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Abstract 

The present paper presents the detail discussion on estimation of population mean in 

simple random sampling in the presence of non-response. Motivated by Gupta and Shabbir 

(2008), we have suggested the class of estimators of population mean using an auxiliary 

variable under non-response. A theoretical study is carried out using two-phase sampling 

scheme when the population mean of auxiliary variable is not known. An empirical study has 

also been done in the support of theoretical results. 

Keywords: Two-phase sampling, class of estimators, optimum estimator, non-response, 

numerical illustrations.   

1. Introduction

The auxiliary information is generally used to improve the efficiency of the 

estimators. Cochran (1940) proposed the ratio estimator for estimating the population mean 

whenever study variable is positively correlated with auxiliary variable. Contrary to the 

situation of ratio estimator, if the study and auxiliary variables are negatively correlated, 

Murthy (1964) suggested the product estimator to estimate the population mean. Hansen et al. 

(1953) proposed the difference estimator which was subsequently modified to provide the 

linear regression estimator for the population mean or total. Mohanty (1967) suggested an 

estimator by combining the ratio and regression methods for estimating the population 

parameters. In order to estimate the population mean or population total of the study 

character utilizing auxiliary information, several other authors including Srivastava  ( 1971), 

Reddy (1974), Ray and Sahai (1980), Srivenkataramana (1980), Srivastava and Jhajj (1981) 

and Singh and Kumar (2008, 2011) have proposed estimators which lead improvements over 

usual per unit estimator. 
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 It is observed that the non-response is a common problem in any type of survey. 

Hansen and Hurwitz (1946) were the first to contract the problem of non-response while 

conducting mail surveys. They suggested a technique, known as ‘sub-sampling of non-

respondents’, to deal with the problem of non-response and its adjustments. In fact they 

developed an unbiased estimator for population mean in the presence of non-response by 

dividing the population into two groups, viz. response group and non-response group. To 

avoid bias due to non-response, they suggested for taking a sub-sample of the non-responding 

units. 

Let us consider a population consists of N  units and a sample of size n   is selected from 

the population using simple random sampling without replacement (SRSWOR) scheme. Let 

us assume that Y and X  be the study and auxiliary variables with respective population 

means Y and X . Let us consider the situation in which study variable is subjected to non-

response and auxiliary variable is free from the non-response. It is observed that there are 

1n respondent and 2n non-respondent units in the sample of n  units for the study variable. 

Using the technique of sub sampling of non-respondents suggested by Hansen and Hurwitz 

(1946), we select a sub-sample of 2h non-respondent units from 2n units such 

that 1k,knh 22   and collect the information on sub-sample by personal interview method.  

The usual sample mean, ratio and regression estimators for estimating the population mean 

Y  under non-response are respectively represented by 

n

ynyn
y 2h21n1

* 
 (1.1) 
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where 
1n

y  and 
2h

y  are the means based on 1n respondent and 2h non-respondent units 

respectively. x  is the sample mean estimator of population mean X , based on sample of size 

n and b is the sample regression coefficient of Y on X . 

The variance and mean square errors (MSE) of the above estimators
*

y , 
*

R
y  and 

*

lr
y  

are respectively given by 
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where 2

YS  and 2

XS  are respectively the mean squares of Y and X  in the population.  

 YSC YY   and  XSC XX   are the coefficients of variation of Y and X  respectively. 

2

2YS  and 2W  are respectively the  mean square and non-response rate of the non-response 

group in the population for the study variable Y .   is the population correlation coefficient 

between Y and X . 

When the information on population mean of auxiliary variable is not available, one 

can use the two-phase sampling scheme in obtaining the improved estimator rather than the 

previous ones. Neyman (1938) was the first who gave concept of two-phase sampling in 

estimating the population parameters. Two-phase sampling is cost effective as well as easier. 

This sampling scheme is used to obtain the information about auxiliary variable cheaply from 
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a bigger sample at first phase and relatively small sample at the second stage. Sukhatme 

(1962) used two-phase sampling scheme to propose a general ratio-type estimator. Rao 

(1973) used two-phase sampling to stratification, non-response problems and investigative 

comparisons. Cochran (1977) supplied some basic information for two-phase sampling. 

Sahoo et al. (1993) provided regression approach in estimation by using two auxiliary 

variables for two-phase sampling. In the sequence of improving the efficiency of the 

estimators, Singh and Upadhyaya (1995) suggested a generalized estimator to estimate 

population mean using two auxiliary variables in two-phase sampling.  

In estimating the population mean Y , if X  is unknown, first, we obtain the estimate 

of it using two-phase sampling scheme and then estimate Y . Under two-phase sampling 

scheme, first we select a larger sample of 'n  units from the population of size N  with the 

help of SRSWOR scheme. Secondly, we select a small sample of size n  from 'n units. Let us 

again assume that the situation in which the non-response is observed on study variable only 

and auxiliary variable is free from the non-response. The usual ratio and regression estimators 

of population mean Y under two-phase sampling in the presence of non-response are 

respectively given by 

'
*

**

R
x

x

y
y             (1.7)  

and       xxbyy
'***

lr
           (1.8) 

where 
'

x  is the mean based on 'n units for the auxiliary variable.   

The MSE’s of the estimators 
**

R
y  and 

**

lr
y  are respectively represented by the  

following expressions 
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In the present paper, we have discussed the study of non-response of a general class of 

estimators using an auxiliary variable. We have suggested the class of estimators in two-

phase sampling when the population mean of auxiliary variable is unknown. The optimum 

property of the class is also discussed and it is compared to ratio and regression estimators 

under non-response. The theoretical study is also supported with the numerical illustrations. 

2. Suggested Class of Estimators 

Let us assume that the non-response is observed on the study variable and auxiliary 

variable provides complete response on the units. Motivated by Gupta and Shabbir (2008), 

we suggest a class of estimators of population mean Y under non-response as  

  

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t
          (2.1) 

where 1  and 2  are the constants and whose values are to be determined.   and  0 are 

either constants or functions of the known parameters. 

In order to obtain the bias and MSE of
*

t
y , we use the large sample approximation. Let 

us assume that 

 1

*
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Putting the values of 
*

y and x  form the above assumptions in the equation (2.1), we 

get 
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On taking expectation of the equation (2.2), the bias of 
*

t
y  to the first order of 

approximation is given by 
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Squaring both the sides of the equation (2.2) and taking expectation, we can obtain the 

MSE of 
*

t
y  to the first order of approximation as 
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In the sequence of obtaining the best estimator within the suggested class with respect 

to 1  and 2 , we obtain the optimum values of 1  and 2 . On differentiating  *

t
yMSE  

with respect to 1  and 2  and equating the derivatives to zero, we have 
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Solving the equations (2.4) and (2.5), we get 
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Substituting the values of  opt1  and  opt2  from equations (2.7) and (2.8) into the 

equation (2.4), the MSE of 
*

t
y  is given by the following expression. 
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3. Suggested Class in Two-Phase Sampling 

It is generally seen that the population mean of auxiliary variable, X  is not known. In 

this situation, we may use the two-phase sampling scheme to find out the estimate of X . 

Using two-phase sampling, we now suggest a class of estimators of population mean Y in the 

presence of non-response when X  is unknown, as 
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3.1 Bias and MSE of 
**

t
y  

By applying the large sample approximation, we can obtain the bias and mean square 

error of 
**

t
y . Let us assume that  

 1
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e1Yy  ,  2e1Xx   and  3

'
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such that       0321  eEeEeE , 
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Under the above assumption, the equation (3.1) gives 
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Taking expectation of both the sides of equation (3.2), we get the bias of 
**

t
y up to the 

first order of approximation as 
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The MSE of 
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t
y  up to the first order of approximation can be obtained by the 

following expression 
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3.2 Optimum Values of 1 and 2  

On differentiating  **

t
yMSE  with respect to 1 and 2  and equating the derivatives 

to zero, we get the normal equations 
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From equations (3.5) and (3.6), we get the optimum values of 1 and 2  as 
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On substituting the optimum values of 1 and 2 , the equation (3.4) provides 
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4. Empirical Study 

In the support of theoretical results, some numerical illustrations are given below:  

4.1 In this section, we have illustrated the relative efficiency of the estimators
*

R
y , 

*

lr
y  and 

 opty
*

t
 with respect to

*

y . For this purpose, we have considered the data used by Kadilar and 

Cingi (2006). The details of the population are given below: 

200N  ,  50n  , 500Y  , 25X  , 15CY  , 2CX  , 90.0  

5.1k  ,      2

Y

2

2Y S
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S   
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Table 1. Percentage Relative Efficiency (PRE) with respect to 
*

y  

2W  Estimator 

*

R
y  

*

lr
y   opty

*

t
 

0.1 126.74 432.88 788.38 

0.2 125.13 373.03 746.53 

0.3 123.70 331.43 722.93 

0.4 122.42 300.83 710.33 

0.5 121.28 277.37 704.87 

 

4.2 The present section presents the relative efficiency of the estimators
**

R
y , 

**

lr
y  

and  opty
**

t
 with respect to

*

y . There are two data sets which have been considered to 

illustrate the theoretical results. 

 

Data Set 1:  

The population considered by Srivastava (1993) is used to give the numerical 

interpretation of the present study. The population of seventy villages in a Tehsil of India 

along with their cultivated area (in acres) in 1981 is considered. The cultivated area (in acres) 

is taken as study variable and the population is assumed to be auxiliary variable. The 

population parameters are given below: 

70N  ,  40n '  ,     25n  ,  29.981Y  , 53.1755X  ,  66.613SY  , 

13.1406SX  ,  11.244S 2Y  ,  778.0 , 5.1k   
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Table 2:  Percentage Relative Efficiency with respect to 
*

y  

2W  Estimator 

*

R
y  

*

lr
y   opty

*

t
 

0.1 125.48657 153.56020 154.57983 

0.2 125.10358 152.57858 153.60848 

0.3 124.73193 151.63228 152.67552 

0.4 124.37111 150.71945 151.77449 

0.5 124.02068 149.83834 150.90579 

 

Data Set 2:  

Now, we have used another population considered by Khare and Sinha (2004). The 

data are based on the physical growth of upper-socio-economic group of 95 school children 

of Varanasi district under an ICMR study, Department of Paediatrics, Banaras Hindu 

University, India during 1983-84. The details are given below: 

95N  ,  70n '  ,   35n  ,  4968.19Y  , 8611.55X  , 0435.3SY  , 2735.3SX  ,  

3552.2S 2Y  , 8460.0 , 5.1k  . 
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Table 3:  Percentage Relative Efficiency with respect to 
*

y  

2W  Estimator 

*

R
y  

*

lr
y   opty

*

t
 

0.1 159.61889 217.83004 217.99278 

0.2 155.61224 207.27149 207.43596 

0.3 152.10325 198.44091 198.58540 

0.4 149.01829 190.94488 190.94488 

0.5 146.26158 184.51722 184.66554 

 

 

5. Conclusion  

The study of a general class of estimators of population mean under non-response has 

been presented. We have also suggested a class of estimators of population mean in the 

presence of non-response using two-phase sampling when population mean of auxiliary 

variable is not known. The optimum property of the suggested class has been discussed. We 

have compared the optimum estimator with some existing estimators through numerical 

study. The Tables 1, 2 and 3 represent the percentage relative efficiency of the optimum 

estimator of suggested class, linear regression estimator and ratio estimator with respect to 

sample mean estimator. In the above tables, we have observed that the percentage relative 

efficiency of the optimum estimator is higher than the linear regression and ratio estimators. 

It is also observed that the percentage relative efficiency decreases with increase in non-

response. 
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