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Abstract 

 The generalized modified Emden equation also known as the generalized 

second order Riccati equation, is exactly solved in terms of the periodic solution 

of the linear harmonic oscillator. The solutions for specific values of parameters 

are discussed. The conditions for isochronous oscillations are also investigated. 

1-Introduction 

The modified Emden-type equation 

03  xxxx   ,                                                                                             (1)  

where overdot  means differentiation with respect to time, and   and   are 

arbitrary constants, is one of the most nonlinear dissipative oscillator equations 

investigated as a physically important dynamical system. This may be attributed 

to the fact that the modified Emden equation arises in modeling of many 

physical and engineering nonlinear problems. The modified Emden equation has 

been studied by several authors following different analytical approaches. In [1], 

a general solution for arbitrary values of  and   is developed from appropriate 

canonical transformations. In [2] the equation has been mapped into the Abel 

equations to secure its exact integrability. The modified Emden equation has 

also been explored in [3] from the Lagrangian method of constants variation and 

a factorization technique of differential operators. However, if the preceding 

equation has been with more or less complexity analytically integrated, its 

generalized form 

012  ll xxxx                                                                                             (2)  

where l  is an arbitrary parameter, has appeared more hard to be exactly solved 

for arbitrary values of l ,  and  . In [4], an exact expression for the solution of 

(2) has been formulated from an Hamiltonian point of view, that is through 

suitable canonical equations of motion. Recently, the present authors [5] by 
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mapping the equation (2) into the damped linear harmonic oscillator equation 

through a nonlocal transformation developed a simple analytical expression for 

the exact solution to equation (2). But, the equation (2) may also be generalized 

with a linear forcing function as 

0212   xxxxx ll                                                                                     (3)  

where  is an arbitrary parameter. In [6], this equation is solved under arbitrary 

values of l ,  ,   and  , and it is shown that (3) may exhibit isochronous 

oscillations as the linear harmonic oscillator. As well the generalized form  
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has been investigated in [7] through the Prelle-Singer (PS) analytical technique. 

In this work a more generalization of (4), viz 
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is considered from the standpoint of exact integrability. The equations (3)-(5) 

belong to the class of Liénard equations  

0)()(  xQxxPx                                                                                                                                  (6)  

where )(xP  and )(xQ  are functions of x . If the question of existence of periodic 

solution of (6) is extensively studied in the literature [8], the problem of finding 

appropriate explicit periodic and isochronous solutions for physical and 

engineering calculations, that is in terms of simple elementary functions, 

remains still an open mathematical investigation field. In this context, the 

following question is imposed: Can the explicit periodic and isochronous 

solutions for (5) be formulated in terms of elementary mathematical functions? 

The pertinence of this question results from the fact that periodic solutions 

consist of an important feature of dynamical systems. It is easy to note in the 

literature that a lot of works on the dynamics of physical and engineering 

systems is devoted to the study of periodic response. Isochronous solutions are 

particularly interesting for physical and engineering practices since the 

frequency of oscillations is independent of the amplitude as it is the case of the 

linear harmonic oscillator solution so that the stability of the system motion is 

secured. In this work it is assumed that periodic and isochronous oscillations can 

be analytically computed in terms of elementary functions for the equation (5) 

when parameters satisfy some restrictive conditions. This analytical prediction 



has the advantage to enable one to not only better understanding the dynamics of 

the system under question, but also to controlling this dynamics through system 

parameters. To that end, the equation (5) is mapped into the linear harmonic 

oscillator equation through a simple variable transformation (section 2) so that 

the general solution for the equation (5) may be formulated in terms of periodic 

solution to the linear harmonic oscillator as a simple analytical expression 

(section 3). Finally the predicted solutions are discussed (section 4) and 

conclusions are presented in the last section. 

2- Mapping (5) to the linear harmonic oscillator equation 

2.1 Ansatz for the variable transformation 

Recently, exploring the exact integrability of a class of quadratic Liénard-type 

differential equations following the three distinct damped dynamical regimes the 

present author have shown that the variable transformation [9] 

)()( xfbxgxa
y
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
                                                                                          (7)  

where )(xf and 0)( xg are arbitrary functions of x , and a  and b are arbitrary 

parameters, has the ability to map the damped linear harmonic oscillator 

equation 
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to the class of mixed Liénard nonlinear dissipative oscillator equation 
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and vice versa, the  transformation (7) reduces (9) to (8). It is now possible to 

map the generalized modified Emden equation with forcing term (5) onto the 

linear harmonic oscillator equation. 

2.2 Reduction of (5) to the linear harmonic oscillator equation 

To do this reduction, let 
xa

xg
1

)(  , with 0a . 

Then (9) reduces to 
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The equation (10) for   1 ll dxxxf , becomes 

     0232 2132222221222
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which takes the form 

     0232 32222221222

0
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for 0 . 

So the equation (5) according to (7) is mapped to the linear harmonic oscillator 

equation 
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under the conditions that 

 21  lba                                                                                                 (14.a)             

 32  ldba                                                                                                    (14.b)   
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4 ba                                                                                                               (14.c)   

dba 2

5 2                                                                                                         (14.d)   

22

6 dba                                                                                                           (14.e)     

0873  aaa                                                                                                  (14.f) 

In other words, the equation (11) becomes in terms of 1a , 2a , …. and 8a  
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  In this perspective the general solution for (15) may exactly be expressed as a 

function of the periodic solution to (13) in a suitable explicit form. 

3. Exact solution of (15) in terms of elementary functions 

Let    tAy 0sin , be the solution to (13), where A  and   are arbitrary 

constants. Then the desired solution )(tx  for (15) satisfies the first order non-

linear differential equation 
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The exact solution for (16) secures the explicit solution to (15).  
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