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Abstract 

This paper proposes a family of estimators of population mean using information on several auxiliary 
variables and analyzes its properties in the presence of measurement errors. 
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errors. 

2000 MSC: 62E17 

1. INTRODUCTION

The discrepancies between the values exactly obtained on the variables under consideration for sampled 

units and the corresponding true values are termed as measurement errors.  In general, standard theory of 

survey sampling assumes that data collected through surveys are often assumed to be free of measurement 

or response errors.  In reality such a supposition does not hold true and the data may be contaminated with 

measurement errors due to various reasons; see, e.g., Cochran (1963) and Sukhatme et al (1984). 

One of the major sources of measurement errors in survey is the nature of variables.  This may happen in 

case of qualitative variables.  Simple examples of such variables are intelligence, preference, specific 

abilities, utility, aggressiveness, tastes, etc.  In many sample surveys it is recognized that errors of 

measurement can also arise from the person being interviewed, from the interviewer, from the supervisor or 

leader of a team of interviewers, and from the processor who transmits the information from the recorded 

interview on to the punched cards or tapes that will be analyzed, for instance, see Cochran (1968).  Another 

source of measurement error is when the variable is conceptually well defined but observations can be 

obtained on some closely related substitutes termed as proxies or surrogates.  Such a situation is 

encountered when one needs to measure the economic status or the level of education of individuals, see 

Salabh (1997) and Sud and Srivastava (2000).  In presence of measurement errors, inferences may be 

misleading, see Biemer et al (1991), Fuller (1995) and Manisha and Singh (2001). 

There  is today a great deal of research on measurement errors in surveys.  An attempt has been made to 

study the impact of measurement errors on a family of estimators of population mean using multiauxiliary 

information. 
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2. THE SUGGESTED FAMILY OF ESTIMATORS

Let Y be the study variate and its population mean µ0 to be estimated using information on p(>1) auxiliary 

variates X1, X2, ...,Xp.  Further, let the population mean row vector ( )pµµµµ ,,, 21~
=′  of the vector

( )pXXXX ,, 21~ =′ .  Assume that a simple random sample of size n is drawn from a population, on the 

study character Y and auxiliary characters X1, X2, ...,Xp.  For the sake of simplicity we assume that the 

population is infinite.  The recorded fallible measurements are given by 

.,,2,1
;,,2,1,

nj

piXx
EYy

ijijij

jjj

=

=+=

+=

η

where Yj and Xij are correct values of the characteristics Y and Xi (i=1,2,..., p; j=1,2,..., n). 

For the sake of simplicity in exposition, we assume that the error Ej's are stochastic with mean 'zero' and 

variance σ(0)
2 and uncorrelated with Yj's.  The errors ηij in xij are distributed independently of each other 

and of the Xij with mean 'zero' and variance σ(i)
2 (i=1,2,...,p).  Also Ej's and ηij's are uncorrelated although 

Yj's and Xij's are correlated. 

Define  
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With this background we suggest a family of estimators of µ0 as 

( )T
g uyg ,ˆ =µ

(2.1) 

where ( )Tuyg ,  is a function of puuuy ,,,, 21  such that
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and such that it satisfies the following conditions: 

1. The function ( )Tuyg ,  is continuous and bounded in Q.

2. The first and second order partial derivatives of the function ( )Tuyg ,  exist and are continuous and

bounded in Q. 

To obtain the mean squared error of gµ̂ , we expand the function ( )Tuyg ,  about the point (µ0,eT) in a

second order Taylor's series.  We get 
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where 

( ) ( ) ( ) ( )⋅<<−+=−+= 1
00 ;10,*,* geueuyy θθµθµ  

denote the p element column vector of first partial derivatives of g(⋅) and g(2)(⋅) denotes a p×p matrix of 

second partial derivatives of g(⋅) with respect to u. 

Noting that g(µ0,eT)= µ0, it can be shown that  

( ) )(ˆ 1
0

−+= nOE g µµ
 

(2.3) 

which follows that the bias of gµ̂  is of the order of n-1, and hence its contribution to the mean squared 

error of gµ̂  will be of the order of n-2. 

From (2.2), we have to terms of order n-1,  
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(2.4) 

where bT=(b1,b2,…,bp), bi,=ρ0iC0Ci,(i=1,2, …,p); 

Ci=σi/µi, C(i)= σi/µi, (i=1,2, …,p) and C0=σ0/µ0, 
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The ( )gˆMSE µ  at (2.4) is minimized for  
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1

0,
1

0
−−= µµ  

(2.5) 
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Thus the resulting minimum MSE of gµ̂  is given by 

( ) ( ) ( )[ ]bAbCCn T
g

12
0

2
0

2
0 /ˆmin.MSE −−+= µµ  

(2.6) 

Now we have established the following theorem. 

Theorem 2.1 = Up to terms of order n-1, 
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with equality holding if  

( )( ) bAg Te
1

0,
1

0
−−= µµ  

It is to be mentioned that the family of estimators gµ̂  at (2.1) is very large.  The following estimators: 
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etc. may be identified as particular members of the suggested family of estimators gµ̂ .  The MSE of these 

estimators can be obtained from (2.4). 

It is well known that 
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2
0

2
0 /V CCny += µ  

(2.8) 

It follows from (2.6) and (2.8) that the minimum variance of gµ̂  is no longer than conventional unbiased 

estimator y . 

On substituting σ(0)
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and ( )pi ,,2,1X and Y i =  are the sample means of the characteristics Y and Xi based on true 

measurements.  (Yj,Xij, i=1,2,…,p; j=1,2,…,n).  The family of estimators *ˆ gµ  at (2.10) is a generalized 

version of Srivastava (1971, 80). 

The MSE of *ˆ gµ  is minimized for 
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(2.11) 

Thus the resulting minimum MSE of *ˆ gµ  is given by  
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where A*=[a*ij] be a p×p matrix with a*ij = ρijCiCj and R stands for the multiple correlation coefficient of 

Y on X1,X2,…,Xp. 

From (2.6) and (2.12) the increase in minimum MSE ( )gµ̂  due to measurement errors is  

obtained as 
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This is due to the fact that the measurement errors introduce the variances fallible measurements of study 

variate Y and auxiliary variates Xi.  Hence there is a need to take the contribution of measurement errors 

into account. 

 

3.  BIASES AND MEAN SQUARE ERRORS OF SOME PARTICULAR ESTIMATORS IN THE 

PRESENCE OF MEASUREMENT ERRORS. 

To obtain the bias of the estimator gµ̂ , we further assume that the third partial derivatives of ( )Tuyg ,  
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where g(12)(µ0,eT) denotes the matrix of second partial derivatives of ( )Tuyg ,  at the point 
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and taking expectation we obtain the bias of the family of estimators gµ̂  to the first degree of 

approximation, 
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where bT=(b1,b2,…,bp) with bi=ρoiC0Ci; (i=1,2,…, p).  Thus we see that the bias of gµ̂  depends also upon 

the second order partial derivatives of the function on ( )Tuyg ,  at the point (µ0,eT), and hence will be 

different for different optimum estimators of the family. 

The biases and mean square errors of the estimators ( ) 18  to1;ˆ =ii
gµ  up to terms of order n-1 along with 

the values of g(1)(µ0,eT), g(2)(µ0,eT) and g(12)(µ0,eT) are given in the Table 3.1. 



Table 3.1 Biases and mean squared errors of various estimators of µ0 
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Table 3.1 Biases and mean squared errors of various estimators of µ0 

ESTIMATOR g(1)(µ0,eT) g(2)(µ0,eT) g(12)(µ0,eT) BIAS MSE 
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Table 3.1 Biases and mean squared errors of various estimators of µ0 

ESTIMATOR g(1)(µ0,eT) g(2)(µ0,eT) g(12)(µ0,eT) BIAS MSE 
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4. ESTIMATORS BASED ON ESTIMATED OPTIMUM 

It may be noted that the minimum MSE (2.6) is obtained only when the optimum values of constants 

involved in the estimator, which are functions of the unknown population parameters µ0, b and A, are 

known quite accurately. 

To use such estimators in practice, one has to use some guessed values of the parameters µ0, b and A, either 

through past experience or through a pilot sample survey.  Das and Tripathi (1978, sec.3) have illustrated 

that even if the values of the parameters used in the estimator are not exactly equal to their optimum values 

as given by  (2.5) but are close enough, the resulting estimator will be better than the conventional unbiased 

estimator y .  For further discussion on this issue, the reader is referred to Murthy (1967),  Reddy (1973), 

Srivenkataramana and Tracy (1984) and Sahai and Sahai (1985). 

On the other hand if the experimenter is unable to guess the values of population parameters due to lack of 

experience, it is advisable to replace the unknown population parameters by their consistent estimators.  Let 

φ̂  be a consistent estimator of φ=A-1b.  We then replace φ by φ̂  and also µ0 by y  if necessary, in the 

optimum gµ̂  resulting in the estimator ( )estgµ̂ , say, which will now be a function of y , u and φ.  Thus we 

define a family of estimators (based on estimated optimum values) of µ0 as 
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and 

( )
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With these conditions and following Srivastava and Jhajj (1983), it can be shown to the first degree of 

approximation that 
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Thus if the optimum values of constants involved in the estimator are replaced by their consistent 

estimators and conditions (4.2) hold true, the resulting estimator ( )estgµ̂  will have the same asymptotic 

mean square error, as that of optimum gµ̂ . Our work needs to be extended and future research will explore 

the computational aspects of the proposed algorithm. 
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