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An Improved Suggestion in Stratified Random Sampling Using Two Auxiliary Variables

Preface

The main aim of the present book is to suggest some improved estimators using
auxiliary and attribute information in case of simple random sampling and stratified
random sampling and some inventory models related to capacity constraints.

This volume is a collection of five papers, written by six co-authors (listed in the
order of the papers): Dr. Rajesh Singh, Dr. Sachin Malik, Dr. Florentin Smarandache, Dr.
Neeraj Kumar, Mr. Sanjey Kumar & Pallavi Agarwal.

In the first chapter authors suggest an estimator using two auxiliary variables in
stratified random sampling for estimating population mean. In second chapter they
proposed a family of estimators for estimating population means using known value of
some population parameters. In Chapter third an almost unbiased estimator using known
value of some population parameter(s) with known population proportion of an auxiliary
variable has been used. In Chapter four the authors investigates a fuzzy economic order
quantity model for two storage facility. The demand, holding cost, ordering cost, storage
capacity of the own - warehouse are taken as trapezoidal fuzzy numbers. And in Chapter
five a two-warehouse inventory model deals with deteriorating items, with stock dependent
demand rate and model affected by inflation under the pattern of time value of money over
a finite planning horizon. Shortages are allowed and partially backordered depending on
the waiting time for the next replenishment. The purpose of this model is to minimize the
total inventory cost by using the genetic algorithm.

This book will be helpful for the researchers and students who are working in the
field of sampling techniques and inventory control.
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An Improved Suggestion in Stratified Random Sampling

Using Two Auxiliary Variables

Rajesh Singh, Sachin Malik* and Florentin Smarandache**
“Department of Mathematics, SRM University
Delhi NCR, Sonepat- 131029, India
Department of Statistics, Banaras Hindu University
Varanasi-221005, India
““Department of Mathematics, University of New Mexico
Gallup, NM 87301, USA

*Corresponding Author, sachinkurava999@gmail.com

Abstract

In this paper, we suggest an estimator using two auxiliary variables in stratified random sampling
following Malik and Singh [12]. The propose estimator has an improvement over mean per unit
estimator as well as some other considered estimators. Expressions for bias and MSE of the
estimator are derived up to first degree of approximation. Moreover, these theoretical findings

are supported by a numerical example with original data.

Key words: Study variable, auxiliary variable, stratified random sampling, bias and mean

squared error.

1. Introduction

The problem of estimating the population mean in the presence of an auxiliary variable has been
widely discussed in finite population sampling literature. Out of many ratio, product and
regression methods of estimation are good examples in this context. Diana [2] suggested a class
of estimators of the population mean using one auxiliary variable in the stratified random
sampling and examined the MSE of the estimators up to the k™ order of approximation. Kadilar
and Cingi [3], Singh et al. [7], Singh and Vishwakarma [8],Koyuncu and Kadilar [4] proposed

estimators in stratified random sampling. Singh [9] and Perri [6] suggested some ratio cum

9


mailto:sachinkurava999@gmail.com

Uses of Sampling Techniques & Inventory Control with Capacity Constraints

product estimators in simple random sampling. Bahl and Tuteja [1] and Singh et al. [11]
suggested some exponential ratio type estimators. In this chapter, we suggest some exponential-

type estimators using the auxiliary information in the stratified random sampling.

L
Consider a finite population of size Nand is divided into Lstrata such that ZNh = Nwhere
h=1

N, is the size of h™ stratum (h=1,2,...,L). We select a sample of size n, from each stratum by
L

simple random sample without replacement sampling such thathh =n, where n,is the
h=1

stratum sample size. A simple random sample of size nn is drawn without replacement from the

h'" stratum such that Tt_, n;, = n. Let (yni, Xni, zni) denote the observed values of y, X, and z on

the i unit of the h" stratum, where i=1, 2, 3...Nn.

To obtain the bias and MSE, we write

Yy, = thyh_ (1+e,) ,Xst—ZW xn=X(1+e,) Zst—ZW zn =Z(1+e,)

Such that,

SN ([ |

h=1 Y'X'z

where,

yst ZW yh ' yh __thu Yh __Zth

rlh i=1 h i=1
_ L _
Y=Ya=>w,Yn, w,=—"
h=1
and

- —2
V(Ys) =Y Vi (1.2

Similar expressions for X and Z can also be defined.

10
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L L
2 W, S2, Zththih
= 2 =
And E(eO): - Y’ = Vao E(el): = X° = Vo,
L L
D Wit S5 W F,Sh
E(eg):h_lz—zzvooz’ E(eoel):hﬂT:va
L L
thfhsflzh ththSizh
E(e,e,)="= 57 AV and E(ee,)= MT =V,
where ,

o _igy_h_vh f . _igih—ih f
mUE N, -1 TN, -1

th Zi‘i:\l_%:‘l—)z | Sth :i(;h —Xn th —Vh)
i=L h

) N, -1

i=1 N, -1 i=1 N, -1

5, o=z, ) 5, -~ lbo-Xe,-2)

And,

R
nh Nh

2. Estimators in literature

In order to have an estimate of the study variable y, assuming the knowledge of the
population proportion P, Naik and Gupta [5] and Singh et al. [11] respectively proposed

following estimators

- (X
tlzyst(;_t]
: 2.1)
- X —Xst
v X
X+ Xst (22)

11
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The MSE expressions of these estimators are given as

MSE(tl) = Vz [Vzoo + Vozo — 2\/110]

—2 V,
MSE(tz) =Y l:vzoo + % - Vllojl

(2.3)

(2.4)

When the information on the two auxiliary variables is known, Singh [10] proposed some

ratio cum product estimators in simple random sampling to estimate the population mean of the

study variable y.

Motivated by Singh [10] and Singh et al. [7], Singh and kumar propose some estimators in

stratified sampling as
t _ ;/ eXp i - ist eXp z - Est
3 * i + ;st z + Est

— _ist—i} {ESI—Z}
ty = Y&xp =< |exp| ==

- _Y—;st_ |:Est —z:|
ts =Y .eXp exp| ——=
| Zs + 72

- _;st _2_ |:Z—Est:|
te = YuXpl == |eXp| =—
L Z+2Zs

The MSE equations of these estimators can be written as

vl V, Vi V.
MSE(t;) =Y | Vo + % + % —Vio = Vi + ;11}

VOll

—2 V, Vv
MSE(t,) =Y |V, +% +%+V110 + Vg, +

—2 V, V V
MSE(ts) =Y Vzoo + % + % - V110 + V101 - ;ll

12
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MSE(te) = Y [ 200 VZZO + % + Vi -Vig _%}
(2.12)

When there are two auxiliary variables, the regression estimator of Y will be

t, = glst + blh ()_( — ist)"‘ b2h (z - ESt) (213)

S S _ _
Where by, =—2and b,, =—=. Here s?and s: are the sample variances of x and z respectively,
S S

X z

s,and s  are the sample covariance’s between y and x and between z respectively. The MSE

expression of this estimator is:

MSE(t szf S ( — P — P + ZPyxhpyzhpxzh) (2.14)

3. The proposed estimator

Following Malik and Singh [12], we propose an estimator using information on two auxiliary

attributes as

- — ml P — m2
ystexp{ = ~ X« } exp{z s } +by, (>_( — Xt )+ b, (2 —Zs )

o are (3.2)
Expressing equation (3.1) in terms of e’s, we have
t,=Y( S TR b, Xe, —b,, Ze
I 2+e X 2+e, D1 %€, = Dan 26,
=Y|1+e, - M | mie; _m,e, mm.ege, + mye; M,ee, mee,
blhelx_bZheZ
(3.2)

Squaring both sides of (3.2) and neglecting the term having power greater than two, we have

13
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2
(1, —vF {v{ m_m_}bmz} (33)

-
Taking expectations of both the sides of (3.3), we have the mean squared error of t  up to the
first degree of approximation as

MSE(t,) =Y’ [Vy0 + P, ]+ P, - YP, (3.4)

Where,

2 2
m:V, msV, m,m.V,
— 1 Y020 + 2 Y002 + 17 '2 V011 mlvllo _ m?_vlo1
4 4 2

Pz = BthVOZO + B;hVOOZ + ZBlh BZhV011 (3-5)
Ps = _ZBthno - 2Bzhvlol + mlBthOZO + mlBZhVOll + szthon + mZBZhVOOZ

Pl

L L
ththpyxhsyhsxh Zthfhpyththzh
Where, B, = =— and B,, ="=—
2 2 2 2
Z\Nhfhsxh thfhszh
h=1 h=1

The optimum values of m,and m,will be

_ 4[Bth011V002 + Bihvozll - BthOZOVOOZ — BZhV011V002]

1
Y|_V020V002 - V0211J (3 6)
— 4[Bth011V020 + Btho211 — B1hV011V020 — BZhVOOZVOZO]
2 =
Ylvozovooz - V0211J

Putting optimum values of myand m, from (3.6), we obtained min MSE of proposed

estimator t,.

4. Efficiency comparison

In this section, the conditions for which the proposed estimator t is better than Yoot b s,

t,, to, ts, and t,.

The variance is given by

14
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— —2
V( yst) =Y Vzoo

(4.1)

To compare the efficiency of the proposed estimator with the existing estimator, from (4.1) and
(2.3), (2.4), (2.9), (2.10), (2.11), (2.12) and (2.14), we have

V(Y,)- MSE(t))= Y°P,

+P,—YP, >0

MSE(t,)- MSE(t,) = Y [V —2Vyyo |- Y P, =P, +YP, >0

MSE(t,) - MSE(t,) = Y
MSE(t,) - MSE(t,) = Y
MSE(t,) - MSE(t,) = Y
MSE(t;) - MSE(t,) = Y’

MSE(t,)- MSE(t,) = Y

Vozo _
4

vm} -Y’P,—P,+YP,>0

:%Jr%—vm-vmﬁ%} -Y’P,-P,+YP,>0
:%WL Vo Ly v +%} -Y’P, P, +YP, >0
:%+VOOZ ~Vi10 +V101+%} -\_(zPl—P2 +YP, >0
:%+&+vm—vm+%} -Y’P,—P, +YP, >0

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

Using (4.2) - (4.8), we conclude that the proposed estimator outperforms than the estimators

considered in literature.

5. Empirical study

In this section, we use the data set in Koyuncu and Kadilar [4]. The population statistics

are given in Table 3.2.1. In this data set, the study variable (Y) is the number of teachers, the first

auxiliary variable (X) is the number of students, and the second auxiliary variable (2) is the

number of classes in both

Table 5.1: Data Statistics

primary and secondary schools.

of Population

N1=127
N4=170

No=117 N3=103
Ns=205 Ne=201

15
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ni=31

na=38

S,4 =883.835

8, = 810.585

Y, = 703.74

Y, =424.66

8.4 =30486.751
S...=18218.931

X, =20804.59

X, =9478.85

S,y1 =25237153.52
S.y1 = 14523885.53
P.1 = 0.936

Pue = 0.983

S., = 555.5816

S.. = 458.0282
Z,=498.28
7. = 498.28

S,.1 = 480688.2
S,.q = 364943.4
S.., = 15914648
S,.. = 8041254

Dy = 0.978914

Pyes = 0.982958

n2=21
Ns=22

»2= 644
8,:=403.654

Y, =413

Y. =267.03

S.. =15180.760
S.:z =8997.776
X, =9211.79
X; =5569.95
S.ya =9747942.85

S.p1 =3393591.75

Pay = 0.996
Orys = 0.989
S.. =365.4576
S.. =260.8511
7,=318.33

7. = 227.20

8,22 = 230092.8
8,21 = 101539
S.z2 = 5379190
S..z = 2144057
Pyz2 = 0.9762

Pyes = 0.964342

n3=29
ns=39

»3= 1033.467

S,5=711.723
Y, = 573.17
Y, =393.84

S,5 =27549.697
S, =23094.141
X, =14309.30
X, =12997.59
3 =28294397.04
S5 =15864573.97
Doy =0.994
Orpe = 0.965
.2 =612.9509281
S.. = 397.0481
7, = 431.36
Z.=313.71
S,.1 = 623019.3
Sye1 = 277696.1
S,. = 164900674.56
S,., = 8857729

O,z3 = 0.983511

Pyze = 0.982689

16
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We have computed the pre relative efficiency (PRE) of different estimators of Y st With respect

to y and complied in table 5.2:

Table 5.2: Percent Relative Efficiencies (PRE) of estimator

S.No. Estimators PRE’S
1 glst 100
2 t, 1029.46
3 t, 370.17
4 t, 2045.43
5 t, 27.94
6 ts 126.41
7 te 77.21
8 t, 2360.54
9 t, 4656.35

6. Conclusion

In this paper, we proposed a new estimator for estimating unknown population mean of
study variable using information on two auxiliary variables. Expressions for bias and MSE of the
estimator are derived up to first degree of approximation. The proposed estimator is compared

with usual mean estimator and other considered estimators. A numerical study is carried out to

17
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support the theoretical results. In the table 5.2, the proposed estimator performs better than the

usual sample mean and other considered estimators.
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Abstract

In the present article, we proposed a family of estimators for estimating population
means using known value of some population parameters. Khoshnevisan et al. [1] proposed a
general family of estimators for estimating population means using known value of some
population parameter(s) which after some substitutions led to some ratio and product estimators
initially proposed by Sisodia and Dwivedi [2], Singh and Tailor [3], Pandey and Dubey [4],
Adewara et al. [5], yadav and Kadilar [6]. The present family of estimators provides us
significant improvement over previous families in theory. An empirical study is carried out to

judge the merit of the proposed estimator.

Keywords: Ratio Estimator, Product Estimator, Population Parameter, Efficiency, Mean Square

Error.
1. Introduction

The problem of estimating the population mean in the presence of an auxiliary variable
has been widely discussed in finite population sampling literature. Ratio, product and difference
methods of estimation are good examples in this context. Ratio method of estimation is quite
effective when there is high positive correlation between study and auxiliary variables. On the
other hand, if correlation is negative (high), the product method of estimation can be employed

efficiently.
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In recent years, a number of research papers on ratio-type, exponential ratio-type and
regression-type estimators have appeared, based on different types of transformations. Some
important contributions in this area are due to Singh and Tailor [3], Shabbir and Gupta [7,8],
Kadilar and Cingi [9,10], Khosnevisan et. al.(2007).

Khoshnevisan et al. [1] defined their family of estimators as

=yl aX+b o
a(axX +b) + (1—-a)(aX + b)

where a(= 0), b are either real numbers or the functions of the known parameters of the auxiliary
variable x such as standard deviation (o, ), Coefficient of Variation (C, ), Skewness (B,(X)),

Kurtosis (B, (x) ) and Correlation Coefficient (p ).
(1). When 0=0, a=0=b, g=0, we have the mean per unit estimator, t, =y with

MSE(t, ) = (NN‘ "yvec,? (1.1)

n

(i1). When o=1, a=1, b=0, g=1, we have the usual ratio estimator, t, = )‘/(é) with
X

MSE(t,) =(’\'I\I_”)72(cy2 +C,2=2pp ,C,) (12)

n

(ii1). When o=1, a=1, b=0, g=-1, we have the usual product estimator, t, = y(%) with

MSE(t,) = ( )Y?*(C,”+C,*+2pp,C,) (1.3)

N-n
Nn

(iv). When o=1, a=1, b=C,, g=1, we have Sisodia and Dwivedi [2] ratio estimator,

X+C .
t,=Vy X) with
3 y(ﬂcx)
N-n.— 2 X 2 X
MSE(t,) = Y?(C.7 + (= 2C.5 = 2(= C 1.4
(1) = (Y (€, + (g ) G 2o e .C) (L4)

(v). When a=1, a=1, b=C_, g=-1

20
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we have Pandey and Dubey [4] product estimator, t, = V(;Jrgx ) with
+ X
N-n.— 2 X 2 X
MSE(t,) = Y*(C,” + (= °C. 4+ 2(= C 1.5
()= CQOY* €, + (g oG+ 25 e Cy) (L5)

X+p

(vi). When o=1, a=1, b=p, g=1, we have Singh and Taylor [3] ratio estimator, t. = y(——)
X +p
with
N-n.— 2 X 2 X
MSE(t;) = Y?(C,” +(=—)°C,” -2(=—)pp,C 1.6
(ts) =( Nn )Y (C, (x+p) x (X+p)ppx y) (1.6)

(vii). When o=1, a=1, b=p, g=-1, we have Singh and Taylor [3] product estimator,

_ X+p .
t. = y(=—) with
6 Y(X+p)

N-—n.— X X
MSE(t, ) = Y3(C 2+ (=2 )2C2+2(=="pp .C 1.7
(te) = ( N )Y-(C, (X+p) X (X+p)ppx ) (1.7)

There are other ratio and product estimators from these families that are not inferred here but this
paper will be limited to those ones that made use of Coefficient of Variation (C,) and
Correlation Coefficient ( p ) since the conclusion obtained here can also be inferred on all others
that made use of other population parameters such as the standard deviation (o, ), Skewness

(B,(x)) and Kurtosis (B, (x)) in the same family.

2. On the Modified Ratio and Product Estimators.

Adopting Adewara (2006), Adewara et al. (2012) proposed the following estimators as

th =Y (=), (2.1)
X

. X

t:=Yy (i), (2.2)

« . X+C,

21
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. . X +C
e =y (50, 24
4 y(X+CX) (2.4)
t's =7 (2P and (2.5)
X +p
« X 4P
e =y 1Py | 26
6 =Y (X+p) (2.6)

Where X and y~ are the sample means of the auxiliary variables and variable of interest yet to
be drawn with the relationships (i) X=fx+(1-f)X° and (ii). Y =fy+(1-1fy".

Srivenkataramana and Srinath [12].
The Mean Square Errors of these estimatorst™i, i=1,2, ..., 6 are as follows:

n

(i). MSE(t*1)=(N_n)2MSE(t1) (2.7)
(ii). MSE(t*z):(ﬁ)ZMSE(tZ) (2.8)
(iii). MSE(t*3)=(ern)2MSE(t3) (2.9)
(iv). MSE(t*4)=(Nr1n)2MSE(t4) (2.10)
(v). MSE(t's) :(ern)zMSE(tE,) (2.11)
(vi). MSE(t’s) :(ﬁ)ZMSE(%) (2.12)

Following Adewara et al [5], Yadav and Kadilar [6] proposed some improved ratio and product

estimators for estimating the population mean of the study variable as follows

M=k (), (213)
X
), (2.14)
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X+C
X +C

n3_k ( )1

1’]4—k ( ),

+C

The mean square error of these estimatorsn’i, i=1,2,...,

MSE(n'2) = ¥ |n2(k2AC2 + f3K? — 2k, 2 - 2{2K?

6 are as follows

—k, hC,, )+ {k, ~1F]

MSE("2) = Y [h2(k2AC2 + k2AC2 + 2{2K? —k, pC,, )+ fk, —1F ]

MSE(n’s) = Y |n?(k2.C2 + {3k2 — 2k, vZAC2 — 2v, {2k? —k, DC,, )+ k, —1f]

MSE(n's) = Y |h? (k22C2 + k2vAAC? + 2v, {2k —k, hC, )+ fk, —1F]

MSE(n’s) = Y [n2(k2AC2 + {3k2 — 2k, W2AC? — 2v, f2K2 —k, C,, )+ ks —1)7]

MSE(n"s) = Y [n2(k2AC2 + K2vEAC? + 2v, f2kE — ks BC, )+ fks —1F ]

Where,
- s? 2 S, X X
p=N-n N C2=2Y 7= Exz,c =y = X v =—>_andp=
Nn N-n v’ X YX X+C, X+C,
h2[xc? —ac,, |+1 h?AC,, +1
And Kk, =

h2[w2C? —vac,, |+1

lk = 1
h?[3C2A—4C A +2C2[+1" % h2|[C2A+4C A +AC2|+1

h2[vC,, |+1

3 =

h2[w2C2 —v,aC,, |+1

h?[3v2C2h—4v,C A+AC2|+1" ¢~ h?[Bv2C2A+4v,C A +AC2 [+1

h2[v,AC,, J+1

° h2[3v§CXX—4v2C A+AC3 J+1 ® h2[3BvIC2A+4v,C o\ +2C2 |+1
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3. The Proposed family of estimators

Following Malik Singh [14], we define the following class of estimators for population mean Y
as

i v ot yX +3 ' (@Y+u)—(c0¥*+u) ’
ty _{mly +m2[X X ]‘((\lli*-i‘éSJ EXp[(wY+u)+(mi*+u) (3.1)

Where m,and m,are suitably chosen constants. y,d, «, and p are either real numbers or
function of known parameters of the auxiliary variable. The scalar o and f takes values +1 and -1

for ratio and product type estimators respectively.

To obtain the MSE , let us define
y=Y(+eg) ,x=X(1+e,)
such that E(ej)=0,i=0,1 and

E(es) =ACj , E(ef) =AC;, E(ese,)=2pC,C,

expressing equation (3.1) in terms of e’s and retaining only terms up to second degree of e’s, we

have

_ ) B B
ty = [mlv(l— he, )+m,Xhe, 2. expl—— oXhe,
wX(L-he,)+3 20X + 2 - 0Xhe,

Y < 22,42
= [le(1— he, )+ mZXhel]{l— thel}'“eXp{Bthel(l_ Rzzhel . th; e2 j}

oo +1)h%e? L Bhe, aph?e? .\ p2h%e? .\ ph’el
2 2 2 8
Bh’e,e,

|1+ ahe, +
=m,Y

he,

2
—aheqe, -

_ 2.2
+m, X{he1 +ah’e? + Bh—el}
? (32)

24



Some Ratio and Product Estimators Using Known Value of Population Parameters

R — yX R, _ oX
where, yX+8 P oX+p

Subtracting Y from both the sides of (3.2), we have

(tM —\_(): m,Y[i-he, + Le, + L,e? — Lyege, |+ m,X|ne, +L,e2]-Y (3.3)

L, =oR;h+ Bh;{Z

_a(a+1)h’R? s aph’R,R, s BZh?R?2 . Bh’R2

L2
2 2 8 4
where, 2R
L, =ah2R1+B 2
2
L, :och2R1+thRZ

Squaring both sides of (3.3) and neglecting terms of e’s having power greater than two, we have

MSE(t,,)= Y~ [+ m2T, + m2T, + 2m,m, T, —2m,T, - 2m,T, | (3.4

where,

T, = Y[+ 2h%C2 + 2AC2 = 2hL)pC,C, + 2L,AC% — 2L pC,C, |
T, =hAX"C2

T, = YX[L,AC? + LahC2 —h*apC C, |

T, =Y [+ L% —Lape,C, |

T, = YXL,AC?

minimization of (3.4) with respect to m1 and mz yields optimum values as

_ (T2T4 _TsTs) m. = (T1T5 _T3T4)

b T1T2 _T32 2 T1T2 _T32

4. Empirical Study:
Population I: Kadilar and Cingi [9]

N=106,n=20, p=0.86,C =522, C, =21, Y =2212.59 and X =27421.70
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Population I1: Maddala [13]
N=16,n=4, p=-0.6823C, =0.2278, C, =0.0986, Y =7.6375and X = 75.4313

4. Results:

Table 4.1: Showing the estimates obtained for both the Khoshnevisan et al. [1] estimators and

Adewara et al. [5] estimators

Estimator Population | (p>0) Population 1l (p<0)
t, 5411349 0.5676
t, 2542740 3
t, - 0.3387
t, 2542893 -

t, - 0.3388
te 2542803 -
te = 0.3376
th 137519.8 ;
t - 0.03763
ts 137528 -
t' - 0.03765
t's 137523.1 -

- 0.03751
ts
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Table 4.2: Showing the estimates obtained for Yadav and Kadilar [6] estimators

Estimator Population | (p>0) Population 11 (p<0)
1 136145.37 -
n" - 0.03762
n's 136138.05 -
N4 - 0.03764
s 136107.94 -
n'e - 0.03750

Table 4.3: MSE of suggested estimators with different values of constants

MSE
m| m, o B v d © K| estimator Popl  Popll
1 0 1 0 1 0 - - t" 137519.8 | -
1 of -1 O 1 0 - - t, |- 0.03763
1 0 1 0 1 Cx - - t's 137528 -
1 0 -1 0 1 Cx - - t7s - 0.03765
1 0 1 0 1 p - - t's 137523.1 | -
1| o -1 o 1] e -] - s |- 0.03751
m, 0 1 0 1 0 - - N1 136145.37 | -
m| 0| -1 o 1] of -| - 0. |- 0.03762
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m| O] 1] of 1] o - - 0 | 136138.05 | -
m| O -1 of 1| o -| - e |- 0.03764
m| O] 1| of 1| e[ -| - N’ | 136107.94 | -
m| O -1 of 1| e[ -| - e |- 0.03750
m| m 1] 1] 1| 1] 1| 1 t, |7550223 |-
m| m -1 -1 1| 1] 1] 1 ty |- 0.03370

Since conventionally, for ratio estimators to hold, p>0 and also for product estimators to
hold,p < 0. Therefore two data sets are used in this paper, one to determine the efficiency of the

modified ratio estimators and the other to determine that of the product estimators as stated

below.
5. Conclusion

In this paper, we have proposed a new family of estimator for estimating unknown
population mean of study variable using auxiliary variable. Expressions for the MSE of the
estimator are derived up to first order of approximation. The proposed family of estimator is
compared with the several existing estimators in literature. From table 4.3, we observe that the
new family of estimators performs better than the other estimators considered in this paper for
both of the data sets.
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Abstract

In this paper we have proposed an almost unbiased estimator using known value of some
population parameter(s) with known population proportion of an auxiliary variable. A class of
estimators is defined which includes Naik and Gupta [1], Singh and Solanki [2] and Sahai and
Ray [3] estimators. Under simple random sampling without replacement (SRSWOR) scheme the
expressions for bias and mean square error (MSE) are derived. Numerical illustrations are given
in support of the present study.

Key words: Auxiliary information, bias, mean square error, unbiased estimator.

Introduction

It is well known that the precision of the estimates of the population mean or total of the
study variable y can be considering improved by the use of known information on an auxiliary
variable x which is highly correlated with the study variable y. Out of many methods ratio,
product and regression methods of estimation are good illustrations in this context. Using known
values of certain populations parameters several authors have proposed improved estimators
including Singh and Tailor [4], Kadilar and Cingi [5], Gupta and Shabbir [6,7], Khoshnevisan et
al. [8], Singh et al. [9], Singh et al. [10], Koyuncu and Kadilar [11], Diana et al. [12],
Upadhyaya et al. [13] and Singh and Solanki [2].

In many practical situations, instead of existence of auxiliary variables there exit some auxiliary

attributes ¢ (say), which are highly correlated with the study variable y, such as
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i. Amount of milk produced (y) and a particular breed of cow (¢ ).

i. Sex (¢ ) and height of persons (y) and

iii.  Amount of yield of wheat crop and a particular variety of wheat (¢ ) etc. (see Jhajj at al.
[15]).

Many more situations can be encountered in practice where the information of the population

mean Y of the study variable y in the presence of auxiliary attributes assumes importance. For
these reasons various authors such as Naik and Gupta [1], Jhajj et al. [14], Abd- Elfattah et al.
[15], Grover and Kaur [16], Malik and Singh [17] and Singh and Solanki [2] have paid their

attention towards the improved estimation of population mean Y of the study variable y taking

into consideration the point bi-serial correlation between a variable and an attribute.

N n
Let A=) ¢; and a=Z(pi denote the total number of units in the population and sample
i=1 i=1

possessing attribute ¢ respectively, p :% and p=3denote the proportion of units in the
n

population and sample, respectively, possessing attribute ¢ .

Define,

. _6-Y) o _(-P)
y 7 ¢ P !
E(e,):O,(i:y,q))

2 2
fo(i 1 szs_y C2:S_p
1 n N, y VZ, p P2|

Sy¢

and ppp = ———1Is the point bi-serial correlation coefficient.
PSS
Yoo
Here,
1 N S\2 -2 1 N 2 1 N —
S2=—="S(yi=Y) ,S2 =—— 3 (¢; —P)’and S,y =——1 S yjoi — NPY
y N—lgl(yl ) o N_lgl((l)l ) Yo T N_1 i§1Y|¢|
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In order to have an estimate of the study variable y, assuming the knowledge of the population
proportion P, Naik and Gupta [1] proposed following estimate

ther = g{EJ
P (1.1)

P
Iner = Y(_j
P (1.2)

following Naik and Gupta [1] , we propose the following estimator

(KP+K.K. )
t1:y£ 1 2 3)

Kp+K,K, (1.3)

The Bias and MSE expression’s of the estimator t, up to the first order of approximation are,

respectively, given by

a(o+1)V;,

B(tl):Vflcf)[ —alep}

(1.4)
MSE(t, )= Y °f,[C2 +C2(a?VZ —2aV,K , |] (L5)

Also following Singh and Solanki [2], we propose the following estimator

s (2 el s ] w

The Bias and MSE expression’s of the estimator t, up to the first order of approximation are,

respectively, given by

B<t2>=vflcf{wzB _BB-Y) 2042V g %vzw}

’ ? 8 2 (1.7)
V& 2 2| 2 7L2V22_ ~ , _}‘Vz

MSE(t2)=Yf{cy+Cp(B +— vazJ 2Kpcp£3 . ﬂ -
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a, A and Pare suitable chosen constants. AlsoK,,K;,K,, K are either real numbers or
function of known parameters of the auxiliary attributes ¢ such asC,, B,(¢), p,and K, . K,is

an integer which takes values +1 and -1 for designing the estimators and

_ Klp
K PHKLK,
_KpP
2T K,P+K,

We see that the estimators t, and t,are biased estimators. In some applications bias is

disadvantageous. Following these estimators we have proposed almost unbiased estimator of Y.

2. Almost unbiased estimator

— —_ ¢ —_ B —
Suppose t,=VY,t, :y(Mj 1, :y{z_(%j exp{k((K4P+K5) (K4p+ Ks)ﬂ}

Kip+K,K; (K4P+K5)+(K4P+K5)

Such that t,, t,, t, e W, where W denotes the set of all possible estimators for estimating the

population mean Y. By definition, the set W is a linear variety if

3
t,=> Wt eW
= (2.1)
3
Such that, > w; =1 and w; eR (2.2)
i=0

where w;(i =0.,2,3) denotes the constants used for reducing the bias in the class of estimators,
H denotes the set of those estimators that can be constructed from ti(i = 0,1,2,3) and R denotes

the set of real numbers.

Expressing tp in terms of ¢’s, we have

— oo +1)V/7e?
t,=Y|1l+e, +w, f—avled) —oaV.ee,
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(2.3)

—1)? AV.,e, AV.Be:  A(h+2)V2e? AV.e e
+W{_Be¢_B(B R N ) U S d,ﬂ

2 2 2 8

Subtracting Y from both sides of equation (2.3) and then taking expectation of both sides, we

get the bias of the estimator t, up to the first order of approximation, as

J— 2 o B ,
B(t,) = Yflwlci(% _ ale"j N Yflwzc,%[K\;B _ B(B2 1) A +82)v2

-BK, +

kVZKPj 2.4

From (2.3), we have

- = AV,.e,
(t,=Y)=Y|e,—w,aVe, —w,| Be, + 5

(2.5)

Squaring both sides of (2.5) and then taking expectation, we get the MSE of the estimator ty up

to the first order of approximation, as

—2
MSE(t, )= Y f,[c2 + C2(Q% - 20K, ) (2.6)
Where

Which is minimum when

Q=K, 2.7)

Where Q =w,aV, + WZ(B - MZ/Z j (2.8)

Putting the value of Q=K in (2.6) we have optimum value of estimator as t_(optimum).
Thus the minimum MSE of t, is given by
. —2
min.MSE(t, )= Y f,C2(L-p2,) (2.9)

Which is same as that of traditional linear regression estimator.
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from (2.2) and (2.8), we have only two equations in three unknowns. It is not possible to find the
unique values for w;'s, 1=0,1,2. In order to get unique values of w;'s, we shall impose the linear

restriction
2
> w;B(t;)=0 (2.10)
i=0
where B(t;) denotes the bias in the i estimator.
Equations (2.2), (2.8) and (2.10) can be written in the matrix form as

1 1 1 Jw,] [1
AV,
0 aV, B- w, =]k, (2.11)

0 B(,) B |w. |0

Using (2.11), we get the unique values of w,'s, 1=0,1,2 as

W= aV,[aV,A, —A X, |- X,KA, = X,aV,[aV,A, -A X, |-aV,K,A,
T aVi[aV,A, A X, ]
_ X, KpA, X,
aV,[aV,A, - A X, ]
W, = I‘<PA1
t [aV1A2 _Alxl]

where,
2
p, = Mot DV ;1)\’1 ~aViK,
2
A2 — 7LV2B _ B(B l)_ }\’(7\’—'_ 2)V2 _BKP + }LVZKP
2 2 8
X, = All:B_ AL }
2
K
X, = —
oV,

Use of these w;'s, 1=0,1,2 remove the bias up to terms of order o(n ‘1) at (2.1).
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3. Empirical study

For empirical study we use the data sets earlier used by Sukhatme and Sukhatme [18],

(p.256) (population 1) and Mukhopadhyaya [19] (p.44) (population 2) to verify the theoretical

results.

Data statistics:

Population N n Y P C, G, Pob B, (%)
Population1 |89 20 3.360 0.1236 | 0.60400 2.19012 0.766 6.2381
Population2 | 25 10 9.44 0.400 0.1702¢ 1.2747¢ -0.387 | 4.3275
Table 3.1: Values of w;'s,
w;'s, Population 1 Population 2
W, -3.95624 1.124182
W, 5.356173 0.020794
W, 0.39993 -0.14498
Table 3.2: PRE of different estimators of Y with respect toy
Choice of scalars
wy wg wy K| Kj K, K Kjoa B| A Estimator] PRE PRE
(POPID| (POPIN)
1 (0 |0 y 100 100
0 |1 0 1 1 0 1 ter 11.63 1.59
1 1 0 -1 t e 5.075 1.94
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0o [0 [1 1[0 [ty 12.88 [1.59
-1 |0 ty 10 5.43 1.95

1 (0 11|ty 7359 | 0.84

110 1o |ty |494 [825

110 0 |1 |ty 1495 |8.25

110 0 |-1 |ty 73.48 | 5.58

Wo| wy| wyg 1 |1 | 1] 1|1 |1 |1 |1 |t 241.98 | 117.61

optimum

4. Proposed estimators in two phase sampling

In some practical situations when P is not known a priori, the technique of two-phase sampling is

used. Let p' denote the proportion of units possessing attribute ¢ in the first phase sample of

sizen'; p denote the proportion of units possessing attribute ¢ in the second phase sample of

size n'>n and 9 denote the mean of the study variable y in the second phase sample.

In two-phase sampling the estimator t will take the following form

3
Ly = zhitid eH (4.1)
i=0
3
Suchthat, > h, =1 and h; eR (4.2)
i=0
Where,

~ KpHKK, ) - p) (K, p+K )= (K,p+K;)
SRy LA, R PR
i =Y rh y{KlerKzKSj & y{ (pj exp{y((K4p'+K5)+(K4p+Ks)
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The Bias and MSE expression’s of the estimator t,, and t,, up to the first order of

approximation are, respectively, given by

| m(m-1)R*,C2 m(m+1)Rf,C?
B(tld)zy[ ( ; Gy | e 2) ——F —m’R}f,C2 +mR,fk,C @3
=2
MSE(t,)= Y °[f,C2 + m?R2f,C? — 2mR k f,C? ] wa
—| n(n-DfC? n(n+1f,C?
B(tZd):Y{— > — + 5 22 4 nf,k,C2 +n’f,C2 +f,yR k,C +f,yR,nC?
(4.5)
MSE(t,, )= Y [f,C2 + 2f,C2]
y p (4.6)
Where,
— Klp
tOKP+KK,
— K4P
? 2[K,P+K,]
L, =n-vA, (4.7)
Expressing (4.1) in terms of e’s, we have
- m(m+1)R%e? m(m-1)R7e? '
t,=Y|1l+e, +w,| —————-mR.e, —-mR,e.e, +mRe e, +f+ mR.e €',

n(n-1)e?

12
1 2 1 n(n+1)eq)
+W,| —ne, ——————+ne' +ng e —————

> —YRz(elnp_enp)"'VRZ(eyecp _eyeltp)_ neyewji|

Subtracting Y from both sides of equation (2.3) and then taking expectation of both sides, we

get the bias of the estimator t, up to the first order of approximation, as
B(t,) = Y[B(t,; )+ B(t,)] (4.8)

Also,
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t, - Y) = Y]e, + w,[mR ", -mR.e, |+ w,(-ne, +ne’, ~yR,e', +yRe, |
(4.9)

Squaring both sides of (4.9) and then taking expectation, we get the MSE of the estimator t up

to the first order of approximation, as

MSE(t, )= Y f,C2 + L3f,C? - 2L, f,k C? (4.10)
Where

Which is minimum when

L,=K (4.11)
Where L, =w,mR, +w,(n—yR,) (4.12)

Putting the value of L, =K in (4.10), we have optimum value of estimator as t_(optimum).

p

Thus the minimum MSE of t is given by

min.MSE(t,)=Y"C2(f, ~f,p? ) (4.13)

Which is same as that of traditional linear regression estimator.

from (4.2) and (4.12), we have only two equations in three unknowns. It is not possible to find
the unique values for h,'s, 1=0,1,2. In order to get unique values of h,'s,we shall impose the

linear restriction
2
> hB(t;)=0 (4.14)
i=0
where B(t;) denotes the bias in the i estimator.

Equations (4.2), (4.12) and (4.14) can be written in the matrix form as

1 1 1 h, 1
0 mR, n-yR,|h, =k, (4.15)
0 B(t,) B(t,) Jh,| [0
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Using (4.15), we get the unique values of w;,'s, 1=0,1,2 as

h,=1-h,-h,
h, = kp _ PlKP(n_YRz)
mR, Pn-mR,P,-PYyR,
_ KeP,
‘o [Pln —-mR,P, - PlYRz]

Where,

m(m-1)R?f,C?> m(m+1)Rf,C2
p, - MM —DRTC, | mim DR T, -m’RZf,C2+mR,fk C2

! 2 2
n(n-1)fC2? n(n+1)f,C?
, =] — ( 2) i, | N0+ DRG, +nf,k C2 +n’f,C2 +f,yR,k, C3 +f,yR,nC?

Use of these h;'s, 1=0,1,2 remove the bias up to terms of order o(n ‘l) at (4.1).

5. Empirical Study

For empirical study we use the data sets earlier used by Sukhatme and Sukhatme [18] (,
p.256) (population 1) and Mukhopadhyaya [19] ( p.44) (population 2) to verify the theoretical

results.

5.1 Data statistics:

Pop. N [n Y P p' C C P n’

y p

Pop.1 |89 |23 |1322 |0.1304 0.13336 | 0.69144 | 2.7005 | 0.408 | 45

Pop.2 |25 |7 7.143 | 0.294 0.308 0.36442 | 1.3470 | -0.314 | 13
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Table 5.2: PRE of different estimators of Y with respect toy

Choice of scalars
Wol| wy | wo| K | K, | Ky K, | Kg |M |n Y | Estimator] PRE PRE
(POPIN)| (POPII)
1 |0 0 3_/ 100 100
0 |1 [0 |1 |1 |oO 1 tyer 1113 | 8.85
1 |1 |0 -1 taep 7.48 | 1215
0 |0 |1 1 |0 |t,, |2684 |542
-1 |0 bt 23.75 | 5.87
1 |0 1 |1 |t,,, |8255 |[1.23
10 1|1 | ty,, [856 |846
10 0 |1 |t,,, |2254 |657
110 0 -1 |ty 82.56 |7.45
wo| wy|l wg 1 |1 [ 11 |1 |1 |1 |1 |t 112,55 | 106.89
optimum
Conclusion

In this paper, we have proposed an unbiased estimator t  and t,using information on the

auxiliary attribute(s) in case of single phase and double phase sampling respectively. Expressions

for bias and MSE’s of the proposed estimators are derived up to first degree of approximation.
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From theoretical discussion and empirical study we conclude that the proposed estimatorst and

t , under optimum conditions perform better than other estimators considered in the article.

Appendix A.

Some members of the proposed family of estimators -

Some members (ratio-type) of the class t,
When w, =0, w, =1, w, =0
a=1
K, K, Estimators (K, =1) | Estimators (K, =-1 | PRE’S | PRE’S
K,=1| K,=-1
1 C, | P+C, [P-C, 134.99 | 72.50
L =Y L =Y
p+C, p-C,
1 B.(0) | | :y_P+B2(¢)} t :y‘p_gz(q,)} 111.62 | 89.34
#Lp+Bo (@) ©2 77 p-B,(0)
p0) |G |, :y'F>;32(¢)+cp t :y_Pﬁz(q))_cp 226.28 | 12.99
B B @) +Cy | | T pBa(0)-C,
C, B, (%) t _y_PCp+B2(¢) . _[PC,—B.(@)] 12666 | 77.93
I RC, +B,(@) | | T pC, B, (9)
1 Peb [P+py, [P-p, 207.46 | 39.13
Lps =Y — s =Y —
| P+ P | P—Pp
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NP S, [ NP? +S, [ NP? -S, 18.14 |6.86
tee =Y oo b =Y o<
NPp+S, NPp-S,
NP f t ___ NP2 +f t ___NPZ—f 13.79 | 10.85
77 NPp+f ®7 7 NPp—f
Bz(d)) Kpb - y_Bz((I))P"' Kpb ty = y_Bz(d))P_ Kpb 24.15 5.40
1la8 — 1b8
| Ba(0)p+ Ky, | Bo(0)p—Kp,
NP Ko | NP2 + Ko I NP? - Ko 18.62 | 7.78
=Y U =Y ———
NPp+K,, NPp—-K,,
N 1 [ NP+1 [NP=1 1593 |[9.26
Lo = Np+1 Lo = m
N C INP+C [NP-C 19.79 |6.86
p t — y p t — y p
lall Np+Cp 1b11 Np_Cp
N Poo ___ NP +p,, ___ NP —p,, 15.18 |9.78
t1«’:\12 - y N t1b12 - y N
_Np+ppb _Np_ppb
N S, t __NP+S¢} t NP-s, 12.34 | 10.96
1a13 = Y 113 = Y
Np+S, Np-S,
N f . —)7_ |\|p+f} . —7_ NP —f | 1299 |11.54
lald — 14 — Y|\~ £
| Np+f | Np—f |
N g=1-f [ NP+g INP—g] 1581 |9.34
tas = Np+g ts =Y m
N Koo ___Np_,_Kpb ___Np_Kpb 1352 | 11.10
L =Y toe =Y ————
_Np+Kpb _Np—Kpb
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n ppb __nP + ppb __nP — ppb 2513 486
t1a17 =Y W t1b17 =Yy W
L pb L pb |
n S¢ __np+ppb __np_ppb_ 14.98 8.81
tag =Y W L =Y W
L pb N pb |
n f i _y_nP +f:| ¢ _y_nP_f:| 13.38 11.20
1a19 — 119 =
 np+f | np—f
n g=1-f __np+g _np —qg 29.13 3.68
Lo = np+g oo = np—g
n Koo [nP+ K,y __np_Kpb 1587 |9.39
o =Y in U =Y —K
L pb L pb
B.(o) [P _ | Bo(¢P+P _ | Bo(opp—P]| | 1680 | 763
L =Y B ((I))p+P Ly =Y B (<|>)p—P
2 2
NP P __ NP2 + P NP2 _P 15.93 9.26
s = NPp+ P s = NPp—P
N P [ NP+P [ NP=P 13.23 | 11.32
Lo =Y Np +P o = Np—P
n P | nP+P |InP=pP 1451 | 10.28
Lo =Y p+P L =Y p_P
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Appendix B.

When w, =0, w, =1, w, =0

Some members (product-type) of the class t,

o=-1
K, | K; Estimators (K, =1) | Estimators (K, =—1) | PRE’S | PRE’S
K,=1 | K,=-1
1 C, p+C p—C 3554 [9.93
t =Y —r L =Y b
P+C, P-C,
L Bl0) | zy'p+ﬁz(¢)} t :y_p—Bz(q))} 110.12 | 101.54
TP +B,(0) 27 P—B,(0)
RO C |, [pB.@+C,] | zy_pﬁz(q))—cp 6.09 | 0.127
CUTIPBL@)+C, | | 7| PRL(0)-C,
C, | B:0) | Tpc,+B@] |, _ [pC,-B,(#)] |9938 |[8252
1c4 _PCp+B2(¢) 1d4 _P—Cp_B2(¢)
1 Pon [ p+py ~[p-pu 0.00135 | 5.42
t1c5 =Y P— t1d5 =Y 5
L +ppb _P_ppb
NP |'s, t y_Npp+s¢:| t V_Npp_sﬂ 2.53 1.23
16 — Y| p2 o we = Y| T <
| NP?+S, | NP? S,
NP | f [NPp+f 'NPp—f 2.03 1.52
bt =Y \p7 ot b =Y N7t
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B,(0)] K, [8,(0p+K,, Tp0P-K, ] [183 [168
s =Y s 7o | | Lus =Y
_B2(¢)P+Kpb _BZ((I))p_Kpb
NP | K, t [ NPp+K,, oo NPp-K,, 1.89 1.63
10 =Y NP2+Kpb 109 = Y| NPZ—Kpb
N 1 ['Np+1 'Np-1 2.37 1.30
o = yl:NP+1i| Lo = y[—NP—l:l
N | cC, t ~ [Np+c, o Ne-C, 250 [1.23
1011_y NP+Cp ldll_y NP—Cp
N | Pw I Np+p,, [Np—p,, 179 [ 170
Lo =Y o tg =Y
| NP+py, NP —p,,
N |s, t _ I'Np+s, t ~ ['Np-s, 216 [ 144
113 = Y| NP +S, 1d13 = NP—S,
N | f ['Np+f ['Np—f 1.98 1.56
e =Y Np o f e =Y \p_f
N g=1-f __ Np+g __ Np_g_ 2.34 1.32
bas =Y o tas =Y o —
_NP+g _NP_g_
N | K, t I Np+K,, t 'Np-K,, 193 | 160
116 = Y NP+K., 1d16 = Y| NP_K,,
LI (Y [ np+p, | [rp—p,, | 149  |1.96
by =Y —— Ly =Y —
_nP+ppb_ _nP—ppb_
n S¢ __np+ppb_ __np_ppb_ 2.65 1.14
ls =Y —=— e =Y
_nP+ppb_ _nP—ppb_
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n f I np+f Inp-f 2.06 1.51
fs :y{ngﬁ} s :y{ng—f}

n | g=Lf Tro+ Tro— 329 | 084
tieo0 :y|:ng+g} a2 ZY{nE_g}

" Ke | _y_np+Kpb} t _y_np—Kpb:| 188 | 163
1c21 — 1d21 —

_nP+Kpb _nP—Kpb

B.(0)| P o _[Bp+P] | :y_ﬁz(q))p_P 299 | 097
1c22 _Bz((b)P"‘ P 1d22 _—Bz(d))P—P

NP P ¢ _o NPp+P . _JNPp-P 237 | 1.30
1c23 = _NP2+P 1d23 = _NPZ—P

N P ¢ _g Np+P ¢ _g/Np-pP 2.11 1.47
1c24 — _NP+P 1d24 — _NP—P

n P Jnp+P [np-P 2.49 1.23
t == t =
1625 y|:nP+P:| 1d25 y[nP—P}
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Appendix C.

Some members (product-type) of the class t,

When w, =0, w, =0, w, =1

K, K, Estimators PRE’S
(B=1,r=-1)
1 C B 12.42
P t21:)7 Z_Bexpp—P
P p+P+2C,
1 B,(¢) . P 11.92
ty =y 2-Zexpl —————~
P p+P+28,(0)
B.() G Co_yl 2 Py  Bo(0Np—P) 16.29
% P Bz(d))(p"'P)"'ch
C, B.(6) C s e CP) 1253
: P Cylp+P)+2B,(0)
1 o 13.86
i te =y 2—Pexp
P p+P +2ppb
NP S, (. p NP(p—P) 44.46
=Yl 2—-€xp
P NP(p+P)+2S,
NP f 61.84
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B0 Ka [ b ] B0N-P) e
“ P B, (0)p+P)+2K,,
NP Koo L =5l 2-Pexp NP(p-P) 48.09
2 P NP(p+P)+2K,,
N 1 D 54.10
Lo =Y 2__EXp p+P
N C, b 44.84
t,, =y 2-=¢e
m =Y 27p Xp{N (p+P) +zc }
N o AT 56.48
212 P N p+P +2ppb
N s, b 62.40
t,, =Y 2——exp —F/—————
P N p+P +28¢
N f ) D 65.67
th, =Y| 2—ex
21a =Y P p+P +2f
N =1 ) 54.47
t,s =Y 2— exp[
P p+P +Zg
N K 63.21
pb - p )
t, =Y 2——€x
210 y[ P p{ p+P )+2K, D
N ppb t217 _ y Z_Bexp 3859
P p+P +2ppb
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N S, Loy Z—Bexp n(p—P) 52.19
#e P n(p+P)+ 2S,
N f r 7 63.74
{0 n(p—P)
t..=y 2—Cexp ——0 L
219 y( P EXp_n(er P)+ 2f J
t. =y 2—Sexp —— 2
220 y[ P P n(p+P)+2g
N Koo - P n(p— P) 54.68
L =Y Z_EeXp
n(p+P)+2K,,
B,(0) P oy P B.6No—P) 47.53
2 =N T p N B, (0)p+P)+ 2P
NP P 54.10
{,p NP(p—P)
t .=y 2—=
223 y( PeXp{NP(p+P)+ ZPD
N P 64.43
{,p N(p-P)
t., =y 2——expl —" 72
224 y[ PeXp{N(p+P)+ ZPD
N P 58.91
(. p n(p—P)
t..=y 2—exp —— 2
225 y( P EXp{n(m P)+ 2PD

In addition to above estimators a large number of estimators can also be generated from the

proposed  estimators  just by putting different values of  constantsw;'s,

K, K,, K, K, K, a, Band A.
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ABSTRACT: Fuzzy set theory is primarily concerned with how to quantitatively deal with
imprecision and uncertainty, and offers the decision maker another tool in addition to the
classical deterministic and probabilistic mathematical tools that are used in modeling real-world
problems. The present study investigates a fuzzy economic order quantity model for two storage
facility. The demand, holding cost, ordering cost, storage capacity of the own - warehouse are
taken as a trapezoidal fuzzy numbers. Graded Mean Representation is used to defuzzify the total
cost function and the results obtained by this method are compared with the help of a numerical
example. Sensitivity analysis is also carried out to explore the effect of changes in the values of
some of the system parameters. The proposed methodology is applicable to other inventory
models under uncertainty.

Keywords: Inventory, Two — warehouse system, Fuzzy Variable, Trapezoidal Fuzzy Number,
Graded mean representation method and K — release rule.

1. INTRODUCTION

In most of the inventory models that had been proposed in the early literature, the associated
costs are assumed to be precise, although the real-world inventory costs usually exist with
imprecise components. In this case, customer demand as one of the key parameters and source of
uncertainty have been most often treated by a probability distribution. However, the probability-
based approaches may not be sufficient enough to reflect all uncertainties that may arise in a
real-world inventory system. Modelers may face some difficulties while trying to build a valid

model of an inventory system, in which the related costs cannot be determined precisely. For
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example, costs may be dependent on some foreign monetary unit. In such a case, due to a change
in the exchange rates, the costs are often not known precisely.

Fuzzy set theory, originally introduced by Zadeh [1], provides a framework for
considering parameters that are vaguely or unclearly defined or whose values are imprecise or
determined based on subjective beliefs of individuals. Petrovic et al. [2] presented newsboy
problem assuming that demand and backorder cost are fuzzy numbers. Kaufamann and Gupta [3]
introduced to fuzzy arithmetic: theory and application. The application of fuzzy theory to
inventory problem has been proposed by Kacprzyk and Staniewski [4]. Roy and Maiti [5]
presented a fuzzy inventory model with constraint. Roy and Maiti [6] developed a fuzzy EOQ
model with demand-dependent unit cost under limited storage capacity. Ishii and Konno [7]
introduced fuzziness of shortage cost explicitly into classical inventory problem. Chen and Hsieh
[8] established a fuzzy economic production model to treat the inventory problem with all the
parameters and variables, which are fuzzy numbers. Hsieh [9] presented a fuzzy production
inventory model. Yao and Chiang [10] presented an inventory model without backorder with
fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance. Dutta et al.
[11] developed a single-period inventory model with fuzzy random variable demand. In that
study, they have applied graded mean integration representation method to find the optimum
order quantity. Chen and Chang [12] presented an optimization of fuzzy production inventory
model. In this study, they have used ‘Function Principle’ as arithmetical operations of fuzzy total
production inventory cost and also used the ‘Graded Mean Integration Representation method’ to
defuzzify the fuzzy total production and inventory cost. Mahata and Goswami [13] presented a

fuzzy inventory model for deteriorating items with the help of fuzzy numbers and so on.

Most of the classical inventory models discussed in the literature deals with the situation
of a single warehouse. Because of capacity limitation a single warehouse would not be always
sufficient. Additional warehouse are necessary to store excess items. Therefore due to the limited
capacity of the existing warehouse (Rented warehouse, RW) is acquired to keep excess items. In
practice, large stock attracts the management due to either an attractive price discount for bulk
purchase or the acquisition cost being higher than the holding cost in RW. The actual service to
the customer is done at OW only. Usually the holding cost is greater in RW than in OW. So in
order to reduce the holding cost. The stock of rented warehouse is transferred to the own
warehouse. Hartley [14] was discussed a model under the assumption that the cost of
transporting a unit from RW to OW is not significantly high. It was as the case with two levels of
storage. Sarma [15] extended the model with two levels of storage given by Hartley, by
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considering the transportation cost of a unit from rented warehouse to own warehouse.
Maurdeswar and Sathe [16] discussed this model by relaxing the condition on production rate
(finite production rate). Dave [17] considered it for finite and infinite replenishment, assuming
the cost of transportation depending on the quantity to be transported. Pakkala and Achary [18]
developed a model for deteriorating items with two warehouses. They extended it with bulk
release rule, after words, Gowsami and Chaudhari [19] formulated models for time dependent
demand. Kar et al. [20] suggested a two level inventory model for linear trend in demand. Yang
[21] considered a two-warehouse inventory models for deteriorating items with shortages under
inflation. Singh et al. [22] presented two-warehouse inventory model without shortage for
exponential demand rate and an optimum release rule. Jaggi and Verma [23] developed a
deterministic order level inventory model with two storage facilities. It has been observed in
supermarkets that the demand rate is usually influenced by the amount of stock level, that is, the
demand rate may go up or down with the on-hand stock level. Singh et al. [24] developed a
deterministic two-warehouse inventory model for deteriorating items with stock-dependent
demand and shortages. Neeraj et al. [25] developed three echelon supply chain inventory model
with two storage facility. Neeraj et al. [26] presented a two-warehouse inventory model with K-
release rule and learning effect. Neeraj et al. [27] considered effect of salvage value on a two-
warehouse inventory model. Recently, Kumar and Kumar [28] developed an inventory model
with stock dependent demand rate for deterioration items.

Here, in this paper the cost of transporting a unit is considered to be significant and the
effect of releasing the stocks of RW in n shipments with a bulk size of K units per shipment,
instead of withdrawing an arbitrary quantity, is assumed. Here, K is to be decided optimally and
is call this as K-release rule. This problem is to decide the optimal values of Q and C, which
minimize the sum of ordering, holding and transportation costs of the system. Here, we assumed
that the storage capacity of the own — warehouse, the holding cost in both warehouses and
ordering cost is fuzzy in nature. The associated total cost minimization is illustrated by numerical
example and sensitivity analysis is carried out by using MATHEMATICA-5.2 for the feasibility

and applicability of our model.
2. ASSUMPTIONS AND NOTATIONS:
The following assumptions are used to analyze this inventory model:

1. D is the constant demand rate.

2. W is the storage capacity of the OW.
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N g o~ W

10.

11.

12.

13.
14.
15.
16.

17.

18.

19.
20.

A is the fixed set — up cost per order.
C(Q) is the cost function.

Q is the highest inventory level.

H is the holding cost in OW.

F is the holding cost in RW.

O

is the fuzzy demand rate.

b~

is the fuzzy set — up cost per order.

T,

is the fuzzy holding cost in OW.

Th

is the fuzzy holding cost in RW.
C(Q) is the fuzzy cost function.

W is the fuzzy storage capacity of the OW.

The holding cost per unit in OW is higher than in RW.

The storage capacity of OW as W and that of RW is unlimited.

The transportation cost of K units from RW to OW is C: at a time, which is constant over
time.

The items of RW are transferred to OW in ‘n’ shipments of which K (K < W) units are
transported in each shipment.

Replenishment rate is infinite.

Lead-time is zero.

Consumption takes place only in OW.

3. FUZZY SETS, MEMBERSHIP FUNCTION, DEFUZZIFYING APPROACH AND
ARITHMETICAL OPERATIONS

3.1. Fuzzy Sets

A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is

characterized by a membership (characteristic) function which assigns to each object a grade of

membership ranging between zero and one. Let X={x} denote a space of objects. Then a fuzzy

set A in X is a set of ordered pairs:

A={Xp, )} xeX
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Where, p,(x) is termed “ the grade of the membership of x in A”. For simplicity, pu,(X) is a

number in the interval [0, 1], with the grades of unity and zero respectively, full membership and
non-membership in the fuzzy set. An object (point) P contained in a set (class) Q is an element

of Q(PcQ).
3.2. Membership Function

Membership Function

A

L R(x)
H/{ \ Data Range
k1 k2 k3

Fig. 1 Membership function for triangle number

At the outset it would be prudent introduce the concept of membership function. There
are different shapes of membership function in the inventory control such as the triangle and
trapezoid. The shapes of the triangle membership function and the trapezoid membership

function are shown in Fig. 1 and 2.

Membership Function

A
L(x) R(X)
h/ N Data Range
k1 k2 ks ka

Fig. 2 Membership function for trapezoid number
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A is assumed as a fuzzy number. If A is a triangle number, A can be represented as A =

[k, ks, k,] subject to the constraint 0 < k; < k, < k,. While A is a trapezoid fuzzy number, A =
[k;, k,, ks, k,] subject to the constraint that 0 < k; < k, < k, < k,. Membership function of the

triangle and trapezoid fuzzy numbers can be defined as follows:

0 X<k, X>K,
X—K,
n(x) = | LX) = k, <x<Kk,
kz_ 1
RO ==X 1 <x<k,
37 2
0 X <k,x>k,

x—k
L(x)=k kl k, <x<Kk,

2 1
,.X =
() =1y k, <x <K,
R() = =X <x<k,
K, —k,

where i, (x) is a membership function.

3.3. Graded Mean Integration Representation Method

In this study, generalized fuzzy number A was denoted in Fig. 6.1 as A =
(c.a,b,d,»,),,- When o, =1, we simplify the notation asA=(c, a,b,d) .. Chen and Hsieh
(1999) introduced the graded mean integration representation method of generalized fuzzy

number based on the integral value of graded mean h-level of generalized fuzzy number. Its

meaning is as follows:

Let L™" and R are inverse function of L and R respectively, then the graded mean h—

level value of generalized fuzzy number A=(c,a,b,d,W,) . is h (L‘l(h)+ R‘l(h)) /2 as Fig.

LR

3.

Then the graded mean integration representation of A is

P(A):th(L (A)2+ R (h))dh/wfhdh |

0
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where0< h <W, and 0<W, <1.

Wa

A

L(X) R(x)

n/ N\
(L2 (n)+R*(n)

2

v

oc L*h) a b R™*(h)d

Fig. 3 The graded mean h-level of generalized fuzzy number A = (c, a, b, d, Wa)Lr

In the present, the generalized trapezoidal fuzzy number has been used as the type of all
fuzzy parameters in our proposed inventory models. The very popular generalized trapezoidal

fuzzy number B is a special case of generalized fuzzy number and can be denoted as

B= (C, a,b,d ;WB) its’ corresponding graded mean integration representation is

- "eh(c+d —c—d+b)h/W,)dh /"¢
P(B)= | (c+d+(a CZ +b)h/Wy) /Ihdhzw
0

0
where a, b, c,d are any real numbers.

3.4. Properties of Second Function Principle

Chen (1985) proposed second function principal to be as the fuzzy arithmetical
operations between generalized trapezoidal fuzzy numbers. Because it does not change the type
of membership function of generalized fuzzy number after arithmetical operations. It reduces the
trouble and tediousness of operations. Furthermore, Chen already proved the properties of fuzzy
arithmetical operations under second function principle. Here some properties of the fuzzy

arithmetical operations have been described as follows:
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Suppose A =(c,,a,,b,d,) and A, =(c,,a,,b,,d,) are two generalized trapezoidal fuzzy
numbers. Then

1. The addition of A,and A, is A, ®A, = (¢, +¢,,a +a,,b +b,,d, +d,)

2. The multiplication of A, and A, is A, ® A, = (cc,,a,a,,bb,,dd,)

3. ~A, =(-d,,~b,,~a,,~C,) Then the subtraction of A, and A, is A,® A, =

(Cl_dZ’ai_bZ’bl_aQ’dl_CZ)

4. VA, = A, = iiii where c,,a,,b, and d, are all positive real
d2 b2 a2 C2
numbers. If ¢, a,b,d, ¢, a,,b, and d, are all non zero positive real numbers,

then the division of A and A, is A @ A, = [3—1%%%}
2 2 2 2

4. MODEL DEVELOPMENT

Initially the company ordered Q units of the item, out of which W units is kept in OW
and Z units are kept in RW, where Z = (Q - W). Initially, demand is satisfied using the stocks of
OW until the stock level drops to (W-K) units. At this stage, K units from RW are transported to
OW to meet further demand and this process is repeated ‘n’ times until the stocks of RW are
exhausted. The remaining (W-K) units in OW are used again at this stage. The inventory

situation in RW and OW are shown in the figure 1.

The inventory units in RW can be seen to be equal.

A =tik[ Z+(Z-K)+(Z=2K)+... (2= (n=1) K) | =t Z(n;l) (4.1)

Where tik = K/D, the time taken for the consumption of K units, since Z = (Q - W) and the
holding cost in RW is F(i), we have-

Z(n+1l) FK
2 D

(Q_W)(n;rl): FK(n+212)(Q—W) “2)

FA = Ftik
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The cost of transporting the units from RW to OW in ‘n’ shipments is given by

nC, =(Z/K)C, (4.3)

Since n=z/K

Inwventory

FRAS

nt

¥

BN

AT -FD

Titne

T srazmcy

Fig.1l: Graphical represemtatdon of two-storage inmventory model

When K units are drawn from RW in each shipment, more are carried in OW for a period of t «
and hence account for a holding cost of KH (i) tki / 2. Since there are ‘n’ such shipments and
taking into consideration, the initial K units of OW, the holding cost for these items is
(n+1)HKtik/2 = (n+1)HK?/2D (4.4)

A quantity of (W- K) units is kept unused in OW for a period of tiw - k) = (n+1)tik and an
average inventory during usage in OW is (W - K)/2 units for a period (t — t iw - k)) . Hence the

inventory holding cost in OW for these items is
H[K(W-K)(n+1)/D + (W - K)%/2D]. (4.5)

The fixed ordering cost per order is A. Then the total inventory cost for the system using (4.2) to

(4.5) becomes
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_ 2 _ _K)2
C:A+(n+1)|:K(Q W)+K H+HK(W K)+nC»[+—(W K)"H
2D 2D 2D 2D (4.6)
The average inventory cost
C(Q,K)=C/t
Butwehavet=Q/D,Z=Q-Wandn=Z/K=Q-W/K
Total average cost becomes
_ 2
C(@K)= 224 FQ (ke K (por)- WY (E g (WD W ey
Q 2 2 2Q oK 2Q 7)

Fuzzy Model: Due to uncertainly in the environment it is not easy to define all the parameters
precisely, accordingly we assume some of these parameters namelyD,F, H, A and W may

change within some limits. LetD=[d,,d,,d,,d,], F=[f,f, f,f,], H=[h.h, h,h,],
A=[a,a,a,a,], W=[w,w,,w,w,]are as trapezoidal fuzzy numbers. In this case, the total

fuzzy cost per unit time is given by

)=((Ae

A®
( ®(Qow)) )@QK)@(( V o\ ®(ﬁoH)))@2Q) (48)
By second function principal, one has

K(f-he) K(fa-m)wg Cr(Q-wa)dy (fL-he)wf
2 2Q QK 2Q

~ dg f
E(QK) = MMTQ_(u_m)WM

Q

2

m+£_(f3_h2)wg+K(fz—hs)_K(fs—hz)W3+Ct(Q—W3)dz+(f2—h3)W1
Q 2 2 2Q QK 2Q

2

wd3 130 h3)W2+K(f3—h2)_K(f2—h3)W2+Ct(Q—W2)d3+(f3—h2)W1
Q 2 2Q QK 20Q

agds  14Q K(fa—h) K(fi—m)w Cr(Q-wa)dg (fa—hi)wf

4+i—(f1—h4)v\q+ - + + 1
Q | 2 2 2Q QK 2Q
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Now we defuzzify the total cost per unit time, using graded mean integration representation
method, the result is

< fi —h fy - _wg)dy (f—hg)wé
P(C(Q,K))‘%H%dl+flTQ—(f4—f‘1)W4+K( 12 4)_K( 42Qh1)w4+ct(QQ|ZV4) 1, (B 2(;)%

4o 3202 12Q
Q 2

(f3—hp)wg +

K(f2-1) K(f3-hp)wg Cr(Q-vg)dy (f2—he)u
2 2Q QK 2Q

+2 == _(fo-3)wy + -

Q 2 2 2Q QK 2Q

2
agd3 | 13Q K(f3—h2) K(fz—hs)W2+Ct(Q—wz)d3+(f3hz)Wl}

Lol 8Q o K(fash) K(f-h)w  C(Q-w)ds +(fr@wf}

Q 2 2 2Q QK 2Q
(4.9)
The optimal values of Q and K, which minimizes (4.8), are obtained by solving
oP(C(Q,K oP(C(Q,K
( (Q )):Oand ( (Q )):O
oQ oK (4.10)
we get
- /2
2aych +4apdy +4agdg + 2a4d ~ K[( 4 ~hy)wg +(fg - )wg +(f2 g )y +(fy ~hg Jw | y
2C
—?t(W4d1+W3d2 +utdy +wndy )+ (T -y )wg? +(Fg —h ws? + (2 ~hg Jup? + (f gy
Q= fi+fp+f3+ 1y
(4.11)
and
C
o l(@-wa)+2(Q-vg) +2(Q-vg)+(Q- )]
K =
(fi-tg) .~ oy, (fa-hy)
| 2 +(f2—hg)+(f3—hp)+ 2 (4.12)
(-hg)w (fa-hg)wp (f3—hp)wg (fg—p)wy
2Q Q Q 2Q
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5. COST-REDUCTION DUE TO K-RELEASE RULE

The unit cost of transportation with K-release rule is Ct =Ct/K . Suppose the unit cost

of transportation is Ct" without bulk transportation. The bulk transportation will be economical

only if ¢ > Ct . Hence without K-release rule, the cost function becomes-

W2(F-H ~W)C; D
C(Q):%+?+%—W(F—H)+(Q+ 5.

Fuzzy Model: Due to uncertainly in the environment it is not easy to define all the parameters

precisely, accordingly we assume some of these parameters namelyD,F ,H, A and W may

change within some limits.

LetD=[d,,d,,d;,d,],F =[f, f,, f,, f,],H =[h,h,,h,h,], A=[a,a,,5,38,],
W =[w,,w,,w;,w, |are as trapezoidal fuzzy numbers. In this case, the total fuzzy cost per unit

time is given by
A
@(( (Q OV\”/)®C§)® Ij)QQj (5.2)

By second function principal, one has

Ct*(Q—W4)0|1+(f1‘h4)W12
Q 2Q

é(q)-[%"l+“§<f4m>vv4+

« 2
- f —h
ﬂJer_Q_(fs_hz)W?’JrCt (Q-w3)da +( 2 ~hg)w; '
Q 2 Q 2Q
* 2
8% 191y -hg)wy + (Q-vp)ds  (fa-h2)vg
Q 2 Q 2Q

a4d4+f4—Q_(fl_h4)Wl+Ct (Q W.L)d4+( 4—h)wj

Q 2 Q 2Q
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Now we defuzzify the total cost per unit time, using graded mean integration representation

method, the result is

4 f Cr(O-wy)dr  (fr—hg)wl
[agl+12Q(f4hl)W4+ t(QQW4) 1+( 2Q) 1}

2| =S+ == (fg—hp)wg 5 2

apdy  fQ +C?(Qw3)d2+(f2h3)‘”12}
Q 2

N

_I_

* 2
@+ f?’Q—(fZ‘hS)W2+Ct (Q-wa)d3 +(f3—h2)wl J

Q 2 Q 2Q (5.3)

* 2
adg 1Q o Ct (Q-w)dg (fa-tw)w
+[ 9 = (fo—hg)w + 5 + 20

dP(C(Q))

The optimal value of Q, which minimizes (5.1), is obtained by T =0

_—aldl —2agdy —2ag03 —agdg +Ct (W4d1 +2w3do +2wpd3 +wWydy )_]/2

fg - fi=h

v —ﬁ+f+f+f—4
) 2T (5.4)

The proposed K-released rule will be economical if

[C(Q)-Cc(Q.K)]>0

From equation (4.7) and (4.8) we see that-

[C(Q)—C(Q,K)]{l—vavMD(C?‘Ctl)‘g(F‘H)} (5.5)

and hence the inequality

[1—\’6\’][D(cf —C{)—%(F —H)} >0

* o\ K(F=H
)>—( ) (5.6)

:(C[ ~“ 2D
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must be satisfied.

Thus for a given situation, if the unit cost of transportation with bulk release rule satisfies the

inequality (5.6), K-release rule must be economical.
6. NUMERICAL EXAMPLE
Consider an inventory system with following parametric values:

Crisp Model: demand rate D = 2000, Ct = 0.5, F = 8.5, H = 7.5, W = 100, A = 150. With the
help of the above values, we find the optimal values of ordering quantity and total cost with and

without K- release which is given as:
With K — release rule: Q = 221.62 & C (Q, K) = 3456.46

And without K — release rule: Q = 216.68 & C (Q, K) = 3585.43

Fuzzy Model: D = [1900, 2000, 2000, 1900], F = [8.075, 8.5, 8.5, 8.075], H = [7.125, 7.5, 7.5,
7.125], A =[142.5, 150, 150, 142.5], W = [95, 100, 100, 95]. The optimal values of ordering

quantity and total cost with and without K- release which is given as:
With K —release rule: Q = 225.62 & C (Q, K) = 3458.46

And without K — release rule: Q = 210.68 & C (Q, K) = 3587.43

7. CONCLUSION

Two storage inventory models discussed in this paper and developed under the
assumption that the distribution of the items to the customers takes place at OW only. Because of
the distance factor, it is natural to consider the transportation cost associated with the transfer of
items from RW to OW. Further, the concept of K-release rule is more pragmatic, as holding
large inventory in RW is every expensive. With the help of numerical examples, it is clear that
the effect of fuzzy cannot be ignored. We can earn more profit by consider the effect of fuzzy on
ordering and holding cost in each lot. This model gives the direction to decision makers to take
account of fuzzy effect while taking decision and by taking account of this; he/she earn more

profit for the organization.

A future extension is to discuss model in more realistic situation by consider impreciseness in
different inventory related cost and taking different form of demand pattern likes as time

dependent, ram-type demand with inflation and permissible delay.
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Abstract

In this article, the a two-warehouse inventory model deals with deteriorating items, with
stock dependent demand rate and model affected by inflation under the pattern of time value of
money over a finite planning horizon. Shortages are allowed and partially backordered
depending on the waiting time for the next replenishment. The purpose of this model is to
minimize the total inventory cost by using Genetic algorithm. Also, a numerical example along
with sensitivity analysis is given to explore the model numerically. Some observations are

presented on the basis of sensitivity analysis.

Keywords: Two-warehouse, Genetic algorithm, partial backlogging, stock-dependent demand,
Inflation, Deterioration, shortages;
1. Introduction

In the busy markets like super market, municipality market etc. the storage area of items is
limited. When an attractive price discount for bulk purchase is available or the cost of procuring
goods is higher than the other inventory related cost or demand of items is very high or there are
some problems in frequent procurement, management decide to purchase a large amount of items
at a time. These items cannot be accommodated in the existing storehouse (viz. the Own
Warehouse, OW) located at busy market place. In the present senerio, suppliers proposed price
discounts for gathering purchases or if the goods are seasonal, the retailers possibly will buy the
superfluous goods that can be stored in own warehouse (OW). And rented warehouse (RW) is
used as a store over the certain capacity W1 of the own warehouse. Generally, the rented
warehouse may have a costly superior unit holding cost than the own warehouse due to surplus

cost of maintenance, material handling, etc. Hartely [1] was the original instigator to consider the
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impact of a two-warehouse model in inventory research and developed an inventory model with
a RW storage principle. Sarma [2] developed a two-warehouse model for deteriorating items
with an infinite replenishment rate and shortages. Sarma and Sastry [3] introduced a
deterministic inventory model with an infinite production rate, permissible shortage and two
levels of storage. Pakkala and Achary [4] considered a two-warehouse model for deteriorating
items with finite replenishment rate and shortages. Lee and Ma [5] compared an optimal
inventory policy for deteriorating items with two-warehouse and time-dependent demand. Yang
[6] produced a two-warehouse inventory model with constant deteriorating items, constant
demand rate and shortages under inflation. Yang [7] investigated the two-warehouse partial
backlogging inventory models for deteriorating items under inflation. Kumar et.al [8] developed
a Two-Warehouse inventory model without shortage for exponential demand rate and an
optimum release rule. Kumar et al. [9] produced a Deterministic Two-warehouse Inventory
Model for Deteriorating Items with Stock-dependent Demand and Shortages under the
conditions of permissible delay. [10] Analyzed two-warehouse partial backlogging inventory
models with three-parameter Weibull distribution deterioration under inflation. Sett et al. [11]
introduced a two warehouse inventory model with increasing demand and time varying
deterioration. Kumar et al. [12] developed Learning effect on an inventory model with two-level
storage and partial backlogging under inflation. Yang and Chang [13] perused a two-warehouse
partial backlogging inventory model for deteriorating items with permissible delay in payment
under inflation. Guchhaita et al. [14] investigated a two storage inventory model of a
deteriorating item with variable demand under partial credit period. Kumar and Singh [15]
discussed Effect of Salvage Value on a Two-Warehouse Inventory Model for Deteriorating ltems
with Stock-Dependent Demand Rate and Partial Backlogging. Deterioration performed a most
important contribution in lots of inventory systems. Normally, an inventory model understands
with non-deteriorating items and instantaneous deteriorating items. Major part of goods undergo,
waste or deterioration over time, examples being medicines, volatile liquids, blood banks, and so
on. Therefore, waste or deterioration of physical goods in stock is a more realistic factor and
there is a big need to consider inventory modeling. The primary effort to describe the optimal
ordering policies for such items was prepared by Ghare and Schrader [16]. They presented an
EOQ model for an exponentially decaying inventory. Philip [17] developed an inventory model
with three parameter Weibull distribution rate without considering shortages. Deb and Chaudhari
[18] derived inventory model with time-dependent deterioration rate. A meticulous assessment of
deteriorating inventory literatures is given by Goyal and Giri [19]. Liao [20] studied an EOQ

model with non- instantaneous receipt and exponential deteriorating item under two level trade
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credits. Chung [21] derived a complete proof on the solution procedure for non-instantaneous
deteriorating items with permissible delay in payment. Chang et al. [22] framed optimal
replenishment policies for non-instantaneous deteriorating items with stock-dependent demand.
Dye [23] investigated the effect of .Opreservation technology investment in a non-instantaneous
deteriorating inventory model.

Due to high inflation and consequent sharp decline in the purchasing power of money in the
developing countries like Brazil, Argentina, India, Bangladesh etc., the financial situation has
been completely changed and so it is not possible to ignore the effect of inflation and time value
of money any further. Following Buzacott [24] and Misra [25] have extended their approaches to
different inventory models by considering the time value of money, different inflation rtes for the
internal and external costs, finite replenishment, shortages, etc. Datta and Pal [26] considered the
effects of inflation and time value of money of an inventory model with a linear time-dependent
demand rate and shortages. Sarker and Pan [27] considered a finite replenishment model when
the shortage is allowed. Chung [28] developed an algorithm with finite replenishment and
infinite planning horizon. Tolgari et al. [29] studied an inventory model for imperfect items
under inflationary conditions by considering inspection errors. Guria et al. [30] formulated an
inventory policy for an item with inflation induced purchasing price, selling price and demand
with immediate part payment. In the case of perishable product, the retailer may need to backlog
demand to avoid costs due to deterioration. When the shortage occurs, some customers are
willing to wait for back order and others would turn to buy from other sellers. Inventory model
of deteriorating items with time proportional backlogging rate has been developed by Dye et al.
[31]. Wang [32] studied shortages and partial backlogging of items. Recently, Kumar and Kumar
[33] developed an inventory model with stock dependent demand rate for deterioration items.

In this study, we have developed an inventory model for non-instantaneous deteriorating
items with stock-dependent under the impact of inflation with genetic algorithm. Shortages are
allowed and partially backordered depending on the waiting time for the next replenishment. The
main objective of this work is minimizing the total inventory cost and finding the new optimal
interval and the optimal order quantity. The model shows the effect of the genetic algorithm due
to changes in various parameters by taking suitable numerical examples and sensitivity analysis.
2. Notations and Assumptions
2.1 Notations

The following notations are used throughout this paper:

A The ordering cost per order
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The ordering cost per item in RW

> The holding cost per item in OW, Cor > Cho

The deterioration cost per unit per unit cycle
The shortage cost for backlogged items per unit per unit cycle

The unit cost of lost sales per unit per cycle
P~ The purchasing cost per unit

S The selling price per unit, with S~ P
1 The life time of the items in OW

M2 The life time of the items in RW, #4 < #2
@  The deterioration rate in OW, 0<a <1

B The deterioration rate in Rw, 0= /£ <La>/p

T The length of the order cycle (decision variable)

H  The planning horizon

M The number of replenishment during planning horizon, m = H/T (decision variable)

W, The capacity of OW

W, The maximum inventory level in RW (decision variable)

S The maximum inventory level per cycle (decision variable)

BI' The maximum amount of shortage demand to be backlogged (decision variable)

nd rd th
Q The 27+3 M order size (Decision variable)

I The discount rate represents the time value of money.
T The inflation rate

R The net discount rate of inflation i.e. R=r—f

a (1) The inventory level in RW at time t

% (t) The inventory level in OW at time t

% (t) The negative inventory level at time t

T The total time that elapsed upto and including the jth replenishment cycle (j =1, 2, 3....)

t Length of period during which inventory level reaches to zero in RW

r

72



A Two-Warehouse Inventory Model
for Deteriorating Items with Stock Dependent Demand, Inflation and Genetic Algorithm

t;  The time at which the inventory level in OW in the j™ replenishment cycle drop to zero

Gg=1,2,....,m).

T -t

I "1 The time period when shortage occurs ( 1=12,.., m)

TG, The total cost for first replenishment cycle

TC  The total cost of the system over a finite planning horizon H

2.2 Assumptions:

To develop the mathematical model, the following assumptions are being made:

1. A single item is considered over the prescribed period of planning horizon.

2. There is no replacement or repair of deteriorated items takes place in a given cycle.

3. The lead time is zero.

4. Deterioration takes place after the life time of items. That is, during the fixed period, the
Product has no deterioration. After that, it will deteriorate with constant rate.

5. The replenishment takes place at an infinite rate.

6. The effects of inflation and time value of money are considered.

7. The demand rate (a + bgr(t)) is a stock dependent.

8. Shortages are allowed and partially backlogged. During the stock out period, the backlogging

rate is variable and is dependent on the length of the waiting time for the next replenishment. So

the Backlogging rate of negative inventory is, 1/ (1 + (T — t)), where 6 is backlogging parameter

0<d<1and(T—t)iswaiting time (tj <t<7), (=12, ..., m). The remaining fraction (1—

B(t)) is lost.

9. The OW has limited capacity of W1 units and the RW has unlimited capacity. For economic

reasons, the items of RW are consumed first and next the items of OW.

3. Formulation and solution of the model

Suppose with the purpose of the planning horizon H is divided into m equal parts of length T =

H/m. Hence the reorder times over the planning horizon H are T; =T (j=0, 1, 2, ... , m). When

the inventory is positive, demand rate is stock dependent, whereas for negative inventory, the

demand is partially backlogged. The period for which there is no-shortage in each interval [jT,

(J+1)T] is a fraction of the scheduling period T and is equal to KT (0 < k < 1). Shortages occur at

time tj= (k+j-1)T, (=1, 2, ..., m)and are build up until time t =T (j =1, 2, ..., m) before they

are backordered. This model is demonstrated in Figure-1. The first replenishment lot size of S is

replenished at To = 0. W1 units are kept in OW and the rest is stored in RW. The items of OW are

consumed only after consuming the goods kept in RW. In the RW, during the time interval [0,
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wz] , the inventory level is decreasing only due to demand rate and the inventory level is
dropping to zero owing to demand and deterioration during the time interval [uz, tr ]. In OW,
during the time interval [0, pa], there is no change in the inventory level. However, the inventory
W1 decreases during [u1,tr] due to deterioration only, but during [ tr, t1], the inventory is depleted
due to both demand and deterioration. By the time t1, both warehouses are empty. Finally, during
the interval [ti, T], shortages occur and accumulate until t = Ti1 before they are partially
backlogged.

Inventory Level

4

QS Ul\ It \ Zl

IN—
Wl : 2 = ‘”2 : P 5
tr | \ti=kH/m tr t,=(k+1)H/m r bk+m-

1)H"m
Bl O \ Time

Fig. 3.1. Graphical representation of the two warehouse inventory system

Based on the above explanation during the time interval [0, p2], the inventory level in
RW is decreasing only due to demand rate and the differential equation representing the

inventory status is given by

da, ()
With the condition gr (0) = W2, the solution of equation (3.1) is
q (t)= s (E +W2je_bt
b \b (3.2)
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In the second interval [u2, t ] in RW, the inventory level decreases due to demand and

deterioration. Thus, the differential equation below represents the inventory status

dg, (t)

t)=—(a+Dbq, (t
dt +ﬂqr() ( + qr()) M, ST, (3.3)
da, (t)
; t)+bg, (t)=-a
dt + 59, (t)+ba. (1) My STST (3.4)
With the condition gr (tr) = 0, we get the solution of equation (3.4) is
g ()= —2 4 &g et
p+b  p+b M sUsT (3.5)
Put t = 2 in equations (3.2) and (3.5) we get the value of W2 as
W2 — aﬂ {ebﬂz _1_2(1_e(ﬂ+b)(tr_#2)+bﬂ2 )} (36)
b(S+b) Yii
Putting the value of W2 in equation (3.2) we get
g, (1) =2[-1+e ]+ 2L _Jem —1—3(1—e<ﬂ*b)(‘r“2)*b“2) O<t<u, 3.7)
' b b(S+b) Y] '

In OW, during the interval [0, pi], there is no change in the inventory level and during [p1, tr]

the inventory W1 only decreases due to deterioration.

Therefore the rate of change in the inventory is given by

da, (1) 0
dt O<t<u (3.8)
da, (t)
——~+qa(,(t)=0

With the conditions go (0) = W1 and go (p1) = W1, the solutions of equations (3.8) and (3.9) are

q,(1)=W, O=t=u (3.10)

q, (1) =gt A=t (3.11)
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In the interval [t ti] in own warehouse, the inventory level decreases due to demand and

deterioration. Thus, the differential equation is

da, (t)
——~+aq, (t)=—(a+bq, (t
e ()=(a+ 0, (1) L <tst 512
With the condition qo (t1) = 0, we get the solution of equation (3.12) is
_ & (la)n
qo t)= € -1
(1) a+b( ) t, <t<t (3.13)
Put t = tr in equations (3.11) and (3.13) we get,
(Wlae‘”‘l + ae(“b)tl)i (Wlae“”“ +ael™Ph )2 | 4aab (Wle“”“ _ 8 gl @ j
. a+b a+b a+b
T 2(—aabj
a+b (3.14)

During the interval [t1, T], shortages occurred and the demand is partially backlogged. That is,

the inventory level at time t is governed by the following differential equation

dqs (t) _ —a
dt 1+6(T-t) t, <t<T (3.15)

With the condition gs (t1) = 0 the solution of equation (3.15) is

o
g, (t)=a(t, -t {1—5T+—t+t}
() (1 ) 2(1 ) tlﬁtST (316)
Therefore the maximum inventory level and maximum amount of shortage demand to be

backlogged during the first replenishment cycle are

a/é b, b (ﬂ+b)(t — U )+by
S=W, + o —1-—(1- e 3.17
! b(ﬂ + b) {e ﬁ( © ) ( )

_aH(1-k)
BI —T[Zm—cSH (1-k)] 619
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There are m cycles during the planning horizon. Since, inventory is assumed to start and end at
zero, an extra replenishment at Tm = His required to satisfy the backorders of the last cycle in the

planning horizon. Therefore, there are m + 1 replenishments in the entire planning horizon H.
The first replenishment lot size is S.

The 2, 3, ..., m" replenishment order size is:- Q=S+ Bl (3.19)
The last or (m + 1) replenishment lot size is BI.

Since replenishment in each cycle is done at the start of each cycle, the present value of ordering
cost during the first cycle is OC=A (3.20)

The holding cost for the RW during the first replenishment cycle is

H t
HC, =C,, {_[ q, (t)e™Mdt+ I q, (t)eR‘dt}
0

H

_pa Ry ~(R+b)p, _
_c. _ajl-e —(EJFWzJ e 1
b R b R+b

+C{L{em[ _ Brb J%(ﬂ_im 622
[+b R(S+b+R) p+b+R R

The holding cost for the OW during the first replenishment

(3.21)

Hy & 4
HC, =C,, D q, (te " dt+ I q, (t)e™dt +qu (t)em}
0 7y t

= Cho |:V\_F£1 (l_ eiR'u1 ) + \25/1%0‘:; (e_(O‘*R)lﬁ _ e—(om—R)tr )

(a+b)(t,—t,)
b g a+b ) e (€Y1 (3.23)
a+b R(a+b+R) a+b+R R

The deteriorating cost for RW during first replenishment cycle is

tl’
DC, =C, [ Bq, (t)e ™dt

H
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Lo BB Jen[__Brb ) e[ 1
2 p+b R(B+b+R) B+b+R R

The deteriorating cost for OW during first replenishment cycle is

(3.24)

t, t
DC, = CZO{J. g, (t)edt +J'q0 (t)e‘tht}
t

M r

_C.o W,e™ (e_pl(a+R)_e—(a+R)tr)+ a_ a+b
| a+R a+b R(a+b+R)

a . e(tl—t, )(a+b) 1
" b ¢ +b+R - E
a
. (3.25)

Total shortage cost during the first replenishment cycle is

.
SC =—C,[q, (t)e ™dt

4

—Ca| TIKH*»(, K mY) H(, o6H) 1(, &
= enm — |l —— |+ —|1-—— [+ =| 1+ =
R m 2 oH m 2m ) R R

(3.26)
The lost sale cost during the first replenishment cycle is
T 1
LC=C,[|1-————— |ae™dt
L 1+8(T-t)
—RKH —RKH
:%[e mote M (m(l— K)—lﬂ
m (3.27)
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Replenishment is done at t = 0 and T. The present value of purchasing cost PC during the first

_ —-RT
replenishment cycle is:- PC=pS+pe™ (BI)

_ p{w1 +b(;—ﬂ+b){e% _1_%(1_e<ﬁ+b><‘f‘”z>+b*‘2 )}+ ae% %(1— k){l+%( K —1)}} (3.28)

So, the total cost = Ordering cost + inventory holding cost in RW + inventory holding cost in
OW + deterioration cost in RW + deterioration cost in OW + shortage cost + lost sales cost +
purchasing cost. TC. =0C+HC, +HC,+DC, + DC,+SC +LC+PC

So, the present value of the total cost of the system over a finite planning horizon H is

m-1 ) 1_e7RH
TC(m,k)=>TC,e™ +Ae™ =TC, —

j=0 1_eT

L (3.29)

Where T = H/m and TCrderived by substituting equations (3.21) to (3.28) in equation (3.29).

On simplification we get
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-Ru, —(R+b) s, _

TC(m,k)=Ae™ +G| A+C, ae 1 +(E+W2j e -1
b R b R+b
[ Cva Cap e (B+b) + o R glisero) g
B+b  p+b)|R(B+b+R) p+b+R R

+ Cho |:V\_Fgl (1— g Ra ) + \Aﬂ(e_(a+R)ﬁl1 _ e—(a+R)tr ):|

a+R
W™ . (a+R) —(a+R),
+(Cp, +C2a){ﬁ(e m(atR) _ g )
KH
~RKH [t Jrt
+C,a _ 8 w4 2 E —— le®
R(a+b+R) a+b| a+b+R R

Cal "M ([KH*»(, K mY) H(, sH) 1(, &
—=lem —|l-——— |+ —|1-— [+ = |1+ =
R m 2 oH m 2m R R

—RKH

m —RKH —RKH
+£ ﬁ(l—K—ﬂJ—l P (ﬁ(l—K)—l]
R m HR R m
ap b b (B+b)(t, —415) +bye
W, g2 —1——(1-e"
”{ 1+b(ﬂ+b){ 5l )

ﬁ _ RH
+ae ™ %(1—K)(1—%(K—1)ﬂ WhereG:[lie%] (3.30)

4. Solution Procedure

The present value of total cost TC (m, k) is a function of two variables m and k where m is a

discrete variable and k is a continuous variable. For a given value of m, the necessary condition
for TC(m, k) to be minimized is dTC (m, k) / dk = 0 which gives

kj(“**’) “RAk —RH 2« —RHK
dTC(m, k) aHem aHe ™ aH ——= | H%
—— 2 =C,a - s —e™m —e " (k-1)
dk m(a+b+R) m(a+b+R) Rm m
—RHk —RHk 2 2 —RHk —RHk
A Hem —C45—? RI;' e m (1—k)——RHe m
mR m R m m

+ F{(l—k)%e_iH {1—%5(“ k)H (3.31)
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—RHk

2 2 m KH . 3 ~RHK
aTemi) o |2 Re ™ | gipjen ™ ||+ HRe T (1 k)
dk m (a+b+R) m
3143 -RHk 2( -RH _RH (3.32)
¢, R o (kg [+ p| 22 e g | 2P (—&H —1j
R m 2m m m

Furthermore, the equation (32) shows that TC (m, k) is convex with respect to k. So, for a given
positive integer m, the optimal value of k can be obtained from (31).

Algorithm

Step 1: Start with m = 1.

Step 2: Using (31) solve for k. Then substitute the solution obtained for (31) into (30) to compute
the total inventory cost.

Step 3: Increase m by 1 and repeat step 2.

Step 4: Repeat step 2 and step 3 until TC (m, k) increases. The value of m which corresponds to
the increase of TC for the first time is taken as the optimal value of m (denoted by m*) and the
corresponding k (denoted by k*) is the optimal value of k.

Using the optimal solution procedure described above, we can find the optimal order quantity

and maximum inventory levels to be

ap b b (B+b)(tr 22 ) +bp
W = H _1__ 1_ L — iy .
*“b(p+b) {e ﬂ( e )
S* = Wl + aﬂ {ebﬂz —1_R<1_e(ﬁ+b)(tr_:“2)+b,uz )}
b(S+b) i

Q* =W+ (;i y {ebﬂz —1-%(1_e<ﬂ+b><trﬂz>+bﬂz )}Jr—aHz(;; ) [2m-5H (1-k)]

a+b a+b a+b

2(—aabj
a+b

2
(W,ere +ae(”‘“’)tl)ir\/(Wloze“"1 +ae?t) 4 daab (Wleaﬂl _ 8 ey @ j
Where tr =

5. Numerical Examples
Example 1

Consider an inventory system with the following data: D = 100 units; W1 = 50 units; p = $4; s =
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$15; A = $150; Chr = $2; Cho = $1.2; C2 = $1.5; C3 = $5; C4 = $10; « = 0.8; 5 = 0.2; 6 = 0.008; 11
=5/12 year; u2 = 8/12 year; R = 0.2; H = 20 years.

6. Implementation of Genetic Algorithm

A genetic algorithm (GA) is a based on natural selection process to optimized tools that
minimizes the total costs in supply chain management. It is a evolutionary computation method
to solve a inventory problems. This is the more effective methods to find the optimized solution.
The genetic algorithm uses three main types of rules at each step to create the next generation

from the current population.

The basic steps to find the optimized solution:
Step 1. First one is Selection rules, In this we select the individuals, called parents that

contribute to the population at the next generation.

Step 2. Next one is Crossover rules, In this we perform crossover operation between two

parents to form children for the next generation.

Step 3. Last one is Mutation rules, In mutation we apply some random changes to

individual parents.
We will perform these steps till we will not get our optimized solution.

GA is not a method to find the exact solution of problem it only help to find the best or

optimized solutions.

Here we are implementing Genetic Algorihtm in Table 1: Optimal total cost with respect to m

and Table 2: Optimal total cost with respect to m when p1=0 and #t2=0

Table 1: Optimal total cost with respect to m

M k(m) tr ty T Q TC (m,
1 0.4485 8.9519 8.8552 19 3922 26496
2 0.4993 4.8536 4.6241 9.5 1482 11060
M k(m) tr ty T Q TC (m,
1 0.3582 1.9312 1.6842 2.76 452 5658

2 0.2995 0.8767 1.3582 2.653 409 5594
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Before Crossover:

01l

czl

M k(m) tr t1 T Q TC (m,
1 0.4485 8.9519 8.8552 19 3922 26496
2 0.4993 4.8536 46241 95 1482 11060
After Crossover
C1 C2
M k(m) tr t T Q TC (m,
1 0.4485 4.8536 4.6241 19 3922 26597
2 0.4993 8.9519 8.8552 95 1482 10090
Mutation
Before mutation M1 M2
M k(m) tr t1 T Q TC (m,
1 0.4485 4.8536 4.6241 19 3922 26597
After mutation M1 M2
M k(m) tr t1 T Q TC (m,
1 0.4485 4.6241 4.8536 19 3922 24384
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Before Crossover:

01l

czl

M k(m) tr t1 T Q TC (m, k)
1 0.3582 1.9312 1.6842 2.76 452 5658
2 0.2995 0.8767 1.3582 2.653 409 5594
After Crossover
C1 C2
M k(m) tr t1 T Q TC (m, k)
1 0.3582 0.8767 1.3582 2.76 452 5703
2 0.2995 1.9312 1.6842 2.653 409 5385
Mutation
Before mutation M1 M2
M k(m) tr ts T Q TC (m, k)
1 0.3582 0.8767 1.3582 2.76 452 5703
After mutation M1 M2
M k(m) tr t T Q TC (m, k)
1 0.3582 1.3582 0.8767 2.76 452 5492
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Table 2: Optimal total cost with respect to m when g1=0 and pr2=0

M k(m) tr t T Q TC (m, K)
1 0.4170 8.4331 8.6052 19 4022 27496
2 0.4593 4.4536 4.6281 9 1532 11865
M k(m) tr t T Q TC (m, K)
1 0.2782 0.8312 2.0042 1.763 612 6758
2 0.2098 0.5167 1.3249 1.053 456 6690

Before Crossover:

c1 l czl
M k(m) tr t1 T Q TC (m, k)
1 0.4170 8.4331 8.6052 19 4022 27496
2 0.4593 4.4536 4.6281 9 1532 11865
After Crossover C1 C2
M k(m) tr t T Q TC (m, k)
1 0.4170 4.4536 4.6281 19 4022 26585
2 0.4593 8.4331 8.6052 9 1532 10336
Mutation
Before mutation M1 M2
M k(m) tr t1 T Q TC (m, k)
1 0.4170 4.4536 4.6281 19 4022 26585
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After mutation M1 M2

M k(m) tr t T Q TC (m, k)
1 0.4170 4.6281 4.4536 19 4022 24348
Before Crossover:
c1 l czl
M k(m) tr t1 T Q TC (m, k)
1 0.2782 0.8312 2.0042 1.763 612 6758
2 0.2098 0.5167 1.3249 1.953 456 6690
After Crossover
C1 C2
M k(m) tr t T Q TC (m, k)
1 0.2782 0.5167 1.3249 1.763 612 6597
2 0.2098 0.8312 2.0042 1.953 456 6385
Mutation
Before mutation M1 M2
M k(m) tr t T Q TC (m, k)
1 0.2782 0.5167 1.3249 1.763 612 6597
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After mutation M1 M2
M k(m) tr t1 T Q TC (m, k)
1 0.2782 1.3249 0.5167 1.763 612 6376

Itis clearly visible the changes in total cost after the mutation methods and before crossover and
it are very effective cost.

Based on our numerical results, we obtain the following decision-making phenomena:

(i) The total cost is increasing while the time horizon H is increasing, the order quantity is
decreasing. Furthermore it is observed that when the time horizon increases, the number of
replenishment also increases. Therefore the ordering cost increases. In order to minimize the
total cost, the retailer should decrease the time horizon.

(i) When the total cost of the retailer and the order quantity are also increasing then the
deterioration rate  in RW increasing. When the deterioration rate will increase, the total cost of
the retailer will increase.

3. If backlogging parameter o is increased then the total cost and the order quantity will be
decreased. But there is no change in the number of replenishment. If the backlogging parameter
increases, then the ordering quantity will decrease.

4. When the inflation rate increases, the number of replenishment also increases. then the net
discount rate of inflation R is increasing, the optimal cost is decreasing and the order quantity is
also decreasing.

5. When the purchasing price p is increasing, the total optimal cost and the order quantity are
highly increasing. When the purchase price increases, the number of replenishment decreases.

Also, the increasing of purchasing price will increase the total cost of the retailer.

7. Conclusion:

In the present model, we have considered two warehouse inventory models depending on the
waiting time for the next replenishment. And shortages and partially backlogging are allowed. In
this model, demand rate considered as stock dependent with inflation and model affected by
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Genetic Algorithm. An algorithm is designed to find the optimum solution of the proposed
model. The model shows that the minimum time horizon will minimize the total cost of the
retailer. Furthermore, sensitivity analysis is carried out with respect to the key parameters and
helpful decision-making insights are obtained. The graphical illustrations are also given to
analyze the efficiency of the model clearly. The proposed model incorporates some practical
features that are likely to be linked with some kinds of inventory. additionally this model can be
adopted in the inventory control of retail business such as food industries, seasonable cloths,
domestic goods, automobile, electronic components etc. The proposed model can be extended in
several ways. Like incorporate some more realistic features, such as quantity discount, multi
item, trade credit strategy, etc., when the net discount rate of inflation and the backlogging rate
are increased then the optimal total cost will be decreased. Also, sensitivity analysis of the model

with respect to numerous system parameters has been carried out a number of decision-making.
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The main aim of the present book is to suggest some improved estimators using
auxiliary and attribute information in case of simple random sampling and stratified random
sampling and some inventory models related to capacity constraints.

This volume is a collection of six papers, written by five co-authors (listed in the
order of the papers): Dr. Rajesh Singh, Dr. Sachin Malik, Dr. Florentin Smarandache, Dr.
Neeraj Kumar, Mr. Sanjey Kumar & Pallavi Agarwal.

In the first chapter authors suggest an estimator using two auxiliary variables in stratified
random sampling for estimating population mean. In second chapter they proposed a family
of estimators for estimating population means using known value of some population
parameters. In Chapter third an almost unbiased estimator using known value of some
population parameter(s) with known population proportion of an auxiliary variable has been
used. In Chapter four authors investigates a fuzzy economic order quantity model for two
storage facility. The demand, holding cost, ordering cost, storage capacity of the own -
warehouse are taken as a trapezoidal fuzzy numbers and in Chapter five a two-warehouse
inventory model deals with deteriorating items, with stock dependent demand rate and model
affected by inflation under the pattern of time value of money over a finite planning horizon.
Shortages are allowed and partially backordered depending on the waiting time for the next
replenishment. The purpose of this model is to minimize the total inventory cost by using
Genetic algorithm.

This book will be helpful for the researchers and students who are working in the
field of sampling techniques and inventory control.




