We will illustrate this situation by some examples. 

Example 3.31: Let S be the type III MOD natural neutrosophic- 
neutrosophic directed graph with edge weights from {0, 1} and 
vertex set from Zn  II given by the following figure. 

v3

v5

v1 v2

v4 v6

v7

1 

1 

1 1 

1 

1 
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S = 

Figure 3.110 

 The MOD matrix associated with the MOD directed graph S 
of type III is as follows. 

P = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 1 0 0 0 0
v 0 0 0 0 0 1
v 1 0 0 0 0 0
v 1 0 0 0 0 0
v 0 0 0 1 0 0
v 0 0 0 0 1 0

. 

We find P2 in the following 

P2 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 0 0 1
v 0 0 0 0 1 0
v 0 1 0 0 0 0
v 0 1 0 0 0 0
v 1 0 0 0 0 0
v 0 0 0 1 0 0

. 

v1

v3 v4

v5 v6

v2

1 
1 

1 

1 
1 

1 
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 The MOD type III directed graph S2 associated with the MOD 
matrix P2 is as follows: 

S2  = 

Figure 3.111 

We next find P4 in the following; 

P4  =  

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 1 0 0
v 1 0 0 0 0 0
v 0 0 0 0 1 0
v 0 0 0 0 1 0
v 0 0 0 0 0 1
v 0 1 0 0 0 0

. 

The MOD type III directed graph S4 associated with P4 is as 
follows: 

S4 = 

Figure 3.112 

v1

1 

v3

v2

v5 v6

v4

1 
1 
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1 1 
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 Interested reader can find Pt (t > 0) and the corresponding 
MOD type III graph St related with Pt. 

Find a m such that Pm = P. 

We see this St for no t gives a loop only edges from 0 to 1. 

Next we proceed onto describe and develop the MOD type 
III natural neutrosophic dual number directed graph with edge 
weights from {0, 1} and vertex set from Zn  gI. 

We will describe this situation by some examples. 

Example 3.32: Let V be the type III MOD natural neutrosophic 
dual number directed graph with edge weights from {0, 1} and 
vertex set from Z10  gI given by the following figure. 

V  = 

Figure 3.113 

v1 = 5, v2 = 8g, v3 = 9g + 5, v4 = g
gI , v5 = g

9gI  v6 = g
0I  and 

v7 = g
3g 4I 

 Let W be the MOD type III matrix associated with the graph 
V, given in the following: 

v1

v3

v5 v6

v4
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1 

v7
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W = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 1 0 0 0 0 0
v 0 0 0 0 0 0 1
v 1 0 0 0 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 0 0 1 0
v 0 0 0 1 0 0 0
v 0 0 0 1 0 0 0

. 

Now we find W2 in the following; 

W2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 0 0 1
v 0 0 0 1 0 0 0
v 0 1 0 0 0 0 0
v 1 0 0 0 0 0 0
v 0 0 0 1 0 0 0
v 0 0 1 0 0 0 0
v 0 0 1 0 0 0 0

. 

Let V2 be the type III MOD natural neutrosophic dual 
number graph associated with W2; 

V2 = 

Figure 3.114 

1

1

1

1

1
v1

v4

v3

v7

v5

v2

v6
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 We see this MOD type III graph V2 has no loops only edges 
and the edges are just reshuffled from V. 

 Next we find W3 be the matrix product of W associated 
with the graph K. 

W3 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 1 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 0 0 0 1
v 0 1 0 0 0 0 0
v 0 0 1 0 0 0 0
v 1 0 0 0 0 0 0
v 1 0 0 0 0 0 0

. 

Let V3 be the type III MOD directed natural neutrosophic 
special dual number graph associated with W3. 

V3  = 

Figure 3.115 

 This type III MOD graph also is only a graph got by 
reshuffling the edges of V1. 
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 Next we find W4 in the following and using W4 we give the 
type III MOD directed graph V4; 

W4 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 1 0 0 0 0
v 1 0 0 0 0 0 0
v 0 0 0 1 0 0 0
v 0 0 0 0 0 0 1
v 1 0 0 0 0 0 0
v 0 1 0 0 0 0 0
v 0 1 0 0 0 0 0

. 

Let V4 be the type III MOD directed graph given by the 
following figure: 

V4  = 

Figure 3.116 

 Interested reader can find any power of W say Wt and find 
the MOD directed graph Vt (t a large number).  

 Further the reader is left with the task of finding a suitable 
t > 0 such that Wt = W. 

 Next we proceed onto describe the MOD type III natural 
neutrosophic special dual like number directed graph by an 
example. 
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  Let G be a type III MOD natural natural neutrosophic 
directed graph with edge weights from Zn  hI.  

Then we define G to be a type III MOD natural neutrosophic 
special dual like number directed graph.   

We will illustrate this situation by an example or two. 

Example 3.33: Let B be the type III MOD natural neutrosophic 
special dual  like number directed graph with edge weights from 
Z12  hI given by the following figure: 

 B  = 

v1 = 11 + 3h, v2 = h
10I , v3 = h

0I + h
2I + 7h, 

v4 = 9 + 7h, v5 = 4h, v6 = 8, v7 = h
10hI

Figure 3.117 

 Let M be the MOD type III natural neutrosophic special dual 
like number matrix associated with the type III MOD natural 
neutrosophic graph B. 
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M = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 1 0 0
v 1 0 0 0 0 0 0
v 0 1 0 0 0 0 0
v 0 0 0 0 0 0 1
v 0 0 0 1 0 0 0
v 0 0 1 0 0 0 0
v 0 0 0 0 0 1 0

. 

We now find M2 in the following. 

M2 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 1 0 0 0
v 0 0 0 0 1 0 0
v 1 0 0 0 0 0 0
v 0 0 0 0 0 1 0
v 0 0 0 0 0 0 1
v 0 1 0 0 0 0 0
v 0 0 1 0 0 0 0

. 

Let B2 be the MOD natural neutrosophic special dual like 
number directed graph of type III associated with the matrix M2. 

B2 = 

Figure 3.118 
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We see this graph B2 is nothing but reshuffled edges of B. 

Next we find M3 in the following. 

M3 = 

1 2 3 4 5 6 7

1

2

3

4

5

6

7

v v v v v v v
v 0 0 0 0 0 0 1
v 0 0 0 1 0 0 0
v 0 0 0 0 1 0 0
v 0 0 1 0 0 0 0
v 0 0 0 0 0 1 0
v 1 0 0 0 0 0 0
v 0 1 0 0 0 0 0

. 

Let B3 be the MOD special dual like number natural 
neutrosophic directed graph type III associated with the MOD 
type III matrix M3. This figure is given in the following. 

B3 = 

Figure 3.119 

Likewise interested reader can find any power of M say Mt, 
t > 2 and the corresponding type III MOD directed graph Bt. 
Certainly we will have Mt = M for some t > 2. 
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Interested reader can construct more examples. 

 Now we proceed onto describe and develop type III MOD 
natural neutrosophic special quasi dual number directed graphs.   

Let G be the type III MOD natural  neutrosophic directed 
graph.  If the vertex set is from Zn  kI and edge set from {0, 
1} then we define G to be the MOD natural neutrosophic special 
quasi dual number directed type III graph.   

We will describe then by some examples. 

Example 3.34: Let S be the type III MOD natural neutrosophic 
special quasi dual number directed graph with vertex set from 
Z6  kI and edge sets from {0, 1} given by the following 
figure: 

S   = 

Figure 3.120 

v1 = 3k, v2 = 4 + 5k, v3 = k
3kI , v4 = k

2 4kI   + k
0I  + 2 + k, v5 = 4 

v6 = k
0I 3 . 

Let N be the MOD type III matrix associated with the graph 
S which is as follows. 

v1

1

v2
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v5

v6

1

1
1

193



N = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 1 0 0 0 0
v 0 0 0 0 0 1
v 0 0 0 0 1 0
v 0 1 0 0 0 0
v 0 0 0 1 0 0
v 0 0 1 0 0 0

. 

Now we find N2 in the following; 

N2=

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 0 0 1
v 0 0 1 0 0 0
v 0 0 0 1 0 0
v 0 0 0 0 0 1
v 0 1 0 0 0 0
v 0 0 0 0 1 0

. 

Let S2 be the type III MOD special quasi dual number natural 
neutrosophic directed graph associated with N2. 

 This graph can be realized as the reshuffled edges of the 
MOD type III graph S in the following. 

S2 = 

Figure 3.121 
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We find N4 is the following. 

N4 = 

1 2 3 4 5 6

1

2

3

4

5

6

v v v v v v
v 0 0 0 0 1 0
v 0 0 0 1 0 0
v 0 0 0 0 0 1
v 1 0 0 0 1 0
v 0 0 1 0 0 0
v 0 1 0 0 0 0

. 

Let S4 be the type III MOD natural neutrosophic special 
quasi dual number directed graph given by the following figure. 

S4  = 

Figure 3.122 

Interested reader can find all the powers of N and prove Nt = N 
for same t > 2. 

 Now having seen all types of MOD natural neutrosophic 
directed graphs of type III. We now proceed onto describe MOD 
interval directed graphs and MOD interval natural neutrosophic 
directed graphs using [0, n) and I[0, n) respectively. 

 Let G be a MOD directed graph with edge weight from [0, n) 
or I[0, n) then we see if M is the associated matrix then 

v1 

1 
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v5 v6
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Mt = M or (0) in general may not be possible further Mn for all 
n  Z+ may be district even as n  ∞.   

So these graphs may not be much useful in general 
applications. 

 We can take only subsets in I[0, n) which are MOD natural 
neutrosophic interval number which forms a finite semigroup. 
Only in such case we can find useful or practical applications of 
these graphs.   

We will illustrate this situation by some examples. 

Example 3.35:  Let G be the MOD interval directed graph with 
edge weights from the set  

S = { [0,6)g
0,I , [0,6)g

2gI  , 1, [0,6)g
3gI , 3 [0,6)g

1.5gI , [0,6)g
2.6gI }  I[0,6)g. 

S is closed under product. The diagram of G is as follows. 

G = 

Figure 3.123 

The MOD matrix M associated with MOD graph is as 
follows: 

v1

[0,6)g
1.5gI

v2

v3 v4
[0,6)g
2gI

[0,6)g
0I

1 

v5
[0,6)g
2.6gI

3 
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M = 

1 2 3 4 5
[0,6)g

1 1.5g

2
[0,6)g

3 2g
[0,6)g

4 0
[0,6)g

5 2.6g

v v v v v
v 0 1 I 0 0
v 0 0 0 0 0
v 0 0 0 I 0
v 0 I 0 0 3
v 0 0 0 I 0

. 

We now find M2 in the following. 

M2 = 

1 2 3 4 5
[0.6)g

1 0

2
[0,6)g [0,6)g

3 0 2g
[0.6)g

4 2.6g
[0,6)g

5 0

v v v v v
v 0 0 0 I 0
v 0 0 0 0 0
v 0 I 0 0 I
v 0 0 0 I 0
v 0 I 0 0 0

. 

We can proceed onto find powers of M and the 
corresponding MOD interval graphs.  

However  we wish to keep on record the following. 

i) Finding finite subsemigroup of special natural
neutrosophic numbers in [0,n) other than I

nZ happens 
to be a very difficult or even to be more realistic is an
open conjecture.

ii) Another restriction is we may find elements like
[0,5)
2I and [0,5)

2.5I to be natural neutrosophic zero divisors
but [0,5)

2.5I  [0,5)
2.5I = [0,5)

1.25I  and so on. Will [0,5)
2.5I , [0,5)

1.25I  be 
torsion elements or torsion free elements of I[0,5)?

So at this juncture we stop discussing about such MOD 
interval graphs. 
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We now proceed onto suggest a few problems for the 
interested reader. 

Problems: 

1. Let G be the MOD directed with edge weights from I
8Z . Let

P be the associated matrix of G.

a) Find Pt, t  2 and the corresponding MOD directed
graphs Gt.

b) Can Pt = P for a t > 2?
c) Can Pt = (0) for a t > 2?
d) Obtain any other special feature enjoyed by this G.

2. Let G be a MOD natural neutrosophic graph given  by the
following figure with vertex set from I

7Z  or by labeling.

G = 

Figure 3.124 

where v1 = 3, v2 = 0, v3 = 6, v4 = 5, v5 = 2 and v6 = 1. 

i) Find all special features associated with this labeled
graph.

ii) If M is matrix associated with G find M2, M3 and  M4

and the corresponding MOD graphs G2, G3 and G4
respectively.

v1

v5

v3

v6
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1 

1 1 
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3. Let H be a MOD natural neutrosophic finite complex number
graph with vertex set from CI(Z5) given by the following
figure, vi  C(Z5).

H = 

Figure 3.125 

i) Find the MOD matrix M associated with H.
ii) Find M2, M3, M6 and M8 and the corresponding MOD

graphs.
iii) How many distinct graph with same set of edges as that

of H but different labelings from CI(Z5) be done?
4. Let V be the MOD natural neutrosophic-neutrosophic

graph with vertex set from Z10  II vi  Z10  II.

v1

v3

v2

v4

v5

v6

v8v7
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1 
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V  = 

Figure 3.126 

Show by giving labeling from Z10  II for V we have 
many special and innovative applications of these new MOD 
neutrosophic graphs. 

i) Find the matrix M associated with V.
ii) Find M3, M2 and M5 and the corresponding graphs V3,

V2 and V5 respectively.

5. Let M  be the MOD natural neutrosophic-neutrosophic graph
G with vertex set from Zn  II and having t number of
vertices v1, v2, …, vt  Zn  II, t < n (t fixed).

i) How many such graphs can be constructed with same
set of edges?

ii) Study when t = 7.
iii) Study when t = 20.
iv) Find the t  t matrix M associated with G.
v) Can these graphs be used in labeling indeterminate

vertices?

6. Let G be the MOD natural neutrosophic dual number graph
with vertex set from Z12  IgI given by the following
figure vi  Z12  gI; 1 ≤ i ≤ 7.
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v6 v5
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 G   = 

Figure 3.127 

i) How many graphs can be got with varying vertices v1,
…, v7 but edges remaining the same?

ii) Prove these MOD dual number graphs will be a powerful
tool when the dual concept is involved.

iii) Find M associated with G and calculate M2, M3, M4, M6

and M8 and the corresponding graphs.

7. Enumerate all benefits in using MOD natural neutrosophic
dual number graphs with vertex set from Zn  gI.

8. Let S be the MOD natural neutrosophic special dual like
number graph with vertex set from  I

10Z   hI with 9
vertices, v1, v2, …, v9  Zn  hI given in the following.
The edge weights are taken from  I

10Z   hI . 

S = 

Figure 3.128 

v1
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v3
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v6 v7
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i) Find the MOD matrix P associated with  S.
ii) Find P2, P3, P4 and P8 and the corresponding MOD

graphs S2, S3, S4 and S8 respectively.
iii) How many labeled graphs (different) can be got

using different edges weights from  I
10Z   hI ? 

9. Obtain all special features enjoyed by MOD natural
neutrosophic special dual like number graphs with entries
from Zn  hI.

10. Let P be the MOD  natural neutrosophic special quasi dual
number graph with vertex set from Z9  kI given by the
following figure, vi  Z9  kI ; with any set of edge
weights from Z9  kI.

P = 

Figure 3.129 

i) Find the MOD natural neutrosophic special quasi dual
number matrix M associated with P.

ii) Find M2, M4, M16 and M8 and their respective MOD
graphs P2, P4, P16 and P8.

iii) How many graphs isomorphic to P can be drawn using
different sets of labeling from Z9  kI?

v3

v4

v7

v5

v6v2

v1
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12. Let W be the MOD natural neutrosophic special quasi dual
number graph given in figure 3.129 with vertex set and edge
weights from {Z10  kI.

Study questions (i) to (iii) of problem (11) for this W.

13. What are the special and distinct features enjoyed by type I
MOD natural neutrosophic directed graphs with edge
weights from I

nZ ? 

14. Let G be the type I MOD natural  neutrosophic directed
graph with edge weights from I

10Z  given by the following
figure.

G = 

Figure 3.130 

i) Find M related with G.
ii) Find M2, M3, …, Mt, 2 ≤ t < ∞ and find the

corresponding type I MOD natural neutrosophic directed
graphs G2, G3, …, Gt.

iii) Which of the graphs G2, G3, G4, …, Gt have loops?
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iv) Can we say only odd power of M have loops?
v) Can we say only even power of M have loops?
vi) Can Mt = M? or Mt = (0) (2 ≤ t < ∞)?

15. Does these exist a type I MOD natural neutrosophic directed
graph G with edge weights from I

nZ so that if M is the MOD
matrix M associated with G then none of the type I MOD 
graphs associated with matrices M2, M3, …, Mt, have loops? 

If so characterize them.

16. Does these exist type I MOD natural neutrosophic directed
graphs G with edge weights from I

nZ so that for M the 
matrix associated with G have all MOD graphs associated
with matrices M2, M3, …, Mt have loops? Characterize
them.

17. Let P be the type I MOD natural neutrosophic finite complex
number directed graph with edge weights from CI(Z8) given
by the following figure.

P  = 

Figure 3.131 

i) Find M the type I MOD natural neutrosophic matrix
associated with P.
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ii) If M2, M3, M4, M5 and M6 be the type I MOD matrices
find the type I MOD natural neutrosophic complex
number directed graphs P2, P3, P4, P5 and P6
respectively.

iii) Which powers of M contribute to loops?
iv) Which powers of M will have no loop?
v) Enumerate all special features enjoyed by these type I

MOD graphs.

18. Let V be the type I MOD natural neutrosophic-neutrosophic
directed with edge weights from Z12  II given by the
following figure:

V = 

Figure 3.132 

i) Find the type I MOD natural neutrosophic-neutrosophic
matrix M associated with V.

ii) Find all Mt; 2 ≤ t < ∞, which has no loops associated
with Vt the corresponding type I MOD graphs.

iii) Can Mt = (0) for 2 ≤ t < ∞?
iv) Can Mt = M for any t, 2 ≤ t < ∞?

19. Obtain all special features associated with type I MOD
natural neutrosophic-neutrosophic directed graphs with
edge weights from Zn  II.
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 20. Let H be the MOD natural neutrosophic dual number
directed graph of type I given by the following figure with
edge weights from Z11  gI;

H  = 

Figure 3.133 

i) Let M be the type I MOD dual number matrix associated
with H:
a) Find M2, M3, …, Mt and the corresponding type I

MOD natural neutrosophic dual number graphs H2,
H3, …, Ht respectively.

b) Can Mt for any t; 2 ≤ t < ∞ have loops?
c) Can Mt for some t; 2 ≤ t < ∞ have only edges?

ii) Enumerate all special features enjoyed by type I MOD
natural neutrosophic dual number directed graphs G
with edge weights from Zn  gI.
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21. Let G be the MOD natural neutrosophic special dual like
number directed graph of type I with edge weights from
Zn  hI.

i) Obtain all special features enjoyed by M.

ii) Can every Gt have loops? (Gt is the type I MOD graph
associated with matrix Mt where M is the matrix
associated with G)?

iii) Enumerate all special features associated with G.

iv) Study G when n = 10.

22. Let G be the type I MOD natural  neutrosophic special quasi
dual number directed graph with edge weights from
Zn  kI. Let M be the MOD matrix associated with G.

Study questions (i) to (iii) of problem (21) for this G.

23. Obtain all special and distinct features associated with type
II MOD natural neutrosophic directed graphs with edge
weights and vertex set from I

nZ  or Zn  II or Zn  gI  or
CI(Zn) or Zn  hI or Zn  kI .

24. What are the distinct properties when edge weights and
labeling of vertices are from the same set?

25. Let B be the MOD natural neutrosophic directed graph of
type II with edge weights and vertices from I

9Z .

i) If M is the matrix associated with B when will B be the
such that Mt = M or Mt = (0).

ii) For what values of edge weights of B. Mr will have
loops r > 2.

iii) What values of edge weight of B Mr
 will have no loops?

iv) Can Mt = Mr (t ≠ r) 2  t, r?
v) Obtain any other special feature enjoyed by B.
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26. Study questions (i) to (v) of problem (25) for the type II
MOD natural neutrosophic directed graph H with edge
weights from I

15Z  and vi  I
15Z , 1  i ≤ 8.

H = 

Figure 3.134 

27. Obtain all special features associated with type II MOD
natural  neutrosophic finite complex number directed graphs
with vertex set and edge weights from CI(Zn); 2 ≤ n < ∞.

28. Let G be the type II MOD natural neutrosophic finite
complex number directed graph with edge weights and
vertex set from CI(Z12) with M the MOD matrix associated
with G and G given in the following figure:
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G = 

Figure 3.135 

vi  CI(Z12); 1 ≤ i ≤ 9. 

i) Find M2, M3, M4, M5, M6, M7 and their respective type
II MOD directed graphs G2, G3, G4, G5, G6 and G7
respectively.
a. Which of the Gi’s have loops 2 ≤ i ≤ 7?
b. Which of the Gi’s have only edges, 2 ≤ i ≤ 7?

ii) Can Mt = M; 2 ≤ t < ∞?
iii) Can Mt = (0); 2 ≤ t < ∞?
iv) Obtain any special and interesting feature associated

with this G.

27. Let V be the type II MOD natural neutrosophic-neutrosophic
directed graph with edge weights and vertex set from Z10 
II given  by the following figure:
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V = 

Figure 3.136 

Let N be the type II MOD matrix associated with V. 

i) Find the least t so that the associated graph of Nt will
have loops.

ii) What is the largest value of t so the associated of Nt has
no edges?

iii) Can Nt = N for,  2 < t < ∞?

iv) Can Nt = (0) for, 2 ≤ t < ∞?

v) Give all special features associated with this V.

30. Let X be the type II MOD natural neutrosophic dual number
directed graph with edge weights and vertex set from
Z10  gI given by the following figure:
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X = 

Figure 3.137 

Let Y be the type II MOD matrix associated with X. 

Study questions (i) to (v) of problem (29) for this X and 
related matrix Y. 

31. Let W be the type II MOD natural neutrosophic special dual
like number directed graph with edge weights and vertex set
from Z15  gI.

W = 

Figure 3.138 
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Let S be the type II MOD matrix associated with W. 

i) Study questions (i) to (v) of problem (29) for this W and
S.

ii) Obtain any other special property associated with type
II MOD natural neutrosophic special dual like number
directed graph with edge weights and vertex set from
Zn  hI.

32. Let P be the type II MOD natural neutrosophic special quasi
dual number directed graph with edge weights and vertex
set from Z18  kI. Let L be the type II MOD matrix
associated with P.
P is given by the following figure:

P = 

Figure 3.139 

i) Study questions (i) to (v) of problem (29) for this P and
L.

ii) Obtain any other special feature associated with P and
L.
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33. Enumerate all special and interesting features associated
with type III MOD natural neutrosophic directed graph with
edge weights from {0, 1} and vertex set from I

nZ . 

34. If H be the type III MOD natural neutrosophic directed graph
with edge weights from {0, 1} and vertex set from I

10Z
given by the figure, vi  I

10Z , 1 ≤ i ≤ 9. 

H  = 

Figure 3.140 

Let M  be the type III MOD matrix of the graph H. 

i) Can Mt = M for, 2 ≤ t < ∞?

ii) Can MOD graph associated with Mt; 2 ≤ t < ∞ have
loops?

iii) Obtain all special features enjoyed by M and H.
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 35. Let P be a type III MOD natural neutrosophic complex
number directed graph with vertex set from CI(Z16) and
edge weights from {0, 1} given by the following figure:

P  = 

Figure 3.141 

Let D be the MOD matrix associated with it. 

Study questions (i) to (iii) of problem 34 in case of this P. 

36. Study type III MOD natural neutrosophic-neutrosophic
directed graphs and enumerate all the special features
enjoyed by it.

37. Can MOD natural neutrosophic graphs be used in semi
automaton?

38. Can MOD natural neutrosophic graphs using CI(Z5) give any
special features different from those constructed using I

5Z ?

39. Compare MOD graphs which are labeled using I
nZ  with 

those labeled with Zn  II. Prove these MOD graphs
contribute to several types of labeling.

40. Show that all these type I MOD directed graph of natural
neutrosophic entries from I

nZ  or CI(Zn) or Zn  II or
Zn  gI or Zn  hI or Zn  kI can be used in MOD
Cognitive Maps models.
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i) Prove this has more advantages over FCMs and NCMs.
ii) Give any other feature which is interesting about these

graphs.

41. Can these type I MOD natural neutrosophic directed graphs
be used in networking?

42. Enumerate all special applications that can be made using
these type I MOD natural neutrosophic directed graphs.

43. Research on MOD interval graphs with edge sets and vertex
sets from [0,n) happens to be at a dormant stage (study and
analyse them).

44. Find all semigroups in I[0,10) of finite order under  apart
from Z19 and I

19Z .

45. Can I[0,24) have finite semigroups under  apart from Z24

and I
24Z ?

46. Find all semigroups of finite order in CI[0,13). Using those
elements of these semigroups construct type II MOD natural
neutrosophic interval finite complex number directed
graphs.

47. For I[0, 7) do  we have finite order subsemigroups under
product other than Z7 and I

7Z

48. Obtain all special and innovative properties enjoyed by
MOD type II natural neutrosophic dual number directed
graphs with edge weights and vertex set from Z15  gI
with MOD type II natural neutrosophic special quasi dual
number directed graphs with edge weights from Z15  kI.
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 49. Specify the difference between type I MOD natural
neutrosophic directed graphs using I

19Z  and type II MOD

natural neutrosophic directed graphs using I
19Z .

50. Compare type I MOD natural neutrosophic-neutrosophic
directed graphs  using Z12  II and type III MOD natural
neutrosophic neutrosophic directed graphs.

51. Classify and compare the special features of using vertex set
from I

nZ or  Zn  II for labeling.

52. Prove the method of labeling using CI(Zn) or Zn  gI are
much more advantageous in comparison with labeling with
natural numbers.
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Chapter Four 

MOD BIPARTITE GRAPHS

 In this chapter we for the first time carry out a systematic 
study of the MOD bipartite graphs  built using Zn for edge 
weights. MOD dual number bipartite graphs using Zn  g, for 
edge weights.  

MOD special dual like number bipartite graph with edge 
weights from Zn  h.  

MOD special quasi dual number bipartite graph with edge 
weights from Zn  k. 

 Likewise in case using edge weights from C(Zn) and 
Zn  I, we call them as MOD finite complex number edge 
weights bipartite graph and MOD neutrosophic edge weights 
bipartite graph respectively.   

All these will be described  by examples. 

Example 4.1:  Let G be a MOD bipartite graph with edge 
weights from Z9 given by the following figure. 
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Figure 4.1 

Example 4.2:  Let H be the bipartite directed graph with edge 
weights from Z11.  

H is a MOD bipartite directed graph given by the following 
figure. 

Figure 4.2 

b1

b2

b3

b4

b5

a1

a2

a3

a4

6 

1 

3 2 

5 

v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

2 

7 

4 

2 

5 

7 

218



Example 4.3:  Let S be the MOD directed bipartite graph with 
edge weights from Z4 given by the following figure: 

Figure 4.3 

Let G be the bipartite graph with edge weights from Zn. 

We define G to be the MOD bipartite directed graph. 

We describe MOD rectangular matrix given in the following. 

Example 4.4: Let 

M1 = 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

a a a a
a a a a
a a a a
a a a a
a a a a
a a a a

 
 
 
 
 
 
 
 
  

 where ai  Z12; 1 ≤ i ≤ 24; 

M is MOD rectangular matrix. 
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 Example 4.5: Let 

S = 
1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a a
a a a a a
a a a a a

 
 
 
  

be the MOD rectangular matrix with entries ai  Z23, 1 ≤ i ≤ 15. 

We will describe the MOD connection matrix associated 
with MOD bipartite directed graphs by some examples. 

Example 4.6:  Let G be the MOD bipartite directed graph with 
entries from Z10 given by the following figure. 

Figure 4.4 
Let M be the MOD connection matrix or relational matrix 

associated with G given in the following 
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M = 

1 2 3 4 5 6 7 8

1

2

3

4

5

6

u u u u u u u u
v 2 0 0 0 0 0 0 0
v 0 0 4 0 0 0 0 0
v 0 5 0 0 0 0 0 0
v 0 0 0 0 1 0 7 0
v 0 0 0 3 0 2 0 0
v 0 0 0 0 0 0 0 9

. 

Example 4.7:  Let H be the MOD directed bipartite graph with 
edge weights from Z7 given by the figure. Let N be the MOD 
relational matrix associated with H is given the following. 

Figure 4.5 

Let N be the MOD relational matrix 
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N = 

1 2 3 4 5 6 7

1

2

3

4

b b b b b b b
a 4 0 0 1 0 0 0
a 0 3 0 0 1 0 0
a 0 0 0 0 0 2 1
a 0 0 3 0 0 0 0

. 

 Let G be the MOD directed bipartite graph with edge weights 
from Zn  g; G is defined as the MOD directed bipartite dual 
number graph.  

We give examples of them. 

Example 4.8: Let G be the MOD directed dual number bipartite 
graph given by the following figure with edge weights from 
Z6  g 

Figure 4.6 
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 Example 4.9: Let H be the MOD directed bipartite graph with 
edge weights from Z13  g given by the following figure. 

Figure 4.7 

Example 4.10: Let W be a MOD directed bipartite graph with 
edge weights from C(Z9).  

We call W as the MOD directed finite complex number 
graph which is given by the following figure: 
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Figure 4.8 

 Thus if G be a MOD bipartite directed graph which takes its 
edge weights from C(Zn) then we define G to be a MOD bipartite 
directed finite complex number graph. 

We will give one more example of this. 

Example 4.11:  Let G be the MOD bipartite directed graph with 
edge weights from C(Zn) given by the following figure: 
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Figure 4.9 

 Next we proceed onto describe MOD bipartite directed 
neutrosophic graphs. 

Let G be the MOD bipartite directed graph. 

If G takes the edge values from Zn  I then we define G to 
be a MOD bipartite directed neutrosophic graph. 

We will give one or two examples of MOD directed bipartite 
neutrosohic graph in the following. 

Example 4.12: Let G be a MOD directed bipartite graph with 
edge weights from Z6  I given by the following figure: 
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Figure 4.10 

Example 4.13:  Let G be the MOD directed neutrosophic 
bipartite graph with edge weights from Z7  I given by 
following figure: 
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Figure 4.11 

 Next we proceed onto describe the notion of MOD  bipartite 
special dual like number directed graph. 

 Let G be a MOD directed bipartite graph with edge weights 
from Zn  h. 

Then we define G to be a MOD bipartite directed special 
dual like number graph. 

We will describe this situation by some examples. 

Example 4.14:  Let S be the MOD directed bipartite special dual 
like number graph with edge weights from Z10  h given by 
the following figure: 

v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

u6

u7

3+4I
2I

5I+2

1

3 

2I

I
4I+2 

227



Figure 4.12 

Example 4.15: Let P be the MOD directed bipartite special dual 
like number graph given  by the following figure with edge 
weights from Z8  h.

 

Figure 4.13 
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  Next we just give examples of a MOD bipartite directed 
special quasi dual number graph in the following. 

Example 4.16: Let G be a MOD bipartite directed graph with 
edge weights from Z12  k given by the following figure. 

Figure 4.14 

Thus if G a MOD directed bipartite graph with edge weights 
from Zn  k then we define G to be a MOD directed bipartite 
special quasi dual number graphs. 

Example 4.17: Let G be a MOD directed bipartite graph with 
edge weights from Z7  k given by the following figure. 

 Figure 4.15 

v1

v2

v3

v4

w1

w2

w3

w4

w5

6+3k

4k

3

2+5k

1

v1

k+3 

v2

v3

v4

w1

w2

W3

4 

2 

3k 

229



 
 
 Now having seen MOD bipartite graphs with edge weights 
from different sets we can define any MOD  n-partite graph 
n  3 with edge weights from Zn or Zn  g or Zn   h or 
Zn  k or C(Zn) or Zn  I.  

These situations will be appropriately denoted by some 
examples.  

Just we give one example of a special type of MOD linked 
graph. 

Example 4.18: Let K be a MOD 3 linked graph with edge 
weights from Z10 given by the following figure: 

 

 

 

Figure 4.16 

We see this is a special type of MOD 3-linked graph. 
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We can howeer have any MOD n-linked graph n  3. 

We now describe a MOD n-partite graph n  3 by some 
example. 

Example 4.19: Let G be a MOD 3 partite graph with edge 
weights from Z15 by the following figure: 

 
 

Figure 4.17 

Example 4.20:  Let G be the MOD 4 partite graph given by the 
following figure with edge weights from Z12. 
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Figure 4.18 

 Now in the case MOD n partite graph we have an advantage 
n  3. 

For we can use more than one edge weight set. 

We will illustrate this situation from the following example. 
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 Example 4.21:  Let G be a MOD 3-partite mixed edge weight 
graph given by the following figure. 

Figure 4.19 

The edge weights from G1 to G2 are from Z11, the edge 
weights from G1 to G3 are from Z3 and the edge weights from 
G2 to G3 are from Z6. 

Thus one of the uniqueness of these MOD 3-partite mixed 
edge weights graphs is for the MOD 3-partite graph the edge 
weights can maximum be taken from 3 sets. 

In this case the three sets are Z11, Z3 and Z6. 

We give one more example of this situation. 
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Example 4.22: Let G be a MOD 4-partite mixed edge weights 
graph given by the following figure: 

 
 

 

Figure 4.20 

The edge weights from the six sets Z10, Z4, Z5, Z8, Z13 and 
Z17. 

 Here for G1 to G3 the edge weights are from Z10, from G1 to 
G2 the edge weights are from Z4 from G1 to G4 the edge weights 
are from Z5 from G4 to G2 the edge weights are from Z8 from G4 
to G3 edge weights are from Z13 and the edge weights are from 
Z17 for G2 to G3.  

This is the way MOD 4-partite mixed edge weights graphs 
are constructed. 
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  Now it is important to note that we can for some sets Gi to 
Gj have the same edge weight sets so that we need not have 
each of the sets to have distinct edge weights.  

This situation is illustrated by an example or two. 

Example 4.23:  Let G be the MOD 3 partite mixed edge weights 
graph which is given by the following figure: 

 

 

Figure 4.21 

 The edge weights of G1 to G3 is from Z8, the edge weights 
of G1 to G2 is also from the set Z8 and the edge weights from G2 
to G3 is from Z5.   

Thus we see for G1 to G3 and G1 to G2 the edge weights are 
from the same set Z8 where as for G2 to G3 the edge weights are 
from Z5. 

Thus we see a MOD 3-partite mixed edge weights can have 
the edge weights only from two sets Z8 and Z5. 
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We give yet one more example. 

Example 4.24:  Let G be the MOD 4-partite mixed edge weights 
graph given by the following figure: 

Figure 4.22 

The edge weights from G1 to G2 are  taken from Z10. 

The edge weights from G1 to G3 and G2 to G3 are also taken 
from Z11 whereas the edge weights from G3 to G4 and G1 to G4 
are taken from Z11.  

The edge weights of G2 to G4 are taken from Z10. 

Thus the edge weights are from Z6, Z11 and Z10. 
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 Thus if G a MOD n-partite graph we can have atlest two 
edge weight sets then we define G to be a MOD n-partite mixed 
edge weight graph. 

Next we proceed onto show the MOD n-partite graphs can 
have edge weights from Zn and Zn  I and C(Zn) and so on.  

We as a misnomer call them also as MOD n-partite mixed 
edge graphs only. 

We will illustrate this situation by an example or two. 

Example 4.25: Let G be a MOD 4-partite mixed edge weights 
graphs given by the following figure: 

Figure 4.23 

We see G1 to G4 takes the edge weights from Z5  g. 
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The edge weights are taken from C(Z3) from G1 to G2. The 
edge weights from G2 to G3 are from Z6  k. 

From G4 to G3 the edge weights are taken from Z8  h. 

From G2 to G4 edge weights are taken from Z7. 

For G1 to G3 the edge weights are taken from Z12. 

We give yet another example of the MOD 3-partite mixed 
edge weights graph given by the following figure. 

Example 4.26:  Let G be the MOD 3-partite mixed edge weights 
graph given by the following figure. 

Figure 4.24 

The edge weights are from C(Z9) and Z8  h. From G1 to 
G2 the edge weights from C(Z9).   

From G1 to G3 and G2 to G4 the edge weights are from 
Z8  g. 
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Example 4.27: Let G be the MOD 5 partite mixed edge weight 
graph given by the following figure:  

The edge weights are from C(Z3), C(Z7), Z6  g, Z12  h 
and Z12  I given by the following figure: 

 

Figure 4.25 

The  edge weights from G1 to G2 is from Z12  I.  

The  edge weights from G1 to G3 is from C(Z7). 

The  edge weights from G1 to G4 is from C(Z3).  The edge 
weights from G1 to G5 are taken from Z12  h. 

The edge weights from G2 to G5 is taken from C(Z3). 

The edge weights from G2 to G4 are taken from Z12  I. 
The edge weights from G2 to G3 are taken from C(Z7).  

The edge weights from G3 to G4 are taken from Z6  g. 
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The edge weight from G3 to G5 are taken from Z6  g. The 
edge weights from G4 to G5 are taken from Z12  h. 

Thus one can get many such examples. 

Clearly this innovative idea of MOD n-partite mixed edge 
weights graph will be a boon to researchers in this area. 

Next we proceed onto describe and develop the notion of 
MOD bipartite graphs of type I where the edge weights as well as 
the verties are from Zn or C(Zn) or Zn  I or Zn  g or 
Zn  h or Zn  k or used in the mutually exclusive sense by 
some examples. 

Example 4.28: Let G be a MOD bipartite graph of type I with 
edge weights and vertex set from Z15 given by the following 
figure: 

Figure 4.26 
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v1, v2, v3, v4, v5  Z15 and w1, w2, w3, w4, w5 and w6  Z15 \ 
{v1, v2, v3, v4, v5}. 

The min demand in this case is  
{v1, …, v5}  {w1, …, w6} =  and  both are subsets of Z15. 

We give yet another example. 

Example 4.29:  Let G be the MOD bipartite graph of type I with 
edge weights and vertex set from Z9 given by the following 
figure. 

Figure 4.27 

where v1 = 0, v2 = 4, v3 = 5, v4 = 6 and v5 = 7 all elements of Z9. 

w1 = 2  w2 = 2, w3 = 3 and w4 = 8 all are elements of Z9. 

It is pertinent to record that the edge weights can be the 
same for any pairs of vertices. 

This is evident from the MOD graph in the figure 4.27. 
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Next we provide examples of MOD bipartite finite complex 
number graphs of type I. 

Example 4.30: Let G be a MOD bipartite finite complex number 
graph of type I with edge weights and vertex set from C(Z5) 
given by the following figure: 

Figure 4.28 

v1 = 2 + iF, v2 = 0, v3 = 4 and v4 = 1 

w1 = 2 + 4iF, w2 = 3, w3 = 4iF, w4 = iF, w5 = 2iF and 
w6 = 1 + iF 

Clearly {v1, v2, v3, v4}  {w1, w2, w3, w4, w5, w6} =  and 
both are subsets of C(Z5). 

Example 4.31:  Let G be a MOD bipartite finite complex number 
graph of type I with edge weights from C(Z12) and vertex set 
from C(Z12) given by the following figure: 
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Figure 4.29 

vi  Z12; 1 ≤ i ≤ 7 and wj  C(Z12) \ Z12; 1 ≤ j ≤ 5. 

Next we proceed onto describe the MOD bipartite 
neutrosophic graph of type I by some  examples. 

Example 4.32: Let G be a MOD bipartite neutrosophic graph of 
type I with edge weights and vertex set from Z10  I given by 
the following figure: 
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Figure 4.30 

vi   Z10I; 1 ≤ i ≤ 4 and wj  Z10  I \ Z10I;  1 ≤ j ≤ 5. 

Example 4.33:  Let G be a bipartite neutrosophic graph of type I 
given by the following figure with edge weights and vertex set 
from Z17  I. 
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Figure 4.31 

vi  Z17 and wj  Z17I;  1 ≤ i ≤ 5 and 1 ≤ j ≤ 8. 

Thus if G is a MOD bipartite graph type I with edge weights 
and vertex set entries from  Zn  I then we define G to be a 
MOD bipartite neutrosophic graph of type I. 

Next we proceed onto describe MOD  bipartite dual number 
graphs of type I the following example. 
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Example 4.34: Let G be a bipartite dual number graph of type I 
with edge weights from Z16  g and vertex set from Z16  g 
given by the following figure: 

Figure 4.32 

vi  Z16g and wj  Z16  g \ Z16g, 1 ≤ i ≤ 6 and 1 ≤ j ≤ 4. 

Example 4.35: Let G be a MOD bipartite dual number graph of 
type I with edge weight and vertex set from Z11  g given by 
the following figure: 
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Figure 4.33 

Vi  Z11 and wj   Z11  g \ Z11 1 ≤  i ≤ 6 and 1 ≤  j ≤ 7. 

Thus if G is a MOD directed bipartite graph of type I with 
edge weights and vertex set from Zn  g then we define G to 
be a MOD bipartite dual number graph of type I we have seen 
examples of them. 

Now we proceed onto describe by examples MOD bipartite 
special dual like number graph of type I and MOD bipartite 
special quasi dual  number graph of type I.  

The definition of these graphs can be made analogous to 
MOD directed bipartite dual number graphs of type I. 

Example 4.36:  Let H  be a MOD bipartite special dual like 
number graph of type I with edge weights and vertex set from 
Z10  h given by the following figure: 
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Figure 4.34 

vi  Z10h and wj  Z10  h \ Z10h 1 ≤ i ≤ 4 and 1 ≤ j ≤ 6. 

Example 4.37: Let G be a MOD bipartite special quasi dual 
number graph of type I with edge weights from Z12  k given 
by the following figure: 

Figure 4.35 
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  The edge weights are from Z12  k and the vertices vi’s 
takes their values from Z12 and wj take their values from Z12k; 
1 ≤ i ≤ 6 and 1 ≤ j ≤ 5. 

 Interested reader can study these structures with more 
examples and apply them to MOD RMs models of different types 
discussed in [69]. 

Now we proceed onto describe MOD bipartite graphs of type 
II. Clearly in case of MOD bipartite graphs of type II they take
vertexes from any two different sets and the edge weights from 
any one of those two sets. 

We will first illustrate this situation by some examples. 

Example 4.38:  Let G be the MOD bipartite graph of type II with 
edge weight from Z10 and vertex sets from Z10 and  Z7   given by 
the following figure: 

Figure 4.36 
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vi  Z0; 1 ≤ i ≤ 6 and wj  Z7 1 ≤ j ≤ 8. 

Example 4.39:  Let H be the MOD bipartite graphof type II with 
vertex weights from the sets Z9 and Z15 and edge weights from 
Z15 given by the following figure: 

Figure 4.37 

vi Z9 and wj  Z15; 1 ≤ i ≤ 6 and 1 ≤ j ≤ 5. 

Example 4.40: Let V be the MOD bipartite graph of type II with 
vertex sets from Z11 and C(Z5) and edge sets from Z11 given by 
the following figure: 
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Figure 4.38 

vi  Z11 and wj  C(Z5) 1 ≤ i ≤ 5 and 1 ≤ j ≤ 7. 

Example 4.41:  Let G be a MOD bipartite graph of type II with 
edge weights from Z9  g and vertex sets from Z8  I and 
Z9  g given by the following figure: 
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Figure 4.39 

vi  Z0  g; 1 ≤ i ≤ 5 and wj Z8  I; 1 ≤ i ≤ 6. 

Example 4.42:  Let S be the MOD bipartite graph of type II with 
vertex sets from Z5  k and C(Z10) and edge sets from C(Z10) 
given by the following figure: 
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Figure 4.40 

vi Z5  k; 1 ≤ i ≤ 6 and wj  C(Z10); 1 ≤ j ≤ 5. 

Example 4.43: Let M be the MOD bipartite graph of type II with 
edge weights fromZ4  h and vertex sets from Z10 and Z4  
h given by the following figure. 

 
Figure 4.41 
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vi Z4  h; and wj  Z10 1 ≤ j ≤ 5 and 1 ≤ j ≤ 6. 

Example 4.44: Let W be a MOD bipartite graph by type II with 
vertex sets from C(Z12) and Z16  h and edge sets from C(Z12) 
given by the following figure. 

Figure 4.42 

vi Z16  h and wj  C(Z12); 1 ≤ j ≤ 5 and 1 ≤ j ≤ 4. 

 Next we proceed onto describe type III MOD bipartite 
graphs. 

We call a MOD bipartite graph G to be a type III if the vertex 
sets are distinct and edge weights are also taken from a different 
set. 

We will describe this situation by some examples. 

Example 4.45:  Let G be a MOD bipartite graph of type III with 
edge weights from C(Z7) and vertex sets from Z12 and Z19 given 
by the following figure: 
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Figure 4.43 

vi Z12; 1 ≤ i ≤ 7 and wj  Z19; 1 ≤ j ≤ 5. 

Example 4.46: Let G be a MOD bipartite graph of type III with 
edge weights from Z5  I and  vertex from  Z10  I and 
Z7  I given by the following figure. 

Figure 4.44 
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vi  Z10  I and wj  Z7  I  1 ≤ i ≤ 6 and 1 ≤ j ≤ 5. 

Example 4.47: Let K be the MOD bipartite graph of type III with 
edge weights from Z7  g with vertex sets from Z6  k and 
Z12  h given by the following figure 

 

Figure 4.45 

vi  Z6  k; 1 ≤ i ≤ 5 and wj  Z12  h; 1≤ j ≤ 8. 

Having seen some new types of MOD bipartite graphs we are 
sure these will surely find applications in MOD mathematical 
models. 

Now we proceed onto describe MOD n-partite graphs of 
different types by some examples. 
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If a MOD n-partite graph takes the edge weights and vertex 
sets from the same set we call that MOD n-partite graph to be of 
type I MOD n-partite graph. 

Example 4.48: Let G be a MOD 3-partite graph of type I with 
edge weights and vertex set from Z12 given by the following 
figure: 

Figure 4.46 

All vi’s are distinct and take values of from Z12; 1 ≤ i ≤ 7. 

Example 4.49:  Let H be a MOD 4-partite graph of type I with 
edge weights and vertex set from C(Z10) given by the following 
figure: 
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Figure 4.47 

vi  C(Z10); 1 ≤ i ≤ 8 and all of them are distinct. 

Example 4.50: Let H be a MOD 3-partite graph of type I with 
edge weights and vertex set from Z13  I given by the 
following figure: 
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Figure 4.48 

All the vi  Z12  I; 1 ≤ i ≤ 8 and are distinct. 

Example 4.51: Let V be the MOD 3-partite graph of type I with 
edge weights from Z9  k given by the following figure: 

 

 

Figure 4.49 
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vi  Z9  k; 1 ≤ i ≤ 8 and each vI is distinct. 

 Next we proceed onto describe MOD n-partite graphwith 
edge weights from one set and the vertex sets from another set 
which we choose to call as MOD n-partite graph of type II. 

Example 4.52: Let S be the MOD 4-partite graph of type II with 
edge weights from Z15 and vertex set elements from Z9 given by 
the following figure: 

Figure 4.50 

vI  Z9; 1 ≤ i ≤ 9. 

Example 4.53: Let G be the 3-partite graph of type II with edge 
weights from C(Z10) and vertex set from Z12  k given by the 
following figure: 
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Figure 4.51 

vi Z12  k; 1 ≤ i ≤ 8. 

Example 4.54: Let G be a MOD 4-partite graph of type II with 
edge weights from Z12  I and vertex set from C(Z5); given by 
the following figure: 
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Figure 4.52 

vi  C(Z15); 1 ≤ i ≤ 8. 

Example 4.55: Let G be a MOD 3-partite graph of  type II with 
edge weights from Z20 and vertex set from Z7  h.   

This given by the following example. 

v1 v2 

9 
11+I 

3+4I 

1+4I 

8 

3 2+10I 

v5v4 v3

v8
v7 v6

4 

8I 

I 

8 

2 

4+6I 

G4 

G2 G3 

G1 

262



 

Figure 4.53 

vi  Z7  h; 1 ≤ i ≤ 10. 

Next we proceed onto define MOD n-partite graph of type 
III. 

We call a MOD n-partite graph to be of type III if the edge 
weights are from a set and the vertex sets are n-distint in 
number. 

This will be described by the following examples. 

Example 4.56: Let G be a MOD 3-partite graph of type III with 
vertex set from Z12, Z9 and Z15 and edge weights from C(Z10) 
given by the following figure: 

3 
G1

v1

v2
v3

v4

v5
9 11 

8 
12 10 

v6 v7 v8 v9 v10

19 
18 

5 

4 

7 

7 

G3

G2

263



 

 

Figure 4.54 

The vertex set of G1 from Z12, v1, v2, v3  Z12, the vertex set 
of G2 from Z9; that is v4, v5, v6  Z9 and the vertex of G3 from 
Z15 that is v7, v8  Z15.  

The edge weights are from C(Z10). 

Example 4.57:  Let G be a MOD 4 partite graph of type III with 
vertex set from C(Z4), Z7  I, Z11  g and Z11  h.  

The edge weights are from Z15.  

The figure associated with G is as follows: 
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Figure 4.55 

v1, v2 of G1 belongs to C(Z4) v3 and v4 of G2 belongs to 
Z7  I v8m v9  G3 and v8, v9  Z11  g and v5, v6, v7  G4; 
v5, v6, v7  Z11  h. 

Thus we can have MOD n-partite graph of type III. 

 Interested reader can give more examples of the MOD-n-
partite graphs of all the 3 types. 

 We  now give the description of MOD natural neutrosophic 
bipartite graphs first by examples. 

Example 4.58: Let G be a MOD natural neutrosophic directed 
bipartite graph with edge weights from I

9Z .   
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 We call G to be the MOD directed bipartite natural 
neutrosophic graph which given by the following figure: 

 

 

Figure 4.56 

Clearly the edge weights are from I
9Z . 

Example 4.59: Let V be the MOD natural neutrosophic directed 
bigraph with edge weights from I

11Z  given by the following 
figure: 
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Figure 4.57 

Example 4.60: Let W be the MOD natural neutrosophic directed 
bigraph of type I with edge weights and vertex set from I

15Z  
given by the following figure. 
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Figure 4.58 

Clearly vi  I
15Z ; 1 ≤ i ≤ 15. 

Example 4.61: Let S be the MOD natural neutrosophic bipartite 
graph of type I with vertex set and edge weights from CI(Z6).  

S is also known as the MOD natural neutrosophic finite 
complex number type I graph given by the following figure: 
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Figure 4.59 

vi CI(Z6); 1 ≤ i ≤ 9. 

We just describe MOD natural neutrosophic bipartite graphs 
with edge weights from CI(Zn), Zn  I,  Zn  g, Zn  h and 
Zn  k by some examples. 

Example 4.62: Let G be the MOD natural neutrosophic finite 
complex number bipartite graph with edge weights from CI(Z10) 
given by the following figure : 
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Figure 4.60 

Example 4.63:  Let W be the MOD natural neutrosophic finite 
complex number bipartite graph with edge weights from CI(Z15) 
given by the following figure: 

Figure 4.61 
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Next we proceed onto describe MOD natural neutrosophic-
neutrosophic edge weights from Zn  II by some examples. 

Example 4.64: Let W be the MOD directed bipartite natural 
neutrosophic-neutrosophic graph with edge weights from 
Z6  II given  by the following figure: 

 

 

 

Figure 4.62 

Example 4.65: Let S be a MOD bipartite natural neutrosophic- 
neutrosophic graph with edge weights from Z11  II given by 
the following figure: 
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Figure 4.63 

Example 4.66:  Now we proceed onto describe MOD natural 
neutrosophic dual number bipartite graph with edge weights 
from Z10  gI given by the following figure. 

 

Figure 4.64 
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Example 4.67: Let S be a MOD natural neutrosophic bipartite 
dual number graph with edge weights from Z7  gI given  by 
the following figure: 

 

Figure 4.65 

 Next we proceed onto describe MOD natural neutrosophic 
special dual like number bipartite graph with edge weights from 
Zn  hI in the following examples. 

Example 4.68: Let G be the MOD natural neutrosophic special 
quasi dual number bipartite graph with edge weights from 
Z4  hI given by the following figure: 
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Figure 4.66 

Example 4.69: Let G be the MOD natural neutrosophic special 
dual like number bipartite graph with edge weights from 
Z12  hI given  by the following figure: 

Figure 4.67 
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  If G is MOD natural neutrosophic bipartite graph taking edge 
weights from Zn  kI; then we define G to be a MOD natural 
neutrosophic special quasi dual number bipartite graph. 

We will illustrate this situation by some examples. 

Example 4.70: Let S be a MOD natural neutrosophic special 
quasi dual number bipartite graph with edge weights from 
Z13  kI given by the following figure. 

 

 
 

Figure 4.68 

Example 4.71: Let H be the MOD natural neutrosophic special 
quasi dual number bipartite graph with edge weights from 
Z9  kI given by the following figure: 
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Figure 4.69 

Having seen MOD bipartite graph of natural neutrosophic 
numbers we now proceed onto describe MOD natural 
neutrosophic bipartite graph of type I by some examples. 

Example 4.72: Let G  be the MOD natural neutrosophic bipartite 
graph of type I with edge weights and vertex set from I

9Z  given 
by the following figure: 
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Figure 4.70 

vi  I
9Z  and wj  I

9Z ; 1≤ i ≤ 3 and 1 ≤ j ≤ 5. 

Example 4.73: Let W be the MOD natural neutrosophic bipartite 
graph of type I with vertex set and edge weights from I

15Z given 
by the following figure: 

Figure 4.71 
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Example 4.74: We proceed onto describe the MOD natural 
neutrosophic bipartite finite complex number of type I with 
vertex set and edge weights from CI(Z12) given by the following 
figure: 

Figure 4.72 

Example 4.75: Let G be the MOD natural neutrosophic finite 
complex number bipartite graph of type I given by the following 
figure with vertex set and edge weights CI(Z18). 

Figure 4.73 
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Thus if G is a MOD natural neutrosophic bipartite graph of 
type I with edge weights and vertex set from CI(Zn) then we 
define G to be a MOD natural neutrosophic finite complex 
number bipartite of type I with edge weights and vertex set from 
CI(Zn). 

 Next we proceed onto describe and develop the notion of 
MOD natural neutrosophic bipartite dual number graph of I 
which will take edge weights and vertex set from Zn  gI. 

Example 4.76: Let H be a natural neutrosophic dual number 
bipartite graph of type I with vertex set and edge weights from 
Z10  gI given by the following figure: 

Figure 4.74 
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Example 4.77: Let S be the MOD natural neutrosophic dual 
number bipartite graph of type I with edge weights and vertex 
set from Z16  gI given by the following figure: 

Figure 4.75 

 Next we proceed onto describe the MOD natural 
neutrosophic special dual like number bipartite graph of type I 
with edge weights and vertex set from Zn  hI. 

We proceed to give examples of them. 

Example 4.78: Let G be the MOD natural neutrosohic special 
quasi dual like number bipartite graph of type I with edge 
weights and vertex set from Z12  hI given  by the following 
figure: 
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Figure 4.76 

Example 4.79: Let H be the MOD natural neutrosophic special 
dual like number directed bipartite graph with edge weights and 
vertex set from Z7  hI given by the following figure: 

Figure 4.77 
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 Next we proceed onto develop the notion of MOD natural 
neutrosophic special quasi dual number bipartite graph using 
edge weights and vertex sets from Zn  kI by some examples. 

Example 4.80: Let P be the MOD natural neutrosophic special 
quasi dual number partite graph with edge weights and vertex 
set from Z15  kI.  

It is given by the following figure: 

Figure 4.78 

Example 4.81:  Let M be the MOD natural neutrosophic special 
quasi dual number bipartite graph of type I with edge weights 
and vertex set from Z11  kI given by the following figure: 
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Figure 4.79 

 Next we proceed onto describe the notion of MOD natural 
neutrosophic bipartite graph of type II which takes edge weights 
from two sets I

nZ  and I
mZ and vertex elements are either from 

I
nZ  or I

mZ . 

We will describe this situation by an example or two. 

Example 4.82: Let S be the MOD natural neutrosophic bipartite 
graph of type II with edge weights from I

12Z  and vertex sets 
from I

7Z  and I
12Z given by the following figure: 

v1

v2

v3

v4

v5

v6

v7

v8

v9

4+10k 

k
2kI

1 
5+2k 

4 

10k+1 

k
0I

283



Figure 4.80 

vi  I
12Z  and wj  I

7Z ; 1 ≤ i ≤ 6 and 1  ≤ j ≤ 5. 

Example 4.83: Let M be the MOD natural neutrosophic bipartite 
graph of type II with vertex sets from I

16Z  and I
17Z and edge 

weights from I
17Z given by the following figure: 

 
Figure 4.81 
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vi  I
16Z and wj  I

17Z ; 1≤ i ≤ 5 and 1 ≤ j ≤ 4. 

 Next we proceed onto describe the MOD natural 
neutrosophic finite complex number type II bipartite graph with 
edge weights from CI(Zn) vertex sets entries from CI(Zm) and 
ZI(Zn).   

We will describe this situation by some examples. 

Example 4.84: Let G  be the MOD natural neutosophic finite 
complex number bipartite graph of type II with edge weights 
from CI(Z10) and vertex sets from CI(Z10) and CI(Z12) given by 
the following figure: 

Figure 4.82 

vi  CI(Z10) and wj  CI(Z12); 1 ≤ i ≤ 5 and 1 ≤ j ≤ 7. 
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Example 4.85:  Let G be a MOD natural neutrosophic finite 
complex number directed graph of type II with edge weights 
from CI(Z7) and vertex sets from CI(Z9) and C( I

7Z ) given by the 
following figure: 

 

Figure 4.83 

v1, v2, v3  CI(Z9) and w1, w2, w3, w4  CI(Z7). 

Example 4.86:  Let G be a MOD natural neutrosophic dual 
number directed bipartite graph of type II with edge weights 
from Z18  gI and vertex sets from Z11  gI and Z18  gI 
given by the following figure: 

 
Figure 4.84 
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vi  Z91  gI and wj  Z18  gI; 1 ≤ i ≤ 4 and 1 ≤ j ≤ 5. 

Example 4.87:  Let S be the MOD natural  neutrosophic dual 
number directed graph of type II with edge sets from Z5  gI 
and vertex sets from Z5  gI and Z12  gI given by the 
following figure:  

The vertices v1, v2, v3, v4, v5, v6, v7  Z5  gI and 
wj  Z12  gI ; 1 ≤ j ≤ 4. 

Figure 4.85 

Next we proceed onto describe MOD natural neutrosophic 
special quasi dual number type II directed graph with edge 
weights from Z8  kI and vertex sets from Z13  kI and 
Z8  kI given by the following figure: 
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Figure 4.86 

vi  Z13  kI; 1 ≤ i ≤ 5 and wj  Z8  kI; 1 ≤ j ≤ 6. 

Example 4.88: Let K be the MOD natural neutrosophic special 
quasi dual number directed graph of type II with edge weights 
from Z15  kI and vertex sets from Z15  kI and Z10  kI 
givenby the following figure: 

Figure 4.87 
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 Next we proceed onto describe MOD natural neutrosophic 
special dual like number bipartite directed graph of type II with 
edge weights from Zm  hI and vertex sets from Zn  hI and 
Zm  hI, (m ≠ n).   

We will describe this sitation by some examples. 

Example 4.89: Let G be the MOD natural neutrosophic special 
dual like number directed graph of type II with edge weights 
from Z19  hI and vertex sets from Z19  hI and Z29  hI 
given by the  following figure: 

 

 

Figure 4.88 
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Example 4.90: Let V be the MOD natural neutrosophic special 
dual like number directed bipartite graph of type II with edge 
weights from Z8  hI and vertex sets from Z11  hI and 
Z8  hI given by the following figure: 

Figure 4.89 

vi  Z11  hI, wj  Z8  hI, 1 ≤ i ≤ 5, 1 ≤ j ≤ 6. 

 Next we proceed onto describe MOD natural neutrosophic 
neutrosophic directed  bipartite graph of type II with edge 
weights from Zn  II and vertex set from Zn  II and 
Zm  II.  

We will describe this by some examples. 

Example 4.91: Let G be the MOD natural neutrosophic 
neutrosophic directed bipartite graph of type II with edge 
weights from Z10  II and vertex sets from Z10  II and 
Z17  II given by the following figure: 
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Figure 4.90 

vi  Z10  II 1 ≤ i ≤ 7, wj  Z17  hI 1 ≤ j ≤ 5. 

Example 4.92:  Let S be the MOD natural neutrosophic 
neutrosophic bipartite directed graph with edge weights from 
Z7  II and vertex sets from Z7  II and Z12  II given by 
the following figure: 
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Figure 4.91 

vi   Z7  II; 1 ≤ i ≤ 4 and wj  Z12  II; 1 ≤ j ≤ 5. 

Next we proceed onto describe MOD natural neutrosophic 
directed bipartite graph of type III which take edge weights 
from I

nZ and vertex sets from I
mZ  and I

tZ ; t ≠ m, m ≠ n and 
n ≠ t, 2 ≤ t, m, n < ∞. 

We proceed onto describe this situation by some examples. 

Example 4.93: Let G be a MOD natural neutrosophic bipartite 
graph of type III with edge weights from I

8Z  and vertex sets 
from I

12Z and I
16Z given by the following figure: 
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Figure 4.92 

vi  I
12Z ; 1 ≤ i ≤ 5 and wj  I

16Z ; 1 ≤ j ≤ 4. 

Example 4.94: Let G be the the MOD natural neutrosophic 
bipartite graph of type III with edge weights from I

11Z , and 
vertex sets from I

6Z  and I
10Z  given by the following figure: 

Figure 4.93 
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vi  I
6Z  and wj  I

10Z  1≤ i ≤ 5 and 1 ≤ j ≤ 6. 

 Thus if G is a MOD natural neutrosophic bipartite graph of 
type III with edge weights from CI(Zn) and vertex sets from 
CI(Zn) and CI(Zt) m, n and t distinct positive integers, then G is 
defined as the MOD natural neutrosophic directed bipartite finite 
complex number graph of type III.  

We will just illustrate this situation by an example. 

Example 4.95: Let G be the MOD natural neutrosophic finite 
complex number bipartite graph of type III with edge weights 
from CI(Z6) and vertex sets from CI(Z3) and CI(Z10) given  by 
the following fiture. 

Figure 4.94 

On similar line we can define MOD natural neutrosophic 
neutrosophic bipartite grapha of type III with edge weights and 
vertex sets from three different sets Zn  II, Zm  II and 
Zt  II, m, n and t are 3 distinct finite positive integers. 
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This will be just illustrated by an example. 

Example 4.96: Let G be the MOD natural neutrosophic 
neutrosophic bipartite graph of type III with edge weights from 
Z10  II and vertex sets from Z7  II and Z12  II given by 
the following figure: 

Figure 4.95 

 Next we proceed onto describe the MOD natural 
neutrosophic dual number type III directed bipartite graph by an 
example. 

Example 4.97: Let G be the MOD natural neutrosophic dual 
number type III directed bipartite graph with edge weights from 
Z3  gI and vertex sets from  Z7  gI and  Z10  gI given by 
the following figure: 
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Figure 4.96 

The edges are from vi to wj. 

vi   Z7  gI; 1 ≤ i ≤ 7 and wj   Z10  gI; 1 ≤ i ≤ 5. 

Example 4.98: Let G be the MOD natural neutrosophic special 
quasi dual number bipartite graph of type III with edge weights 
from Z9  kI and vertex sets from Z4  kI and Z10  kI 
given by the following figure: 
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Figure 4.97 

vi  Z4  kI; 1 ≤ i ≤ 5  and wj  Z10  kI 1 ≤ j ≤ 7. 

 Next we describe by an example the MOD natural 
neutrosophic special dual like number bipartite graph of type III 
by an example. 

Example 4.99: Let H be the MOD natural neutrosophic special 
dual like number bipartite graph of type III with edge weights 
from Z10  hI and vertex set from Z7  hI and Z12  hI 
given by the following figure: 
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Figure 4.98 

vi Z7  hI; 1 ≤ i ≤ 7 and wj  Z12  hI; 1 ≤ j ≤ 5. 

 Now having seen examples of MOD natural neutrosophic 
bipartite graphs of type III.  

We now proceed onto describe the MOD n-partite natural 
neutrosophic graphs. 

We will illustrate this situation by some examples. 

 A MOD n-partite natural neutrosophic graph if the edge 
weights are from I

nZ ; 2 ≤ m < ∞ which is described by some 
examples. 
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 Example 4.100:  Let G be a MOD 3 partite natural neutrosophic 
graph with edge weights from I

10Z  given by the following 
figure: 

Figure 4.99 

Example 4.101:  Let G be the MOD natural neutrosophic 4-
partite graph with edge weights from I

13Z given by the following 
figure: 

Figure 4.100 
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 Example 4.102: Let G be the MOD 5 partite natural neutrosophic 
finite complex number graph with edge weights from CI(Z6), 
given by the following figure: 

Figure 4.101 

Example 4.103: Let H be MOD natural neutrosophic 4-partite 
finite complex number graph with edge weights from CI(Z10) by 
the following figure: 
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Figure 4.102 

Example 4.104:  Let G be the MOD 3-partite natural 
neutrosophic dual number graph with edge weights from 
Z6  hI given by the following figure: 
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Figure 4.103 

Example 4.105: Let H be the MOD 4-partite natural 
neutrosophic dual number graph with edge weight from 
Z9  gI given by the following figure: 
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Figure 4.104 

Example 4.106:  Let P be the MOD 6-partite natural 
neutrosophic - neutrosophic graph with edge weights from 
Z8  II given by the following figure: 
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Figure 4.105 

Example 4.107: Let V be the MOD 3-partite natural 
neutrosophic-neutrosophic graph with edge weights from 
Z12  II given by the following figure: 
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Figure 4.106 

Example 4.108:  Let W be the MOD 4-partite natural 
neutrosophic dual number graph with edge weights from 
Z14  gI given by the following figure: 
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Figure 4.107 

Example 4.109:  Let M be the MOD 5-partite natural 
neutrosophic dual number graph.  

The edge weights from Z7  gI given by the following 
figure: 
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Figure 4.108 

Example 4.110:  Let P be the MOD 3-partite natural 
neutrosophic special quasi dual number graph with edge 
weights from Z9  kI given by the following figure: 
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Figure 4.109 

Example 4.111:  Let S be the MOD 4-partite natural 
neutrosophic special dual like  number graph with edge weights 
from Z10  hI given by the following figure: 

Figure 4.110 
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Interested reader is left with the task of working with MOD 
natural neutrosophic n-partite graphs with edge weights from 

I
mZ  Zm  gI or CI(Zm) or Zm  hI or Zm  II or Zm  kI. 

 Next we proceed onto develop and describe type I MOD - n 
partite  natural neutrosophic graphs by examples. 

A MOD n-partite natural neutrosophic graph G is said to be 
of type I of the edge weights and vertex sets are from I

nZ or 
CI(Zn) or Zn  II or Zn  gI or Zn  hI or Zn  kI. 

 We will describe each of these situation by one example 
each. 

Example 4.112:  Let G be a 4-partite natural neutrosophic graph 
of type I with vertex set and edge set from I

8Z  given by the 
following figure: 

 
 
 

Figure 4.111 

vi  I
8Z ; 1 ≤ i ≤ 10. 
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Example 4.113:  Let G be the MOD natural neutrosophic 3-
partite graph of type I with edge weights and vertex set from 

I
12Z given by the following figure: 

 

Figure 4.112 

vi  I
12Z ; 1 ≤ i ≤ 8. 

 Next we give example of a MOD  n-partite natural 
neutrosophic finite complex number graph of type I which takes 
edge weights and vertex sets from CI(Zn). 

Example 4.114:  Let G be a MOD 4-partite natural neutrosohic 
finite complex number graph of type I with edge weights and 
vertex set from CI(Z10) given by the following figure: 
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Figure 4.113 

vi  CI(Z10); 1 ≤ i ≤ 9. 

Example 4.115:  Let V be a MOD 3-partite finite complex 
natural neutrosophic type I graph with edge weights and vertex 
set from CI(Z13) given by the following figure: 
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Figure 4.114 

vi  CI(Z13); 1 ≤ i ≤ 4. 

 Next we define a MOD n-partite natural neutrosophic graph 
of type I to be MOD n-partite natural neutrosophic neutrosophic 
graph of type I if edge weights and vertex sets are from 
Zn  II. 

We will illustrate this situation by an example. 

Example 4.116: Let G be a MOD 4-partite natual  neutrosophic 
neutrosophic graph of type I with edge weights from Z10  II 
and vertex sets from Z10  II given by the following figure: 
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Figure 4.115 

 Next we define a MOD n-partite natural neutrosophic graph 
of type I with edge weights and vertex sets from Zm  gI to be 
a MOD n-partite natural neutrosohic dual number graph of type I 
with edge weights and vertex sets from Zm  gI.  

We will illustrate this situation by an example . 

Example 4.117: Let G be a MOD 5-partite natural neutrosophic 
dual number graph of type I with edge weights and vertex sets 
from Z9  gI given by the following figure: 
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Figure 4.116 

 Next we proceed onto define G to be a MOD n-partite natural 
neutrosophic special dual like number graph of type I as the 
vertex sets and edge weights are from Zn  hI.   

We will illustrate this situation by some example. 

Example 4.118: Let G be a MOD 3-partite natural neutrosohic 
special dual like number type I graph with edge weights and 
vertex sets from Z12  hI given by the following figure: 
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Figure 4.117 

 Likewise we can define MOD n-partite natural neutrosophic 
special quasi dual number type I graph with edge weights and 
vertex sets from Zm  kI. 

We will illustrate this situation by an example. 

Example 4.119: Let G be a MOD 3-partite natural neutrosophic 
special quasi dual number graph of type I with edge weights and 
vertex sets from Z9  kI given  by the following figure: 
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Figure 4.118 

vi  Z9  kI; 1 ≤ i ≤ 9. 

 Next we proceed of to define type II MOD n-partite natural 
neutrosophic graphs. 

 Let G be a MOD n-partite  natural neutrosophic graph G is 
said to be a type II graph if edge weights and vertex sets are 
from two distinct sets. 
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This situation is describe by some examples. 

Example 4.120: Let G be a MOD 4-partite natural neutrosophic 
finite complex number graph of type II with edge weights from 

I
10Z  and vertex set from CI(Z8). 

Figure 4.119 

vi  CI(Z8); 1 ≤ i ≤ 7. 

Example 4.121: Let G be a MOD 3-partite natural neutrosophic 
graph of type II with edge weights from Z8  II and vertex set 
from I

12Z  given by the following figure: 
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Figure 4.120 

vi  I
12Z ; 1 ≤ i ≤ 7. 

Example 4.122: Let G be a MOD-4 partite graph of natural 
neutrosophic numbers of type II with edge weights from 
Z9  gI and vertex set from Z16  kI given by the following 
figure: 
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 Example 4.123:  Let P be a MOD 5-partite natural neutrosophic 
number graph of type II with edge weights from CI(Z8) and 
vertex set from Z7  hI  given by the following figure: 

Figure 4.122 

vi  Z7  hI  ; 1 ≤ i ≤ 5. 

 Next we proceed onto describe MOD n-partite natural 
neutrosophic graphs of type III which has edge weights and 
vertex sets to be from more than two sets. 

We will illustrate these situation by some examples. 

Example 4.124:  Let G be a MOD natural neutrosophic 4 partite 
graph of type III with edge weights from I

10Z  and vertex set 
entries from Z5  II, CI(Z9) and Z12  gI; given by the 
following figure: 
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Figure 4.123 

v1, v2  
I
7Z ; v6  Z5  II  v7  CI(Z9) and v3, v4 and v5  

Z12  gI. 

Example 4.125: Let G be a MOD 3-partite natural neutrosophic 
type III graph with edge weights from CI(Z4) and vertex sets 
from I

6Z , Z10  kI and Z3  gI given by the following figure: 

 

 Figure 4.124 
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v1, v2, v3 and v4  I
6Z , v8  Z10  kI and v5, v6, v7  Z3  gI. 

Interested reader can build any number of MOD natural 
neutrosophi n-partite graphs of type III using any one of the set 

I
mZ , CI(Zm), Zt  II, Zs  gI, Zr  kI and Zp  hI. 

 Further these special types of MOD n-partite natural 
neutrosophic number graphs will be a boon to any researcher 
who wants to use the indeterminancy concept. 

In the following we suggest a few problems to the reader. 

Problems 

1. Obtain any of the special features associated with the
MOD bipartite graphs with edge weights from Zn.

2. Can we uses these graphs in MOD relational maps models?
Justify with an illustration.

3. Let G be a MOD bipartite finite complex number graphs
with edge weights from C(Zn).

i) Compare these with MOD bipartite graphs with edge
weights from Zn.

ii) What are the special and interesting features
associated with these graphs?

4. Given Zn and v1, …, vt and w1, …, ws the vertex sets of
the MOD bipartite graphs t and s fixed; n is fixed.

i) How many MOD bipartite graphs can be drawn
using edge weights from Zn? (t and s fixed).

a) If edge weights in (1) do not repeat?
b) If edge weights can repeat?
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 5. Let G be a MOD bipartite neutrosophic graph with edge
weights from Zn  I.

i) Compare these graphs with MOD bipartite graphs with
edge weights from Zn.

ii) Distingish these graphs from MOD bipartite finite
complex number graphs with edge weights from C(Zn).

6. Give an example of a MOD bipartite graph with edge
weights from Z9.

7. Give an example of a MOD bipartite finite complex
number graph with edge weights from C(Z11).

8. Give an example of a MOD bipartite neutrosophic graph
with edge weights from Z10  I.

9. For MOD graphs given in examples in problems (6), (7)
and (8),  obtain their MOD relational (connection) matrices
associated with those graphs.

10. Give an example of a MOD bipartite dual number graph
with edge weights from Z15  g. Find the MOD relational
matrix associated with it.

11. Illustrate by an example the MOD bipartite special quasi
dual number graph with edge weights from Z18  k
which can function as a MOD relational matrix.

12. Let G be a MOD bipartite special dual like number graph
with edge weights from Z13  h. Use the MOD relational
matrix associated with G.

13. Compare the 6 MOD bipartite graphs using edge weights
from Zn, Zn  h, Zn  g, Zn  k, Zn  I and CI(Zn);
for a particular real problem.

14. What are the advantages of using Zn in place of CI(Zn)?
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15. Enumerate the advantages of using Zn  k in the place
of Zn  I.

16. Give an example of MOD n-partite graph with edge
weights from Zm.

17. Give an example of MOD 9-partite graph with edge
weights from Z18.

18. What are the interesting and important features associated
with these MOD n-partite graphs with edge weights from
Zm?

19. Mention any of the applications of MOD n-partite graph
with edge weights from Zt.

20. Let G be a MOD n-partite dual number graph with edge
weights from Zn  g.

Mention the special features associated with it.

21. Compare the MOD n-partite graphs with MOD n-partite
dual number graphs.

a) Can you give an application in which MOD n-partite
dual number graph performance better than MOD
n-partite graph?

22. Let G be a MOD n-partite finite complex number graph
with edge weights from CI(Zm).

i) Compare this G with the MOD n-partite graph with
edge weights from Zm.

ii) Compare this G with the MOD n-partite dual number
graph with edge weights from Zm  g.
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 23. Give some real world applicatons of MOD n-partite dual
number graph with edge weights from Zn  g.

24. Let V be the MOD n-partite special quasi dual number
graph with edge weights from Zm  k.

Mention the special and distinct features associated with
this V.

25. Let P be the MOD n-partite special dual like number graph
with edge weights from Zm  h. Mention the special and
distinct features enjoyed by the P.

i) Compare this P with V in problem 24.

ii) Compare this P with G in problem 22.

iii) Find all the special and distinct features associated
with this P.

iv) Give some special applications of this new MOD n-
partite graph P.

26. Give an example of a MOD n-partite graph with mixed
edge weights.

27. What are advantages of using MOD n-partite graphs with
MOD n-partite graphs with mixed edge weights?

28. Use the notion of MOD n-partite mixed edge weight
graphs in practical problems.

29. What are the special features associated with MOD
bipartite graphs of type I?

30. Compare MOD bipartite graphs of type I with MOD
bipartite graphs.
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31. Give an example of MOD bipartite dual number graph of
type I.

32. Let V be the MOD bipartite finite complex number type I
graph.

i) Compare V with MOD bipartite finite complex number
graph.

ii) Compare V with MOD bipartite dual number graph.

33. Let W be the MOD bipartite special quasi dual number
graph of type I.

i) Compare W with V of problem 32.

ii) What are advantages of using W in place of MOD
bipartite graph of type I with entries from Zn.

34. Let S be the MOD bipartite special dual like number graph
of type I.

i) Compare this S with W of problem 33.

ii) Compare this S with V of problem 32.

iii) Give a problem in which S is best suited.

iv) Give a problem in which W is best suited.

35. Let B be the MOD bipartite neutrosophic graph of type I.

i) Compare this B with S in problem 34.
ii) Compare this B with W in problem 33.

36. What are the special features associated with MOD
bipartite type II graphs?
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37. Compare MOD bipartite type II graphs with MOD bipartite
type I graphs.

38. Compare MOD bipartite type III graphs with MOD bipartite
graphs.

39. Let G be a MOD bipartitet type III graph with edge
weights from Zn, vertex sets from Zm  g, and C(Zp), n,
m and p are distinct.

i) Compare G with a MOD bipartite graph of type II
when  n = m = p.

ii) Enumerate any advantage of using type III graphs
in place of type I graphs.

40. Let B be a MOD bipartite graph of type III with edge
weights from C(Z10) and vertex sets from Z12  g and
Z15  I.

i) Show there can only be a finite number of such B’s if
the number of vertices are fixed.

ii) Show even if the number of verties are not fixed. We
can have only finite such B’s.

iii) Find the number of such B’s when C(Z10) replaced by
C(Z4), Z12  g by Z3  g and Z15  I by Z5  I.
Prove in case of (iii) the number of vertices is
curtailed.

41. What are special features associated with type II graphs
which vertex sets are C(Z10) and Z17 and edge sets from
C(Z10)?

42. In (41) if edge sets are from Z17 and vertex sets C(Z10) and
Z17 compare these MOD bipartite type II graphs.
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43. Does there exist a real world application in which MOD
bipartite type III graph is preferred to MOD bipartite type
II graph?

44. Can there be a situation in which reverse in problem (43)
is applicable?

45. Enumerate all special features associated with MOD
n- partite graphs of type I.

46. Give a real world problem situation in which MOD
n-partite type I graph is suited.

47. What are the special features associated with MOD
n-partitte type II graphs?

48. Compare MOD n-partite type I graph with usual MOD
n-partite graphs.

49. Describe some situations in with MOD n-partite graphs are
better than MOD n-partite graph of type I graphs.

50. Give atleast a situation in which MOD n-partite graph of
type I is better than MOD n-partite graph.

51. Describe by examples MOD n-partite graphs of type II.

52. Compare MOD n-partite graphs of type II with MOD
n-partite graphs of type I.

53. Show by a practical illustration in which MOD n-partite
graph of type II is preferred to MOD n-partite graph of
type I.

54. Describe the special features enjoyed by MOD n-partite
graphs of type III.

55. Give an example of a MOD of partite graph of type III.
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56. Compare MOD n-partite graph of type III with MOD
n-partite graph of type II.

57. Compare MOD n-partite graph of type III with MOD
n-partite graph of type I.

58. Show by some practical situation in which MOD n-partite
graph of type III is preferred to MOD n-partite graph of
type II and type I.

59. Obtain all special features associated with MOD n-partite
graphs of type I, type II and type III.

60. Give an example of a MOD natural neutrosophic bipartite
graph.

61. Give an example of a MOD natural neutrosophic finite
complex number bipartite graph.

62. Give an example of a MOD natural  neutrosophic
neutrosophic bipartite graphs with edge weights from  I

9Z .

63. What are the special and distinct features enjoyed by MOD
natural neutrosophic bipartite graphs with edge weights
from I

nZ and those MOD bipartite graphs with edge
weights from Zn? 

64. Give an example of a MOD natural neutrosophic
neutrosophic bipartite graph G with edge weights from
Z12  II. 

i) Compare this G with MOD natural neutrosophic
bipartite graph H with edge weights from I

12Z .

ii) Using this G and H build MODRMs model and study
them.
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65. Give an example of a MOD natural neutrosophic finite
complex number bipartite graph G with edge weights
from CI(Z10).

i) Compare this V with MOD natural neutrosophic
bipartite graph G with edge weights from I

10Z .

ii) Compare the MODRMs model associated with V and
G.

iii) Prove this MODRM model given by V is more
appropriate in problems which involves
indeterminancy and complex qualitity.

66. Let F be a MOD neutral neutrosophic dual number
bipartite graph with edge weights from Z18  gI.

i) Construct the MODRM model associated with F.

ii) Compare this model associated with the models
constructed using the MOD natural neutrosophic
bipartite graph using edge weights from Z8  II and
CI(Z18).

iii) Obtain the special and interesting features associated
witih MODRM model associated with F.

67. Let P be the MOD natural neutrosophic bipartite graph
with edge weights from Z16  kI.

i) Construct the MODRM model associated with P.

ii) Compare this model with MODRM model built using
Z16  II and CI(Z16).

68. Let S be a MOD 9-partite natural neutrosophic graph with
edge weights from I

12Z .
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i) Find all special features associated with S.

ii) Study S when edge weights are from CI(Z12).

iii) What are the advantages of studyng these types of
MOD n-partite natural neutrosophic graphs with edge
weights from Zn  gI or Z12  gI or Z12  hI or
Z12  kI or CI(Zn)?

69. Find all the special features associated with MOD natural
neutrosophic bipartite graph of type I.

i) Find the MODRMs models associated with these
graphs.

ii) Show these models are more appropriate when the
problem involves indeterminancy and imaginary
concepts.

iii) Obtain any other special feature associated with these
models.

70. Give an example of  a MOD natural neutrosophic bipartite
graph of type I with vertex set and edge weights from
CI(45).

71. Compare type I MOD natural neutrosophic bipartite graphs
with MOD natural neutrosophic bipartite graphs.

72. Let G be the MOD natural neutrosophic bipartite graph of
type I with edge weights and vertex set from Z17  II.
Obtain all special features associated with G.

73. Study G in problem 72 if edge weights are from
Z17  gI.

74. Study G in problem 72 if edge weights are from
Z17  kI.
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75. Describe with example MOD natural neutrosophic bipartite
graph of type II.

76. Compare and distinguish between MOD natural
neutrosophi bipartite graphs of type I and type II.

77. Construct a MODRM model using type I MOD bipartite
graph.

78. Describe a MODRM model using type II MOD bipartite
graph.

79. Construct using CI(Z10) and Z15  gI and cI(Z10) and Z18

 kI a MOD natural neutrosophic bipartite graphs G1 and
G2

 of type II.

i) Use G1 and G2 construct MODRM models.

ii) Enumerate all the special features associated these
MODRM models in general.

80. Describe MOD natural neutrosophic bipartite graphs of
type III.

81. Bring out the differences between MOD natural
neutrosophic bipartite graphs of type I and III.

82. Bring out the similarities and differences between MOD
natural neutrosophic bipartite graphs of type II and type
III.

83. Let G be a MOD natural neutrosophic bipartite graph of
type III with edge weights from CI(Z12) and vertex sets
from Z10  II and Z8  gI.
i) Find the MODRM associated with G.

ii) How many G’s can be got using these 3 sets?
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iii) Find any other special feature associated with these
G’s.

84. Give an example of a MOD 5-partite natural neutrosophic -
neutrosophic graph with edge weights from Z16  II.

i) How many distinct MOD 5-partitte natural
neutrosophic neutrosophic graphs with edge weights
from Z16  II can be obtained?

ii) Can there be infinite number of such MOD 5-partite
graphs using Z16  II? Justify your answer.

iii) Give some applications of such graphs.

85. Study question 84 when Z16  II is replaced by CI(Z16).

86. Study a MOD 6-partitte natural neutrosophic graph with
edge weights from Z24  gI.

87. Study question (86) when Z24  gI is replaced by
Z10  kI.

88. Prove for which different edge weight sets the MOD n-
partite graphs also behave differently.

89. What are type I MOD n-partite graphs?

90. Distinguish between MOD n-partite graphs from MOD n-
partite graphs of type I.

91. Find some interesting and appropriate applications of type
I, type II and type III MOD graphs .

92. Give an example of a MOD natural neutrosophic dual
number 7-partite graph G with edge weights and vertex
sets from Z12  gI.
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i) Prove the number of vertices of G must be atmost
equal to |Z24  gI|.

ii) Prove the least number of vertices is 7 for this G.

iii) What is the maximum number of vertices G can
have?

iv) How many such G’s exist with maximum number of
vertices?

v) If G has 12 vertices how many MOD 7-partite graphs
can be constructed using Z12  gI?

vi) Obtain any other special feature associated with G.

93. Desribe MOD natural neutrosophic n-partite graphs of type
II.

94. Distinguish MOD natural neutrosophic n-partite graphs of
type I and type II.

95. Give an example of a MOD natural neutrosophic 8-partite
graph G of type II with edge weights fom CI(Z5) and
vertex set from Z6  II.

i) Find the maximum  number vertices G can have.
ii) Prove G can have 8 to be the minimum  number of

vertices.
iii) Given 8 to be the number vertices (fixed values in

Z6  II) how many distinct MOD natural
neutrosophic 8-partite graphs can be constructed.

iv) Study question (iii) with 16 vertices.

96. Describe all the special features associated with MOD
natural neutrosophic n-partite type III graphs.
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 97. Give an example of a MOD 5-partite natural neutrosophic
graph of type III with edge weights from I

12Z , vertex sets
from Z9  gI, CI(14), Z19  hI, Z10  kI and I

18Z .

98. Describe all special properties associated with type I, type
II and type III MOD  n-partite graphs.

99. Give some special applications of these MOD n-partite
graphs all types.

100. Give examples of MOD n-partite graphs of all these types 
these using the set I

9Z Z9  II, Z9  hI, Z9  gI, CI(Z9) 
and Z9  kI as vertex sets and edge weights. 
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