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Abstract

Unlike other common transcendental functions such as log and sine, James 
Stirling's convergent series for the loggamma (“logΓ”) function suggests no 
obvious method by which to ascertain meaningful bounds on the error due to 
truncation after a particular number of terms. (“Convergent” refers to the fact 
that his original formula appeared to converge, but ultimately diverged [1].) 
As such, it remains an anathema to the interval arithmetic algorithms which 
underlie our confidence in its various numerical applications.

Certain error bounds do exist in the literature [1], but involve branches and 
procedurally generated rationals which defy straightforward implementation 
via interval arithmetic.

In order to ameliorate this situation, we derive error bounds on the loggamma
function which are readily amenable to such methods.
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Applications

The loggamma function finds broad use in number theory and statistics, for 
example, in approximating the gamma function, profiling the energy states in 
Einstein solids [3], and detecting buried signals in my open source 
Dyspoissometer noise analysis software [4]. It also enables the efficient 
computation of the sums of the logs of the first natural numbers, otherwise 
known as the log of a factorial:

∑
a=1

A

ln a≡ln(A!)≡logΓ (A+1)

Method

Stirling's convergent formula (hereinafter “the formula”) is the right side of 
the following identity [1]:

logΓ (x)≡(x−
1
2
) ln x−x+

1
2

ln 2π+∑
a=1

∞ 1
(2a)(x+a)

∑
b=1

a b|S (a ,b)|
(b+1)(b+2)

where: (x>0); |S(a, b)| are the magnitudes of the Stirling numbers of the first 
kind [5], e.g. |S(5, 2)|=50; and

(x+a)

means the product given by



∏
b=1

a

(x+b)

All of the terms on the right side of the formula except the nested infinite 
sum have been well studied and are amenable to interval arithmetic. 
Nevertheless, for the sake of completeness, we will examine each 
transcendental expression in detail.

First of all, the log operands must be multiplied or divided by a suitable 
whole power of 2 in order to scale them into the open-closed domain (1, 2]:

ln x≡ln2
n
x−n ln 2 ;n=⌊ log2

1
x
⌋+1;0< x≤1

or

ln x≡ln
x

2n
+n ln2 ;n=⌊ log2 x⌋; x>1

This results in an expression of involving (ln y), which is guaranteed to 
converge according to the Taylor series

ln y≡∑
a=1

∞ (−1)
a+1

( y−1)a

a

(This is true even if (y=2), even though the radius of convergence is one due 
to the singularity at (y=0).) This series involves alternating signs and terms 
with monotonically decreasing magnitude, which by the alternating series test
[6] is sufficient to guarantee that the magnitude of the error due to truncation 
after a given number of terms is less than the magnitude of the last term 
computed. (In fact it's also less than the postterminal term, but if one were to 
compute that term, then it might as well be added to the series, so in practice 
we compute the confidence interval from the last term added.) Furthermore if
the last term in the partial sum was positive, then that sum is an upper bound;
otherwise, it's a lower bound.

Of course, to have gotten here in the first place required the scaling by a 
power of 2, which as shown above may have produced a multiple of (ln 2), 



which is of course transcendental. It's tempting to dismiss this as a constant 
which one could look up in a table, but this paper concerns range reduction 
via interval arithmetic, so we need to perform explicit error analysis.

The easiest method is via the identity

ln 2≡η(1)

where η(x)  is the Dirichlet eta function [7]. That is:

ln 2≡∑
a=1

∞ (−1)
(a+1)

a

Note that this is identical to the Taylor series for the log at (y=2). Therefore, 
as with (ln y), the magnitude of the error is bounded by the last term 
computed, and the same alternating upper and lower bounds apply.

There is one other transcendental constant the range of which must be 
reduced according to interval arithmetic, namely, π. There are a wide variety 
of series that we might use, but we should choose the one with the most 
straightforward range reduction. One such approach is to scale the arctangent 
of one:

π≡4arctan1

≡4∑
a=0

∞ (−1)a

2a+1

One again we have an alternating series consisting of terms monotonically 
decreasing in magnitude. Therefore the magnitude of the error in this 
approximation is less than 4 times the magnitude of the term last computed, 
on account of the scaling factor. And once again, alternating upper and lower 
bounds apply.

Now, finally, we have the nested infinite series:

∑
a=1

∞ 1
(2a)(x+a)

∑
b=1

a b|S (a ,b)|
(b+1)(b+2)



According to [1], this series has been proven to converge for (x>0), but what 
is the maximum possible error magnitude due to truncation?

We begin by looking at the coefficients Cb of the |S(a, b)| terms, that is

Cb≡
b

(b+1)(b+2)
;b∈ℕ

which have no singularities in the domain in question (namely, the naturals). 
Now let's consider the ratio (Cb+1/Cb):

Cb+1

Cb

≡
(b+1)2

b (b+3)

For which (b=1) is the only value which makes the ratio equal to one; greater 
values of b result in monotonically nonincreasing values of thereof, in 
particular

(C1≡C2≡
1
6
)∧(Cb+2<Cb+1)

Now consider the |S(a, b)| terms themselves. First of all, by definition:

∑
b=1

a

|S (a ,b)|≡a!; a ,b∈ℕ

simply because, for each value of a, the sum above counts the number of 
possible permutations of a nodes in a graph. (The upper limit of the sum is 
(b=a) because all terms beyond that index are zero.) Furthermore |S(a, b)| is 
constrained by the generating function:

|S(a+1,b+1)|≡a|S(a , b+1)|+|S (a ,b)|

Now suppose that we define P(a, b) as a fraction of a probability density 
function:



P(a ,b)≡
|S (a ,b)|

a!

This is indeed a valid probability density function because its sum over b is 
one, for any given value of a.

Now, due to the generating function above, we know that P(a, b) is 
monotonically nonincreasing as a increases (as one moves down the table of  
|S(a, b)|, as presented in [5], with b fixed). That is:

P(a+1,b+1)≡
|S (a+1,b+1)|

(a+1)!

≡
a|S (a ,b+1)|+|S (a ,b)|

(a+1)!

≡
1

a+1
(
a|S(a ,b+1)|

a!
+
|S (a ,b)|

a!
)

≡
1

a+1
(a P(a ,b+1)+P (a ,b))

which is to say that probability flows monotonically to the right (toward 
greater b) as a increases. (This is purely a net flux argument based on a 
normalized linear combination of prior probabilities; probability does not 
decrease monotonically to the right. Indeed |S(a,b)| looks curiously like a 
Poisson distribution, which is a whole other investigation in itself: the 
Stirling numbers of the second kind relate to Poisson distributions via the 
Bell numbers [8]. But I digress.) Critically, this probability density is not 
replenished from the top or the left, as P(0, 0) is one and P(a, 0) and P(0, b) 
are both zero. Thus P(0, 0) only serves to seed P(1, 1) with one, after which 
recursion applies in both dimensions; whereas neither P(a, 0) nor P(0, b) 
supply any other P(a, b) with incoming flux.

Now we connect this flux argument with Cb: 

∑
b=1

a+1

C bP (a+1,b)≤∑
b=1

a

Cb P(a ,b)



because we already established that the coefficients Cb are monotonically 
nonincreasing and probability is flowing toward greater b while a increases. 
Therefore, from the definition of P(a, b),

a!∑
b=1

a+ 1

Cb|S(a+1,b)|≤(a+1)!∑
b=1

a

Cb|S (a ,b)|

which implies that

F(a)≡

∑
b=1

a+1

Cb|S (a+1,b)|

∑
b=1

a

Cb|S(a ,b)|

≤(a+1)

But the situation is complicated by the (1/(2a)) in the formula. Let

G(a)≡
1

2a
∑
b=1

a

Cb|S (a ,b)| .

Then:

G(a+1)

G(a)
≡

2a
2a+2

F(a)

G(a+1)

G(a)
≤

a
a+1

(a+1)

G(a+1)

G(a)
≤a

Therefore if we evaluate the H(A, x) given by

H (A , x)≡
1

(2 A)(x+A)
∑
b=1

A b|S (A ,b)|
(b+1)(b+2)

then the above constraint on the growth rate of G(a), and the definition of 
(x+a), jointly imply that



∑
a=A+1

∞ 1
(2a)(x+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

<H (A ,x ) ∑
a=A+1

∞ (a−1)!/(A−1)!

(x+a)!/(x+A)!

∑
a=A+1

∞ 1
(2a)(x+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

<H (A ,x ) ∑
a=A+1

∞ (a−1)!(x+A)!

(A−1)!(x+a)!

∑
a=A+1

∞ 1
(2a)(x+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

<H (A ,x )
(x+A)!

(A−1)!
∑

a=A+1

∞ (a−1)!

(x+a)!

Note that “≤” has changed to “<” because equality only applies to C1 and C2. 
According to [9], it turns out that

∑
a=1

A
(a−1)!

(x+a)!
≡

(x+1)(x+A+1)!−A!(x+1)!(x+A+1)

x (x+1)!(x+A+1)!

where the definition of (x!) is analytically extended to noninteger values via 
the identity presented in [10], namely

x !≡Γ (x+1)

but otherwise behaves in its usual manner. The expression second above 
further simplies to:

∑
a=1

A
a!

(x+a)!
≡

1
x
(

1
x!

−
A!

(x+A)!
)

But

∑
a=A+1

∞ a!

(x+a)!
≡∑

a=1

∞ a!

(x+a)!
−∑

a=1

A
a!

(x+a)!

so

∑
a=A+1

∞ a!

(x+a)!
≡

1
x

1
x!

−
1
x
(

1
x!

−
A!

(x+A )!
)

≡
A!

x (x+A)!



which implies that

(x+A)!

(A−1)!
∑

a=A+1

∞ (a−1)!
(x+a)!

≡
A
x

and thus

∑
a=A+1

∞ 1
(2a)(x+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

<H (A ,x )
A
x

which makes it appear as though the error magnitude actually increases with 
each computed term. However, expanding H(A, x), gives

∑
a=A+1

∞ 1
(2a)(x+a)

∑
b=1

a b|S (a ,b)|
(b+1)(b+2)

<
1

(2 x)(x+A)
∑
b=1

A b|S(A ,b)|
(b+1)(b+2)

which is in turn bound by

1
(2 x)(x+A)

∑
b=1

A b|S(A ,b)|
(b+1)(b+2)

<
(A−1)!

(2 x)A!

because the sum is bounded by ((A-1)!) according to the limit on the growth 
rate of G(a), while the denominator must be at least ((2x)(A!)) due to the 
expansion of (x+A). This reduces to

1
(2 x)(x+A)

∑
b=1

A b|S(A ,b)|
(b+1)(b+2)

<
1

2 Ax

which clearly approaches zero in the limit of infinite A, which is what we 
want from an error bound. However, for the sake of accuracy and efficiency, 
the error bound should be computed as

H (A , x)
A
x

using straightforward interval arithmetic because H(A, x) is just the last term 
computed.



Furthermore, considering that all of the terms in the original nested infinite 
sum are positive, their partial sum through (a=A) constitutes a lower bound to
which this error bound should be added in order to obtain an interval for the 
entire nested series.

For example, we can compute H(A, x) for the nested series of (x=7.6) to 
(A=3) terms:

H (A , x)≡
1

(2 A)(x+A)
∑
b=1

A b|S (A ,b)|
(b+1)(b+2)

which, according to [11] and upon substituting for A and x gives

H (A , x)=
1

(2∗3)(7.6+3)
∑
b=1

3 b|S (3,b)|
(b+1)(b+2)

H (3, 7.6)=
1475

7876224

which implies that

H (A , x)
A
x
=H (3,7.6)

3
7.6

=
1475

7876224
∗

3
7.6

=
7375

99765504
∈[0.0000739233, 0.0000739234]

which is an upper bound on the error induced by truncating the nested series 
after (a=3). The first 3 terms add up as follows:

∑
a=1

3
1

(2a)(x+a)
∑
b=1

a b|S (a ,b)|
(b+1)(b+2)

=
5

516
+

25
24768

+
1475

7876224

=
85745

7876224
∈[0.0108865618,0.0108865619]



which provides an interval for the nested infinite series for (x=7.6):

∑
a=1

∞ 1
(2a)(7.6+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

∈[0.0108865618,0.0108865619+0.0000739234 ]

∑
a=1

∞ 1
(2a)(7.6+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

∈[0.0108865618,0.0109604853]

But is this correct? Well, the value of the nested infinite series is exactly

∑
a=1

∞ 1
(2a)(7.6+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

=logΓ (7.6 )−log(7.6−
1
2
) ln 7.6+7.6−

1
2

ln 2π

which according to [12] is bounded by

∑
a=1

∞ 1
(2a)(7.6+a)

∑
b=1

a b|S(a ,b)|
(b+1)(b+2)

∈[0.0109586153,0.0109586154 ]

which, as expected, is entirely included by the interval second above.

Conclusion

By means of the foregoing techniques, Stirling's convergent formula for the 
loggamma function can be made amenable to interval arithmetic. The process
entails range reduction on 4 different series, namely ln x, ln 2, π, and the 
nested infinite series.

It would be tempting to combine all of them into a single expression bounded
by a unified error term. However, in practice, each series is likely to be 
computed in a separate process and in any event exhibits distinct asymptotic 
error behavior. So a reasonable practice is to evaluate them as separate 
intervals, then linearly combine them to finally obtain an interval for the 
loggamma.

Open Questions



Empirically, it appears that the loggamma function is more rapidly range 
reduced via a series of the form

logΓ (x+1)≡(x+
1
2
)(ln(x+

1
2
)−1)+

1
2

ln 2π−
1

24 (x+
1
2
)

+
7

2880(x+
1
2
)(x+

3
2
)(x+

5
2
)

+
1

144 (x+
1
2
)(x+

3
2
)(x+

5
2
)(x+

7
2
)

± ...

where (x>0) and which resulted from using

logΓ (A+1)≡ln (A!)≡∑
a=1

A

ln a≈ ∫
1
2

A+
1
2

ln t dt

for improved accuracy in determining the log of a factorial, as opposed to the
typical whole number integral bounds. (The integral above generated the log 
terms; the other terms emerged from iterative analysis of the residual error.) 
Curiously, the partial sum above, while reminiscent of the formula, exhibits 
strange coefficients with no clear consistency of sign, and a missing term in 
O(1/x2). Unfortunately, due to limited time and numerical precision, I have 
been unable to derive any further terms. However, the rate of convergence 
per arithmetic operation (essentially, the computational efficiency) of the 
series above appears to be superior to that of the formula. (I'm almost certain 
that the coefficients are correct as stated, but I'm unable to discern a pattern, 
let alone prove that it persists to infinity.) Perhaps someone can use these 
hints to discover a more efficient alternative, although I suspect that most of 
that improvement would occur due to the missing O(1/x2) term. The answer 
probably lies in expanding all the transcendentals and subtracting them from 
the formula in order to obtain a new series.
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