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ABSTRACT 

The discrimination of quantum measurements is an important subject of quantum information 
processes. In this paper we present a novel protocol for local quantum measurement discrimination 
(LQMD) with multi-qubit entanglement systems. It is shown that, if both two observers (Alice and Bob) 
agreed in advance that one of them (e.g. Alice) should measure her qubits before an appointed time t, 
the local discrimination of two different kinds of measurement can be completed via numerous 
eight-qubit GHZ entangled states and selective projective measurements without help of classical 
information.  
 
Keywords:  Local quantum measurement discrimination, Multi-qubit GHZ entangled states, Selective 

projective measurement 
 
 
1. Introduction 
 

Quantum entanglement is one of the striking features of quantum mechanics [1]. The nonlocal 
nature of entanglement is the essential resource for many quantum information tasks including 
teleportation [2] and super-dense coding [3]. However, although entanglement appears to allow 
particles which are separated in space to influence one another instantaneously [4], it has been pointed 
that this cannot be used to signal without help of classical communication [5-9]. 

 On the other hand, it is well-known that measurement is a central tenet of quantum mechanics. 
The problem of discrimination between quantum measurements has been recently considered in 
quantum information tasks [10-13]. Ji et al. [10] have proposed simple schemes that can perfectly 
identify projective measurement apparatuses secretly chosen from a finite set. Entanglement is used in 
this scheme both to make possible the perfect identification and to improve the efficiency significantly. 
Fiurasek and Micuda [11] have studied optimal discrimination between two projective quantum 
measurements on a single qubit. Ziman et al . [12] have investigated the unambiguous comparison of 
unknown quantum measurements represented by non-degenerate sharp positive operator valued 
measures (POVM). One can notice that, in above works [10-13] of discriminating quantum 
measurement, employing classical communication is necessary. 

In the last decade, the impossibility of the local quantum measurement discrimination (LQMD) has 
been frequently discussed and proved (e. g. [14-19]). For example, assume that Alice and Bob share 
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bipartite quantum system described by a known state ρ [19]. They can make local measurements, 

with elements  

          †
i ii

A A I=∑  ,  †
j jj

B B I=∑                                       (1) 

 on the subsystems A  and B  respectively, where iA  and jB  are the “detector operators” 

associated to the elements of a POVM for the observation of results Aµ  by Alice and Bν  by Bob. If 

Bob is not informed that Alice got outcome Aµ  , the mean value that he gets any observable Bν  is 

              { } { }{ }† †
B AB i i B A i i B Bi i

tr A A tr A Atrν ρ ν ρν= =∑ ∑  

                   { }{ }B A Btr tr ρ ν=  .                                            (2) 

Since the result of Eq. (2) does not depend on Alice’s operators, Bob cannot decide what measurements 
Alice did, or worse, he cannot even tell if she had measured or not, without her help [19]. 

Different from above example [19], here we will discuss another case for LQMD. In this case, Bob 
could know that Alice had completed the measurement after her operation and did not know Alice’s 
result of measurement. By a careful analysis, we find that if multiple multi-qubit entangled states and a 
kind of special measurement (called selective projective measurement (SPM)) are employed, the local 
discrimination of quantum measurements can be realized without assistance of classical 
communication. In this work, we present a novel protocol for LQMD via selective projective 
measurement with numerous eight-qubit GHZ states. It is shown that, in this protocol, if both two 
observers (Alice and Bob) agreed in advance that one of them (e.g. Alice) should measure her qubits 
before an appointed time (it is equivalent that, after her measurement, Alice only announced publicly 
that she had completed the measurement, and did not declare the result of her measurement), the local 
discrimination of two different kinds of measurement can be realized by using a series of single-qubit 
correlative measuring basis without help of classical communication.  
 
 
2. Two different kinds of quantum projective measurement 
 
  Suppose that an eight-qubit GHZ state is shared by Alice and Bob,  

               ( )
1 2 3 4 5 6 7

1 00000000 11111111
2 A A A A A A A B

Φ = +   ,                 (3) 

where qubits 1A , 2A , …, 7A  are in the possession of Alice and B  belongs to Bob. Assume that 

Alice and Bob agreed in advance that Alice should measure her qubits before an appointed time. Now, 

let Alice make two different kinds of measurement on the state Φ . In the first kind of measurement, 

Alice makes common projective measurements (CPMs) on her qubits 1A , 2A , …,and 7A  under the 
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measurement basis{ },+ − , where ( )1 0 1
2

+ = +  , ( )1 0 1
2

− = − , successively. 

One can see that, after measurements of Alice, 128 possible final collapsed states of the qubit B  will 

always be 
1

8 2 B
+  or 

1
8 2 B

−  . Now we turn to the second kind of measurement. To realize 

the LQMD, Alice will utilize a novel kind of projective measurements, which we refer to as SPMs, 
with a series of single-qubit correlative measuring basis, on her qubits. Firstly, Alice measures the qubit 

1A  in the state Φ  under the basis }{ ,ν ν ⊥ , where 0 1x yν = + , 

0 1y xν ⊥ = −  , x  and y  are real, 2 2 1x y+ = , and let 6 / 3x = , 3 / 3y = . If 

measurement outcome of Alice is
1A

ν , the state of qubits 2A , 3A , …, 7A  and B  will evolve as 

                 ( )
2 3 4 5 6 7

1
1

1 0000000 1111111
2 A A A A A A B

x y
F

φ = + ,               (4) 

where we let 1 1F = , Alice can in turn measure the qubits 2A , 3A , …, 7A  under the 

basis{ },+ − . After that, the qubit B  will always be in the state 
1
8 B
µ+ or 

1
8 B
µ−  , here  

( )1 0 1
2

x yµ+ = +  and ( )1 0 1
2

x yµ− = − . If measurement result of Alice 

is
1A

ν ⊥ , the qubits 2A , 3A , …, 6A  and B  will be in the state of 

                 ( )
2 3 4 5 6 7

1
1

1 0000000 1111111
2 A A A A A A B

y x
F

φ ′ = −  .              (5) 

Then Alice measures the qubit 2A  under the measurement basis{ }1 1,λ λ⊥ , which is given by 

1 1
2 2

1 10 1 , 0 1x y y x
F y x F x y

λ λ⊥   
= + = −   

   
,              (6) 

where ( ) ( )
1/ 22 2

2 / /F x y y x = +  . Corresponding to Alice’s measurement outcome 
2

1 A
λ  

or
2

1 A
λ⊥  , the state of qubits 3A , … , 7A  and B  will evolve as 2φ  or 2φ ′  , which can be 

expressed as 

                  ( )
3 4 5 6 7

2
2

1 000000 111111
2 A A A A A B

x y
F

φ = −  , 
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3 4 5 6 7

2 2

2
2

1 000000 111111
2 A A A A A B

y x
x yF

φ
 ′ = + 
 

.             (7) 

As described above, we can easy find that the goal of the SPMs is as much as possible to make the 

qubit B  collapsed into the state 
1
R

µ+  or 
1
R

µ−  after all, where R  is a constant or a 

coefficient related to x  and y . By the formulae deducing, a detailed implementation procedure for 

the SPM has been provided and 128 possible final collapsed states of the qubit B  after Alice’s 
measurements are given in Appendix A. The relation of the results of Alice’s measurement and 128 
possible final collapsed states of the qubit B can be expressed as follows: 

      
1A

ν    →    1
1

1
8B BT

ψ µ± ±=                            (64 terms) 

      
2

1 A
λ   →    2

2

1
4 2B BT

ψ µ± ±=                         (32 terms) 

      
3

2 A
λ   →    3

3

1
4B BT

ψ µ± ±=                            (16 terms) 

      
4

3 A
λ   →    4

4

1
2 2B BT

ψ µ± ±=                         (8 terms) 

      
5

4 A
λ   →    5

5

1
2B BT

ψ µ± ±=                            (4 terms) 

      
6

5 A
λ   →    6

6

1
2B BT

ψ µ± ±=                           (2 terms) 

      
7

6 A
λ    →  7

7

1
B BT

ψ µ+ +=                             (1 term) 

      
7

6 A
λ⊥

  →    7 BB
Pψ η− =    ,                          (1 term)  (8) 

where 1 2m mT F F F= ⋅⋅⋅   ( )1,2, ,7m = ⋅⋅⋅ ,and 

           1 1F =   , 

           ( ) ( )
1 22 2

2F x y y x = +    , 

           ( ) ( )
1 24 4

3F x y y x = +    , 

           ( ) ( )
1 28 8

4F x y y x = +    , 
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           ( ) ( )
1 216 16

5F x y y x = +   , 

           ( ) ( )
1 232 32

6F x y y x = +    , 

           ( ) ( )
1 264 64

7F x y y x = +    ,                                        (9) 

and  
254 254

63 63
72

x y
P

T x y
+

= , 
B

η  is a normalized state, which is given by 

             ( )127 127

254 254

1 0 1
B B

y x
x y

η = −
+

 .                            (10) 

Thus much Alice’s selective measurements have been completed. From Eqs. (8) - (10), it is easy noted 

that, after Alice performing the SPMs on her all qubits, the states 
1

B
n ng T

µ±  

( ( )7 /22 n
ng −= , 1, 2, ,7n = ⋅⋅⋅ ) in all 128 collapsed states of the qubit B  accounted for 127, and the 

state 7 B
ψ −  for 1. On the other hand, by simple calculation, one can find that, after Alice’s 

measurements the probability of the qubit B  being in the state 
1

B
n ng T

µ±  

( ( )7 /22 n
ng −= , 1, 2, ,7n = ⋅⋅⋅ ) is 0.75, and in the state 

B
η  is 0.25. It must be pointed out that it is 

just these measured results of the SPM that led to the realization of the LQMD. Figure 1 shows the 
detailed configuration of the CPM and SPM.  

Clearly, after Alice performing the CPMs or SPMs on her qubits respectively, the final collapsed 

states of the qubit B  are obvious different. As mentioned above, if Alice makes the CPMs on her 
qubits, after her measurements, 128 possible final collapsed states of the qubit B  will always be 

1
8 2 B

+  or 
1

8 2 B
−  . If Alice employs the SPMs on her qubits, after her measurements, 128 

possible final collapsed states of the qubit B can be given by Eq. (8). It must be emphasized that, 
whether Alice’s measurements are the CPMs or SPMs, since Alice and Bob agreed in advance that 
Alice should measure her qubits before an appointed time, Bob can always know that the qubit B  
must be collapsed into the state corresponded to one of Alice’s 128 results of measurement after Alice’s 
measurements.
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(a) 
 
    
 
 
 

(1) (1) (1) (1) (1) (1)

( 2)

1
12 3 4 5 6 7

1

1
(64 terms)

8•

M M M M M M

M
BTA A A A A A B

A

µφ
↓ ↓ ↓ ↓ ↓ ↓ ±

↓
• • • • • • •

Φ

(1term)
B

P η

(1) (1) (1) (1) (1) (1) (1)

1 2 3 4 5 6 7

1
(128 terms)

8 2

M M M M M M M

BA A A A A A A B
↓ ↓ ↓ ↓ ↓ ↓ ↓

±• • • • • • • •Φ

(1) (1) (1) (1) (1)

(3)
1

2
3 4 5 6 7 2'

1
2

1
(32 terms)

4 2•

M M M M M

M
BA A A A A B T

A

µφ
φ

↓ ↓ ↓ ↓ ↓ ±

↓
• • • • • •

(1) (1) (1) (1)

(3)
2

3
34 5 6 7'

2
3

1
(16 terms)

4•

M M M M

M
BTA A A A B

A

µφ
φ

↓ ↓ ↓ ↓ ±

↓
• • • • •

(1) (1) (1)

(3)
3

4
5 6 7 4'

3
4

1
(8 terms)

2 2•

M M M

M
BA A A B T

A

µφ
φ

↓ ↓ ↓ ±

↓
• • • •

(1) (1)

(3)
4

5
56 7'

4
5

1
(4 terms)

2•

M M

M
BTA A B

A

µφ
φ

↓ ↓ ±

↓
• • •

(1)

(3)
5

6
67'

5
6

1
(2 terms)

2•

M

M
BTA B

A

µφ
φ

↓ ±

↓
• •

(3)
6

'
6

7

•
M

A
φ

↓

or 

or 

or 

or 

or 

or 

or 

(b) 

B
•

B
•

(1) (2) (3)( , ( 1, 2, ,6))iM M M i = 

Fig.1  A sketch of the CMP (a) and SPM (b). Each dot denotes a qubit.                          

denotes Alice’s single-qubit projective measurement on qubits               under measuring basis 
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1 (1term)
BT

µ+

1 2 7, , ,A A A

{ , }({ , },{ , }( 1, 2, ,6)).i i iν ν λ λ⊥ ⊥+ − = 

  
3. Local discrimination of two different kinds of measurement with numerous eight-qubit GHZ 
states 
 

The detailed procedure of our LQMD protocol can be described as follows. Suppose that two 
space-like separated observers, Alice and Bob, share N  eight-qubit GHZ states. To ensure the 
following analysis becomes exact, here we take 30N =  [20]. Thus, the 30 eight-qubit GHZ states 
can be given by 

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
5 71 2 3 4 6

1 00000000 11111111
2

k k k k k k k k
k

A A A A A A A B
Φ = + ,           (11) 

where 1, 2, ,30k = ⋅⋅⋅ , and the qubits ( )
1

kA , ( )
2

kA , …, ( )
7

kA  are in the possession of Alice and 
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( )kB  belong to Bob. Different from previous quantum operation discrimination schemes, we assume 

that there is no classical channel between Alice and Bob. In this case, before the agreed time t , Alice 
should randomly make two different kinds of measurements, CPMs or SPMs, on her qubits in the 

state ( )kΦ  ( 1, 2, ,30k = ⋅⋅⋅ ) respectively. Now we will consider the local discrimination of two 

different measurements.  

(s1)  If Alice performs the CPMs on her qubits, after Alice’s measurements, all qubits ( )kB  will be 

in the states ( )
1

8 2
kB

+  or ( )
1

8 2
kB

−  . At the appointed time t , Bob measures his qubits 

( )kB  all in the basis }{ 0 , 1 . After Bob’s measurements, by statistics theory, the probability of all 

qubits ( )kB  in the state 0  or 1  will be in the ratio of one to one.  

(s2)  If Alice’s measurements are the SPMs, by mentioned above, after Alice’s selective measurements, 

the probability of all qubits ( )kB  in the states 
1

B
n ng T

µ+  or 
1

B
n ng T

µ−   

( ( )7 /22 n
ng −= , 1, 2, ,7n = ⋅⋅⋅ )  is ( )300.75 0.00018≈ , i.e., the probability of at least one qubit 

( )kB ′  in the state 7 B
ψ −  is ( )301 0.75 0.99982− ≈ . This means that, after Alice’s SPMs, at least 

one qubit ( )'kB will be collapsed into the state 7 B
ψ − . Then, at the appointed time t , Bob measures 

the qubits ( )kB  all in the basis { }0 , 1 . One can find that, after Bob’s measurements, the 

probability of the qubits ( )kB  in the state 0  or 1  will be different from the case Alice 

employed the CPMs. To illustrate this clearly, without loss of generality, we first discuss the situation in 

which only one qubit ( )kB ′  in the state 7 B
ψ −  after Alice’s measurements. From the state 7 B

ψ −  

in Eq. (8), it is easily found that, after measurements of Bob, the probability of the qubit ( )kB ′  in the 

state 0  or 1  will be in the ratio of one to u  ( ( )127 2
127 381.7 10u α β= ≈ × ), that is, the 

qubit ( )kB ′  will be always collapsed into the state 1 . As a special case, we also assume that all the 

other 29 qubits ( )kB  are in the states 1 B
ψ ±  after Alice’s measurements and then all the 29 qubits 

are in the state 0  after Bob’s measurements. In this case, by simple calculation, one can easily find 

that the probability of the 30 qubits ( )kB  in the state 0  or 1  will be in the ratio of 1 to ( )


1w  
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after Bob’s measurements, here ( )


1w  is given by  

        ( )


1w =   

2 2127

63 63
7 1

29 1.655
2 8 2

x x
T x y T

    
  ≈   
     

                     (12) 

For general cases in which only one qubit ( )kB ′  in the state 7 B
ψ −  and other 29 qubits ( )kB  

collapsed randomly into the states 
1

B
n ng T

µ±  ( ( )7 /22 n
ng −= , n = 1,2,…,7) after Alice’s 

measurements, it is easily found that the probability of the 30 qubits ( )kB  in the state 0  or 1  

will be in the ratio of one to ( )1w  ( ( )1w  ＞ 1.655) after Bob’s measurements.  

(s3)  Now let us discuss the situation in which there are two qubits ( )kB ′  and ( )kB ′′  in the state 

7ψ −  after Alice’s measurements. Similar to the above mentioned, one can see that the probability of 

the 30 qubits ( )kB  in the state 0  or 1  will be in the ratio of one to ( )2w  ( ( )2w  ≥ 3.43) after 

Bob’s measurements.  

(s4)  For the cases in which more qubits ( )1B , ( )2B , …, ( )lB  ( 3, 4, ,30l = ⋅⋅⋅ ) collapsed into the 

state 7 B
ψ −  after Alice’s measurements, the probability of the 30 qubits ( )kB  in the state 0  or 

1  will be in the ratio of one to ( )lw  ( ( )lw  ＞ ( )2w , 3, 4, ,30l = ⋅⋅⋅ ) after Bob’s measurements. 

As described above, after measurements of Alice, the probability of the 30 qubits ( )kB  in the state 

0  or 1  will be in the ratio of one to W  ( 1.655W ≥ ) (we call W  the discriminated 

parameter ) after Bob’s measurements, where ( ){ }: 1, 2, ,30jW w j∈ = ⋅⋅⋅ . 

(s5)  To ensure the outcome of Bob’s measurements more reliable, it can be further supposed that 
Alice and Bob share 20 entangled states groups (ESGs), each consisting of 30 eight-qubit GHZ states 

( )kΦ  (see Eq. (11)). If Alice’s measurements are the CPMs, it is easy found that, after Alice’s and 

Bob’s measurements, the probability of all qubits ( )kB  of each ESG in the state 0  or 1  will be 

still in the ratio of one to one. If Alice’s measurements are the SPMs, by statistics theory, after Alice’s 

and Bob’s measurements, in all ESGs the probability of the qubits ( )kB  of each ESG in the state 0  

or 1  will be in the ratio of one to W  (W ≥ 1.655).  
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As mentioned above, one can see that, in this protocol, at the appointed time t , Bob should 

measure his qubits ( )kB  all in the basis }{ 0 , 1 . If Alice performs the CPMs on her qubits, after 

Bob’s measurements, the probability of all qubits ( )kB  in the state 0  or 1  will be in the ratio 

of one to one. If Alice’s measurements are the SPMs, after Bob’s measurements, the probability of the 

qubits ( )kB  of each ESG in the state 0  or 1  will be in the ratio of one to W  ( 1.655W ≥ ) . 

According to these results, Bob can distinguish that the measurements used by Alice are CPMs or 
SPMs. Thus, the LQMD is realized successfully without help of classical information.  
 
4. Discussion and conclusion 

 
Before conclusion, we make some discussion. (i) It should be noted that, in the present LQMD 

protocol, Bob did not obtain Alice’s quantum information, i.e., if Alice’s measurements are SPMs, Bob 
couldn’t have learned the coefficients x  and y  in the measuring basis performed by Alice since he 

is not informed that Alice got result of measurement. In fact, Bob doesn’t need to know Alice’s 
quantum information (e.g. the coefficients x  and y ). As mentioned above, after his measurements, 

Bob can determine that the measurements performed by Alice are CPMs or SPMs only according to the 

probability of his qubits ( )kB  in the state 0  or 1 . That is to say, in our LQMD protocol, the 

entanglement can be used for transmission of information (e.g. the classical messages 0 and 1 can be 
represented by CPMs and SPMs respectively) without assistance of classical communication. (ii) It 
must be pointed that, in our protocol, it is essential that eight-particle GHZ states are applied. It is easy 
found that if l -particle GHZ states ( l < 8 ) are employed, the LQMD will not be completed. For 
example, if 30 seven- or six-particle GHZ states are used, from (s2) in section 4 one can see that, the 
discriminated parameter W  will be 0.83 or 0.41. In this case, the CPMs and SPMs cannot be 
distinguished. On the other hand, to ensure the discriminated parameter 1.655W ≥ , one can only use 
15 seven-particle or 7 (7.5) six-particle GHZ states. However, in these cases, the exact of measurement 
results will not be guaranteed. It is just because of that numerous eight-qubit GHZ states and the SPMs 
have been used, our LQMD protocol can be completed successfully. (iii) We should emphasize that our 
work has been completed in the framework of standard quantum mechanics. 

In conclusion, we have proposed a theoretical protocol for local discrimination of two different 
kinds of measurement by using selective measurement and numerous eight-qubit GHZ states. To 
realize the protocol, a series of single-qubit correlative measuring basis has been employed. It is shown 
that, in this protocol, if both two observers agreed in advance that one of them (e.g. Alice) should 
measure her qubits before an appointed time, LQMD can be realized successfully without assistance of 
classical information. Compared with previous LQMD scheme [19], the advantage of the present 
LQMD protocol is that it does not require help of classical information. So far there has been 
experiment implementing the eight-qubit GHZ state [21], hence, we hope our work can be 
experimentally realized in the near future and stimulate further research on quantum communication 
and quantum information processing. 
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Appendix A 
 
   From Eqs. (6) and (7), Alice can measure her qubits according to the result of her own 

measurement. If result of Alice’s measurement is 
2

1 A
λ in state (6), she should measure her qubits 

3,A  …, 7A  in state 2φ  (see Eq. (7)) under the basis { },+ − , successively. After that, the 

qubit B  will always be in the state  

          2
2

1
4 2B BT

ψ µ+ +=  or 2
2

1
4 2B BT

ψ µ− −= .                       (A1) 

If Alice’s measured outcome is 
2

1 A
λ⊥ , she can measure her qubit 3A  in state 2φ ′  (see Eq. (7)) 

under the basis { }2 2,λ λ⊥ , which is given by 

                  
2 2

2 2 2
3

1 0 1x y
F y x

λ
 

= + 
 

,  

                   
2 2

2 2 2
3

1 0 1y x
F x y

λ⊥  
= − 

 
,                               (A2) 

where ( ) ( )
1 24 4

3F x y y x = +  . If Alice’s result of measurement is 
3

2 A
λ , the qubits 4,A  …, 

7A  and B  will be collapsed into the state 3φ , which is given by 

            ( )
4 5 6 7

3
3

1 00000 11111
2 A A A A B

x y
T

φ = +  ,                      (A3) 

where 3 1 2 3T F F F= . Then Alice can in turn measure her qubits 4A , …, 7A  in the basis  

{ },+ − , and qubit B  will be collapsed into the state 

             3
3

1
4B BT

ψ µ+ +=  or  3
3

1
4B BT

ψ µ− −=  .                      (A4) 

If Alice’s outcome of measurement is 
3

2 A
λ⊥ , the state of qubits 4A , …, 7A  and B  will evolve 

as 
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4 5 6 7

4 4

3 3 3
3

1 00000 11111
2 A A A A B

y x
x yT

φ
 ′ = − 
 

 .                 (A5) 

Then Alice can measure her qubit 4A  in the basis 

                
4 4

3 4 4
4

1 0 1x y
F y x

λ
 

= + 
 

 , 

                 
4 4

3 4 4
4

1 0 1y x
F x y

λ⊥  
= − 

 
 ,                                  (A6) 

where ( ) ( )
1 28 8

4F x y y x = +  . If Alice’s result of measurement is 
4

3 A
λ , the qubits 5A , 6A , 

7A  and B will be in the state of 

               ( )
5 6 7

4
4

1 0000 1111
2 A A A B

x y
T

φ = −  ,                       (A7) 

where 4 1 2 3 4T F F F F= . Alice should measure her qubits 5A , 6A  and 7A  in the basis { },+ − , 

then qubit B  will be in the state 

             4
4

1
2 2B BT

ψ µ+ +=      or    4
4

1
2 2B BT

ψ µ− −= .           (A8) 

If Alice’s outcome of measurement is 
4

3 A
λ⊥ , the state of qubits 5A , 6A , 7A  and B  will be 

transferred as 

            
5 6 7

8 8

4 7 7
4

1 0000 1111
2 A A A B

y x
x yT

φ
 ′ = + 
 

 .                      (A9) 

Alice can measure her qubit 5A  under the basis 

              
8 8

4 8 8
5

1 0 1x y
F y x

λ
 

= + 
 

 , 

              
8 8

4 8 8
5

1 0 1y x
F x y

λ⊥  
= − 

 
 ,                                    (A10) 

where ( ) ( )
1 216 16

5F x y y x = +  . If Alice’s result of measurement is 
5

4 A
λ  , the state of 

qubits 6A , 7A  and B  will evolve as 

               ( )
6 7

5
5

1 000 111
2 A A B

x y
T

φ = +  ,                          (A11) 
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where 5 1 2 3 4 5T F F F F F= . Then Alice measures her qubits 6A  and 7A  in the basis { },+ − , 

and qubit B  will be collapsed into the state 

             5
5

1
2B BT

ψ µ+ +=    or    5
5

1
2B BT

ψ µ− −=  .                 (A12) 

If Alice’s result of measurement is 
5

4 A
λ⊥ , the qubits 6A , 7A  and B  will be in the state 

             
6 7

16 16

5 15 15
5

1 000 111
2 A A B

y x
x yT

φ
 ′ = − 
 

.                        (A13) 

Alice can measure her qubit 6A  under the basis { }5 5,λ λ⊥ , which is given by 

              
16 16

5 16 16
6

1 0 1x y
F y x

λ
 

= + 
 

, 

              
16 16

5 16 16
6

1 0 1y x
F x y

λ⊥  
= − 

 
,                                   (A14) 

where ( ) ( )
1 232 32

6F x y y x = +  . If Alice’s outcome of measurement is 
6

5 A
λ , the qubits 7A  

and B  will be collapsed into the state 

               ( )
7

6
6

1 00 11
2 A B

x y
T

φ = −  ,                                (A15) 

where 6 1 2 3 4 5 6T F F F F F F=  . Then Alice measures her qubit 7A  under the basis { },+ − , and 

qubit B  will be in the state of  

               6
6

1
2B BT

ψ µ+ +=   or  6
6

1
2B BT

ψ µ− −=  .                (A16) 

If Alice’s measured result is 
6

5 A
λ⊥ , the state of the qubits 7A  and B  will evolve as 

               
7

32 32

6 31 31
6

1 00 11
2 A B

y x
x yT

φ
 ′ = + 
 

,                           (A17) 

then she can measure the qubit 7A  in the basis  

                  
32 32

6 32 32
7

1 0 1x y
F y x

λ
 

= + 
 

, 

                   
32 32

6 32 32
7

1 0 1y x
F x y

λ⊥  
= − 

 
,                               (A18) 
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where ( ) ( )
1 264 64

7F x y y x = +  . If Alice’s outcome of measurement is 
7

6 A
λ , the qubit B  

will be in the state of 

                   7
7

1
B BT

ψ µ+ += ,                                         (A19) 

where 7 1 2 3 4 5 6 7T F F F F F F F= . If Alice’s measured result is 
7

6 A
λ⊥ , the state of qubit B  will 

evolve as 

                 
64 64

7 63 63
7

1 0 1
2B

B

y x
x yT

ψ −  
= − 

 
  

                       
B

P η=   ,                                           (A20) 

where 
254 254

63 63
72

x y
P

T x y
+

= , and 
B

η  is a normalized state, which is given by 

                   ( )127 127

254 254

1 0 1
B B

y x
x y

η = −
+

.                    (A21) 

Thus, 128 possible final collapsed states of the qubit B  are obtained. 
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