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Abstract 

In this paper the qualitative properties of a family of an anharmonic oscillator equations of 

motion were carried out with phase portraits.  

1- Local stability analysis 

Consider the following generalized equation of motion of a particle subjected to an 

exponential-type restoring force.  

( ) 0)(2exp)(2

0 =+ xxhx ϕγω&&                                                                                                   ( )1  

where γ , and 
0ω are arbitrary parameter. )(xh and )(xϕ are arbitrary functions of x . It is 

worth nothing that equation (1) is enough powerful to give Duffing –type oscillator equations 

of higher order terms than three by using a Taylor expansion [1].  

Let xxh =)( . Then ( )1  takes the form [2] 
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Equation ( )2  reduces to the harmonic oscillator equation if the parametric choice 0=γ . Let us 

now consider, some specific examples of ( )2 . Let 
2

2
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)( xx =ϕ . Then ( )2  becomes 
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By imposing yx =& , the equation ( )3  can be written in a system of two first order  equations 
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The system ( )4
 

admits as equilibrium point 
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At present, we propose to investigate the stability of equilibrium point. 

The Jacobi matrix 
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gives for the system ( )4   
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Following the equilibrium point 0M , the Jacobi matrix (6) takes the form 
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The corresponding characteristic equation may be written in the form 
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 so that the eigenvalues are 
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These eigenvalues are pure imaginary numbers. Thus the fixed point is a centre. 

Let xx =)(ϕ . Then ( )2  becomes 

( ) 02exp2

0 =+ xxx γω&&                                                                                                           ( )10  

As previously, by noting yx =& , the equation ( )10  can be written in a system of two first order 

equations  
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The system ( )11 admits as singular point 
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By using the equation ( )5 , we obtain for the system ( )11 the following Jacobi matrix 
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Introducing the equilibrium  point 1M  into the equation ( )12 , the Jacobi matrix takes the form 
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The Jacobi matrix ( )7  and ( )13  are the same. Consequently, the eigenvalues for ( )13  are  pure 

imaginary numbers. Thus the equilibrium  point 1M is a centre. 

2- Phase portraits 

This section aims to show graphically the phase portraits of equation ( )3  and ( )10  using  

Matlab’s routine ode 45 . 

Case 1: 
2

2

1
)( xx =ϕ  

 Figure 1 represents the phase portrait of equation ( )3  for the parameter  values 

125.0;1.0)0(;5.0 00 ===== ωγ vtx&  and 5.2;2;8.1;5.1;5.00 =x  

  

Fig 1: Graphical representation showing the phase portrait of equation ( )3 .  

Case 2: xx =)(ϕ .The phase portrait has been obtained for
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7 10)0(;2.1;10 −− ===== vtxx &γ and 125.00 =ω . 



  

Fig 2: Graphical representation showing the phase portrait of equation ( )10 .  
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