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Abstract 
This paper is speculated to propose a class of shrinkage estimators for shape parameter 

β in failure censored samples from two-parameter Weibull distribution when some ‘apriori’ or 
guessed  interval containing the parameter β  is available in addition to sample information and 
analyses their properties. Some estimators are generated from the proposed class and compared 
with the minimum mean squared error (MMSE) estimator. Numerical computations in terms of 
percent relative efficiency and absolute relative bias indicate that certain of these estimators 
substantially improve the MMSE estimator in some guessed interval of the parameter space of β , 
especially for censored samples with small sizes. Subsequently, a modified class of shrinkage 
estimators is proposed with its properties. 

Key Words & Phrases: 
  Two-parameter Weibull distribution, Shape parameter, Guessed interval, Shrinkage 

estimation technique, Absolute relative bias, Relative mean square error, Percent relative 
efficiency. 

2000 MSC: 62E17 

1. INTRODUCTION

Identical rudiments subjected to identical environmental conditions will fail at different and 

unpredictable times. The ‘time of failure’ or ‘life length’ of a component, measured from some specified 

time until it fails, is represented by the continuous random variable X. One distribution that has been used 

extensively in recent years to deal with such problems of reliability and life-testing is the Weibull 

distribution introduced by Weibull(1939), who proposed it in connection with his studies on strength of 

material. 

The Weibull distribution includes the exponential and the Rayleigh distributions as special cases. 

The use of the distribution in reliability and quality control work was advocated by many authors following 

Weibull(1951), Lieblin and Zelen(1956), Kao(1958,1959), Berrettoni(1964) and Mann(1968 A). 

Weibull(1951) showed that the distribution is useful in describing the ‘wear-out’ or fatigue failures. 
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Kao(1959) used it as a model for vacuum tube failures while Lieblin and Zelen(1956) used it as a model for 

ball bearing failures. Mann(1968 A) gives a variety of situations in which the distribution is used for other 

types of failure data. The distribution often becomes suitable where the conditions for “strict randomness” 

of the exponential distribution are not satisfied with the shape parameter β having a characteristic or 

predictable value depending upon the fundamental nature of the problem being considered. 

1.1 The Model  

 Let x1, x2, …, xn be a random sample of size n from a two-parameter Weibull distribution, 

probability density function of which is given by : 

( ) ( ){ }f x x x x; , exp / ; , ,α β βα α α ββ β β= − > > >− −1 0 0 0

(1.1) 

where α  being the characteristic life acts as a scale parameter and β  is the shape parameter.  

 The variable Y = ln x  follows an extreme value distribution, sometimes called the       log-Weibull 

distribution [e.g. White(1969)], cumulative distribution function of which is given by : 

( )F y
y u

b
y u b= − −

−













− ∞ < < ∞ − ∞ < < ∞ >1 0exp exp ; , ,  

(1.2) 

where b = 1/β  and  u = ln α  are respectively the scale and location parameters. 

The inferential procedures of the above model are quite complex. Mann(1967 A,B,   1968 B) 

suggested the generalised least squares estimator using the variances and covariances of the ordered 

observations for which tables are available up to n = 25 only. 

1.2 Classical Estimators 

 Suppose x1, x2, …, xm be the m smallest ordered observations in a sample of size n from Weibull 

distribution. Bain(1972) defined an unbiased estimator for b as  

b
y y

nKu
i m

m ni

m∧

=

−

= −
−











∑

( , )1

1

, 

(1.3) 

where  ( )K
n

v v
m n i m

i

m

( , )
= −



 −











=

−

∑1
1

1

E , 

(1.4) 
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and  v
y u

bi
i=

−
  are ordered  variables  from  the  extreme  value  distribution  with   u = 0   and b = 

1.The estimator bu

∧
 is found to have high relative efficiency for heavily censored cases. Contrary to this, 

the asymptotic relative efficiency of bu

∧
 is zero for complete samples. 

 Engelhardt and Bain(1973) suggested a general form of the estimator as 

  b
y y
nKg

i m

g m ni

m∧

=
= −

−










∑

( , , )1
,                   

(1.5) 

where g is a constant to be chosen so that the variance of b g

∧

is least and K(g,m,n) is an unbiasing constant. 

The statistic 
hb

b
g

∧

has been shown to follow approximately χ2 - distribution with h degrees of freedom, 

where h Var b bg= 





∧
2 . Therefore, we have  

  
[ ]

( )E
h

h jp
h

jp

jp

jp

β
β

∧ −





=
−







+1 2
2

2
2

Γ
Γ

( / )
/

  ;   j = 1,2   

 (1.6) 

where β
∧

=
−h
t

2
 is an unbiased estimator of  β  with  Var ( )

)4(
2ˆ

2

−
β

=β
h

 and t hb g=
∧

 having density 

( ) 0;
2

exp
22/

1)( 1)2/(
2/

>





 β−







 β

Γ
= − ttt

h
tf h

h

.              

 The MMSE estimator of β, among the class of estimators of the form C β
∧

 ; C being a constant for 

which the mean square error (MSE) of  C β
∧

 is minimum, is 

  β
∧

=
−

M

h
t

4
,                      

 (1.7) 

having absolute relative bias and relative mean squared error as  

ARB{ }β
∧

=
−M h
2

2
,                    

(1.8) 

and   RMSE
2

2
−

=






 ∧

hMβ ,                            

(1.9) 
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respectively. 

 

1.3 Shrinkage Technique of Estimation 

 Considerable amount of work dealing with shrinkage estimation methods for the parameters of the 

Weibull distribution has been done since 1970. An experimenter involved in life-testing experiments 

becomes quite familiar with failure data and hence may often develop knowledge about some parameters of 

the distribution. In the case of Weibull distribution, for example, knowledge on the shape parameter β can 

be utilised to develop improved inference for the other parameters. Thompson(1968 A,B) considered the 

problem of shrinking an unbiased estimator ξ  of the parameter ξ  either  towards a natural origin ξ
0

or 

towards an interval ( )ξ ξ
1 2
, and suggested the shrunken estimators h h( )ξ ξ+ −1

0
  and  

h h( )ξ
ξ ξ

+ −
+







1

2
1 2 , where 0 < h < 1 is a constant. The relevance of such type of shrunken 

estimators lies in the fact that, though perhaps they are biased, has smaller MSE than ξ  for  ξ  in some 

interval around ξ
0

 or 
ξ ξ

1 2

2

+







 , as the case may be. This type of shrinkage estimation of the Weibull 

parameters has been discussed by various authors, including Singh and Bhatkulikar(1978), Pandey(1983), 

Pandey and Upadhyay(1985,1986) and Singh and Shukla(2000). For example, Singh and 

Bhatkulikar(1978) suggested performing a significance test of the validity of the prior value of β (which 

they took as 1). Pandey(1983) also suggested a similar preliminary test shrunken estimator for β. 

 

In the present investigation, it is desired to estimate β  in the presence of a prior information 

available in the form of an interval ( )21, ββ  and the sample information contained in β̂ . Consequently, 

this article is an attempt in the direction of obtaining an efficient class of shrunken estimators for the scale 

parameter β . The properties of the suggested class of estimators are also discussed theoretically and 

empirically. The proposed class of shrunken estimators is furthermore modified with its properties. 

 

2. THE PROPOSED CLASS OF SHRINKAGE ESTIMATORS 

 Consider a class of estimators β
∗

( , )p q for β  in model (1.1) defined by 
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



























 +
+






 +

= ∧

∗
p

qp wq
β

ββββ
β

22
2121

),( ,                

(2.1) 

where p and q are real numbers such that p ≠ 0  and  q > 0, w is a stochastic variable which may in 

particular be a scalar, to be chosen such that MSE of β
∗

( , )p q  is minimum. 

 Assuming w a scalar and using result (1.6), the MSE of β
∗

( , )p q is given by  

MSE { } [ ]






Γ
+Γ









−
∆+−∆β=







β +

∗

)2/(
2)2/(

2
21

2
)1(2222

),( h
ph

h
wq

p
p

qp  

{ } [ ]






Γ
+Γ









−
∆−∆+ +

)2/(
2)2/(

2
21 )1(

h
ph

h
wq

p
p  

 (2.2) 

where  







β
β+β

=∆
2

21 . 

Minimising (2.2) with respect to w and replacing  β  by its unbiased estimator β
∧

, we get 

  )(

2

2
)1(

21

21

pw
q

w p

p

+

∧∧

∧







 +









−





 +

−
=

ββ

ββββ

.     

 (2.3) 

where  w p( ) =
( )[ ]

[ ]
h h p

h p

p−





+

+
2

2
2

2 2
Γ

Γ

/
( / )

,      

 (2.4) 

lies between 0 and 1, {i.e., 0 < w(p) ≤  1} provided gamma functions exist, i.e., )2/( hp −> . 

Substituting (2.3) in (2.1) yields a class of shrinkage estimators for β  in a more feasible form as  

  { })(1
2

)(2ˆ 21
),( pwqpw

t
h

qp −





 β+β

+





 −

=β .     

(2.5) 

 

2.1 Non-negativity 
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 Clearly, the proposed class of estimators (2.5) is the convex combination of ( ){ }th /2−   and  

( ){ }2/21 β+βq  and hence ),(
ˆ

qpβ  is always positive as ( ){ } 0/2 >− th  and  q > 0. 

 

2.2 Unbiasedness 

If w(p) = 1, the proposed class of shrinkage estimators ),(
ˆ

qpβ  turns into the unbiased estimator β , 

otherwise it is biased with 

  Bias { } [ ])(11),( pwqqp −−∆β=






β

∧

                   (2.6) 

and thus the absolute relative bias is given by 

  ARB { } [ ])(11),( pwqqp −−∆=






β

∧

.       

(2.7) 

 The condition for unbiasedness that  w(p) = 1, holds iff,  censored sample size m is indefinitely 

large, i.e., m → ∞. Moreover, if the proposed class of estimators q)(p,β̂  turns into β̂  then this case does not 

deal with the use of prior information. 

 A more realistic condition for unbiasedness without damaging the basic structure of q)(p,β̂  and 

utilises prior information intelligibly can be obtained by (2.7). The ARB of q)(p,β̂  is zero when 1−∆=q (or 

1−=∆ q ). 

 

2.3 Relative Mean Squared Error 

 The MSE of the suggested class of shrinkage estimators is derived as  

   MSE { } { } { }









−
+−−∆β=







β

∧

)4(
)(2)(11

2
222

),( h
pwpwqqp ,               (2.8)  

and relative mean square error is therefore given by  

  RMSE { } { } { }
)4(

)(2)(11
2

22
),( −

+−−∆=






β

∧

h
pwpwqqp .               

(2.9) 

It is obvious from (2.9) that RMSE{ }),(
ˆ

qpβ  is minimum when 1−∆=q (or 1−=∆ q ). 

 

2.4 Selection of the Scalar ‘p’ 
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The convex nature of the proposed statistic and the condition that gamma functions contained in 

w(p) exist, provides the criterion of choosing the scalar p. Therefore, the acceptable range of value of  p is 

given by  

 { })2/(and1)(0| hppwp −>≤< ,  ∀ n, m.             (2.10) 

 

2.5 Selection of the Scalar ‘q’ 

It is pointed out that at 1−∆=q , the proposed class of estimators is not only unbiased but renders 

maximum gain in efficiency, which is a remarkable property of the proposed class of estimators. Thus 

obtaining significant gain in efficiency as well as proportionately small magnitude of bias for fixed ∆  or 

for fixed ( )ββ1  and ( )ββ2 , one should choose q in the vicinity of  1−∆=q . It is interesting to note 

that if one selects smaller values of  q  then higher values of ∆  leads to a large gain in efficiency (along 

with appreciable smaller magnitude of bias) and vice-versa. This implies that for smaller values of q, the 

proposed class of estimators allows to choose the guessed interval much wider, i.e., even if the 

experimenter is less experienced the risk of estimation using the proposed class of estimators is not higher. 

This is legitimate for all values of  p. 

  

2.3 Estimation of Average Departure: A Practical Way of selecting q 

 The quantity ( ){ }ββ+β=∆ 221 , represents the average 

departure of natural origins 1β  and 2β  from the true value 

β . But in practical situations it is hardly possible to get 

an idea about  ∆ . Consequently, an unbiased estimator of  

∆  is proposed, namely 

  
( )

[ ]1)2/(
)2/(

4
ˆ 21

+Γ
Γ







 β+β

=∆
h

ht
.               

(2.12) 

 In section 2.5 it is investigated that, if  q = −∆ 1, the 

suggested class of estimators yields favourable results. 

Keeping in view of this concept, one may select  q as  

  ( )
[ ]

)2/(
1)2/(4ˆ

21

1

h
h

t
q

Γ
+Γ









β+β
=∆= − .                       (2.13) 

Here this is fit for being quoted that this is the 

criterion of selecting  q  numerically and one should 
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carefully notice that this doesn’t mean q is replaced by 

(2.13) in ),(
ˆ

qpβ .  

  

3.  COMPARISION OF ESTIMATORS AND EMPIRICAL STUDY  

 James and Stein(1961) reported that minimum MSE is a highly desirable property and it is 

therefore used as a criterion to compare different estimators with each other. The condition under which the 

proposed class of estimators is more efficient than the MMSE estimator is given below. 

 MSE{ }β
∧

( , )p q does not exceed the MSE of MMSE estimator M

∧

β  if - 

  ( ) ( ) 11 11 −− +<∆<− qGqG                  

(3.1) 

where  
{ }

{ }
G

w p h
w p
h

=
− −

−
−













2
1

1
2 42

2

( ) ( )
( )

( )
. 

Besides minimum MSE criterion, minimum bias is also important and therefore should be 

incorporated under study. Thus, ARB{ }),(
ˆ

qpβ is less than ARB{ }Mβ̂ if - 

  ( ) ( )
1

)(

1

)( 1)2(
21

1)2(
21 −−













−−
+<∆<













−−
− q

wh
q

wh pp

                          

(3.2) 

 

3.1 The Best Range of Dominance of  ∆ 

 The intersection of the ranges of  ∆ in (3.1) and (3.2) gives the best range of dominance of ∆ 

denoted by Best∆ . In this range, the proposed class of estimators is not only less biased than the MMSE 

estimator but is more efficient than that. The four possible cases in this regard are: 

(i) if  [ ] ( )G
pwh

−<








−−
− 1

)(1)2(
21  and [ ] ( )G

pwh
+<









−−
+ 1

)(1)2(
21  then 

Best∆ = { } [ ] 
















−−
+− −− 11

)(1)2(
21,1 q

pwh
qG  

(ii) if [ ] ( )G
pwh

−<








−−
− 1

)(1)2(
21  and ( ) [ ]








−−
+<+

)(1)2(
211

pwh
G then 

Best∆  is the same as defined in (3.1). 
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(iii) if  ( ) [ ]







−−
−<−

)(1)2(
211

pwh
G  and ( ) [ ]








−−
+<+

)(1)2(
211

pwh
G  then 

Best∆ = [ ] { } 







+









−−
− −− 11 1,

)(1)2(
21 qGq

pwh
 

(iv) if ( ) [ ]







−−
−<−

)(1)2(
211

pwh
G and [ ] ( )G

pwh
+<









−−
+ 1

)(1)2(
21  then  

Best∆  is the same as defined in (3.2). 

 

3.2 Percent Relative Efficiency 

To elucidate the performance of the proposed class of estimators β
∧

( , )p q  with the MMSE 

estimator M

∧

β , the Percent Relative Efficiencies (PREs) of ),( qp

∧

β  with respect to M

∧

β  have been computed 

by the formula: 

  PRE
( ) { } { }[ ] 100

)(2)4()(11)2(
)4(2, 222),( ×

+−−−∆−
−

=






 ∧∧

pwhpwqh
h

Mqp ββ    

(3.5) The PREs of β
∧

( , )p q with respect to β
M

 and ARBs of β
∧

( , )p q for fixed n = 20 and different values 

of p, q, m ( )ββ=∆ 11  and ( )ββ=∆ 22  or ∆  are compiled in Table 3.1 with corresponding values of  h 

[which can be had from Engelhardt(1975)] and w(p). The first column in every m corresponds to PREs and 

the second one corresponds to ARBs of  β
∧

( , )p q . The last two rows of each set of  q includes the range of 

dominance of  ∆  and  Best∆ . The ARBs of β
M

  has also been given at the end of each set of table.  
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Table 3.1 

PREs of proposed estimator β
∧

( , )p q  with respect to MMSE estimator m

∧

β  and ARBs of β
∧

( , )p q  

p  = -2 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.1750 0.3970 0.5369 0.6305 
 0.1 0.2 0.15 35.33 0.7941 40.20 0.5804 45.57 0.4457 50.60 0.3556 
 0.4 0.6 0.50 42.62 0.7219 47.90 0.5276 53.49 0.4052 58.53 0.3233 
 0.4 1.6 1.00 57.66 0.6188 63.18 0.4522 68.54 0.3473 72.99 0.2771 
 1.0 2.0 1.50 82.21 0.5156 86.53 0.3769 89.95 0.2894 92.27 0.2309 
0.25 1.6 2.4 2.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 

 2.0 3.0 2.50 215.89 0.3094 187.20 0.2261 164.84 0.1737 149.86 0.1386 
 2.5 3.5 3.00 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
 3.5 3.5 3.50 1154.45 0.1031 447.47 0.0754 282.42 0.0579 217.84 0.0462 
 3.8 4.2 4.00 2528.52 0.0000 541.60 0.0000 310.07 0.0000 230.93 0.0000 

 Range of ∆→ (1.74, 
6.25) 

(2.90, 
5.09) 

(1.70, 
6.29) 

(3.02, 
4.97) 

(1.68, 
6.31) 

(3.08, 
4.91) 

(1.66, 
6.33) 

(3.11, 
4.88) 

 ∆Best → (2.90, 5.09) (3.02, 4.97) (3.08, 4.91) (3.11, 4.88) 
 0.1 0.2 0.15 38.21 0.7632 43.26 0.5577 48.75 0.4284 53.81 0.3418 
 0.4 0.6 0.50 57.66 0.6188 63.18 0.4522 68.54 0.3473 72.99 0.2771 
 0.4 1.6 1.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 
 1.0 2.0 1.50 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
0.50 1.6 2.4 2.00 2528.52 0.0000 541.60 0.0000 310.07 0.0000 230.93 0.0000 

 2.0 3.0 2.50 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
 2.5 3.5 3.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 
 3.5 3.5 3.50 57.66 0.6188 63.18 0.4522 68.54 0.3473 72.99 0.2771 
 3.8 4.2 4.00 32.76 0.8250 37.45 0.6030 42.68 0.4631 47.65 0.3695 

 Range of ∆→ (0.87, 
3.13) 

(1.45, 
2.55) 

(0.85, 
3.15) 

(1.51, 
2.49) 

(0.84, 
3.16) 

(1.54, 
2.46) 

(0.83, 
3.17) 

(1.56, 
2.44) 

 ∆Best → (1.45, 2.55) (1.51, 2.49) (1.54, 2.46) (1.56, 2.44) 
 0.1 0.2 0.15 41.45 0.7322 46.67 0.5351 52.25 0.4110 57.30 0.3279 
 0.4 0.6 0.50 82.21 0.5156 86.53 0.3769 89.95 0.2894 92.27 0.2309 
 0.4 1.6 1.00 438.90 0.2063 294.12 0.1507 222.82 0.1158 186.17 0.0924 
 1.0 2.0 1.50 1154.45 0.1031 447.47 0.0754 282.42 0.0579 217.84 0.0462 
0.75 1.6 2.4 2.00 126.15 0.4125 124.06 0.3015 120.83 0.2315 117.72 0.1847 

 2.0 3.0 2.50 42.62 0.7219 47.90 0.5276 53.49 0.4052 58.53 0.3233 
 2.5 3.5 3.00 21.07 1.0313 24.58 0.7537 28.74 0.5789 32.94 0.4619 
 3.5 3.5 3.50 12.51 1.3407 14.82 0.9798 17.67 0.7525 20.70 0.6004 
 3.8 4.2 4.00 8.27 1.6501 9.87 1.2059 11.90 0.9262 14.09 0.7390 

 Range of ∆→ (0.58, 
2.09) 

(0.97, 
1.70) 

(0.57, 
2.10) 

(1.01, 
1.66) 

(0.56, 
2.11) 

(1.03, 
1.64) 

(0.56, 
2.11) 

(1.04, 
1.63) 

 ∆Best → (0.97, 1.70) (1.01, 1.66) (1.03, 1.64) (1.04, 1.63) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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Table 3.1 continued … 

p  = -1 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.7739 0.8537 0.8939 0.9180 
 0.1 0.2 0.15 101.69 0.2176 101.09 0.1408 100.79 0.1022 100.61 0.0789 
 0.4 0.6 0.50 105.60 0.1978 103.55 0.1280 102.55 0.0929 101.96 0.0718 
 0.4 1.6 1.00 110.98 0.1696 106.84 0.1097 104.87 0.0796 103.73 0.0615 
 1.0 2.0 1.50 115.99 0.1413 109.79 0.0914 106.91 0.0663 105.27 0.0513 
0.25 1.6 2.4 2.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 

 2.0 3.0 2.50 124.13 0.0848 114.38 0.0549 110.04 0.0398 107.59 0.0308 
 2.5 3.5 3.00 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
 3.5 3.5 3.50 128.65 0.0283 116.82 0.0183 111.67 0.0133 108.79 0.0103 
 3.8 4.2 4.00 129.23 0.0000 117.13 0.0000 111.87 0.0000 108.94 0.0000 

 Range of ∆→ (0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

(0.00, 
8.00) 

 ∆Best → (0.00, 8.00) (0.00, 8.00) (0.00, 8.00) (0.00, 8.00) 
 0.1 0.2 0.15 103.38 0.2091 102.16 0.1353 101.56 0.0982 101.20 0.0759 
 0.4 0.6 0.50 110.98 0.1696 106.84 0.1097 104.87 0.0796 103.73 0.0615 
 0.4 1.6 1.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 
 1.0 2.0 1.50 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
0.50 1.6 2.4 2.00 129.23 0.0000 117.13 0.0000 111.87 0.0000 108.94 0.0000 

 2.0 3.0 2.50 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
 2.5 3.5 3.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 
 3.5 3.5 3.50 110.98 0.1696 106.84 0.1097 104.87 0.0796 103.73 0.0615 
 3.8 4.2 4.00 100.00 0.2261 100.00 0.1463 100.00 0.1061 100.00 0.0820 

 Range of ∆→ (0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

(0.00, 
4.00) 

 ∆Best → (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) (0.00, 4.00) 
 0.1 0.2 0.15 105.05 0.2006 103.21 0.1298 102.31 0.0942 101.77 0.0728 
 0.4 0.6 0.50 115.99 0.1413 109.79 0.0914 106.91 0.0663 105.27 0.0513 
 0.4 1.6 1.00 126.91 0.0565 115.89 0.0366 111.05 0.0265 108.34 0.0205 
 1.0 2.0 1.50 128.65 0.0283 116.82 0.0183 111.67 0.0133 108.79 0.0103 
0.75 1.6 2.4 2.00 120.43 0.1130 112.32 0.0731 108.65 0.0531 106.56 0.0410 

 2.0 3.0 2.50 105.60 0.1978 103.55 0.1280 102.55 0.0929 101.96 0.0718 
 2.5 3.5 3.00 88.71 0.2826 92.40 0.1828 94.37 0.1327 95.59 0.1025 
 3.5 3.5 3.50 72.93 0.3674 80.65 0.2377 85.17 0.1725 88.13 0.1333 
 3.8 4.2 4.00 59.57 0.4521 69.50 0.2925 75.85 0.2123 80.24 0.1640 

 Range of ∆→ (0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

(0.00, 
2.67) 

 ∆Best → (0.00, 2.67) (0.00, 2.67) (0.00, 2.67) (0.00, 2.67) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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Table 3.1 continued … 

p  = 1 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.6888 0.7737 0.8251 0.8779 
 0.1 0.2 0.15 99.00 0.2996 97.51 0.2178 97.21 0.1684 99.20 0.1175 
 0.4 0.6 0.50 106.26 0.2723 103.17 0.1980 101.80 0.1531 102.17 0.1069 
 0.4 1.6 1.00 117.09 0.2334 111.34 0.1697 108.25 0.1312 106.18 0.0916 
 1.0 2.0 1.50 128.15 0.1945 119.34 0.1415 114.39 0.1093 109.82 0.0763 
0.25 1.6 2.4 2.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 

 2.0 3.0 2.50 148.56 0.1167 133.27 0.0849 124.67 0.0656 115.60 0.0458 
 2.5 3.5 3.00 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
 3.5 3.5 3.50 161.41 0.0389 141.52 0.0283 130.54 0.0219 118.72 0.0153 
 3.8 4.2 4.00 163.17 0.0000 142.63 0.0000 131.31 0.0000 119.12 0.0000 

 Range of ∆→ (0.20, 
7.80) 

(0.00, 
8.00) 

(0.30, 
7.70) 

(0.00, 
8.00) 

(0.36, 
7.64) 

(0.00, 
8.00) 

(0.24, 
7.76) 

(0.00, 
8.00) 

  (0.20, 7.80) (0.30, 7.70) (0.36, 7.64) (0.24, 7.76) 
 0.1 0.2 0.15 102.07 0.2879 99.92 0.2093 99.18 0.1618 100.49 0.1130 
 0.4 0.6 0.50 117.09 0.2334 111.34 0.1697 108.25 0.1312 106.18 0.0916 
 0.4 1.6 1.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 
 1.0 2.0 1.50 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
0.50 1.6 2.4 2.00 163.17 0.0000 142.63 0.0000 131.31 0.0000 119.12 0.0000 

 2.0 3.0 2.50 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
 2.5 3.5 3.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 
 3.5 3.5 3.50 117.09 0.2334 111.34 0.1697 108.25 0.1312 106.18 0.0916 
 3.8 4.2 4.00 96.01 0.3112 95.12 0.2263 95.25 0.1749 97.90 0.1221 

 Range of ∆→ (0.10, 
3.90) 

(0.55, 
3.45) 

(0.15, 
3.85) 

(0.71, 
3.29) 

(0.18, 
3.82) 

(0.79, 
3.21) 

(0.12, 
3.88) 

(0.66, 
3.34) 

 ∆Best → (0.55, 3.45) (0.71, 3.29) (0.79, 3.21) (0.66, 3.34) 
 0.1 0.2 0.15 105.20 0.2762 102.36 0.2009 101.15 0.1553 101.75 0.1084 
 0.4 0.6 0.50 128.15 0.1945 119.34 0.1415 114.39 0.1093 109.82 0.0763 
 0.4 1.6 1.00 156.33 0.0778 138.31 0.0566 128.27 0.0437 117.53 0.0305 
 1.0 2.0 1.50 161.41 0.0389 141.52 0.0283 130.54 0.0219 118.72 0.0153 
0.75 1.6 2.4 2.00 138.88 0.1556 126.79 0.1132 119.95 0.0875 113.00 0.0611 

 2.0 3.0 2.50 106.26 0.2723 103.17 0.1980 101.80 0.1531 102.17 0.1069 
 2.5 3.5 3.00 77.96 0.3891 80.11 0.2829 82.50 0.2187 88.98 0.1526 
 3.5 3.5 3.50 57.31 0.5058 61.51 0.3678 65.66 0.2843 75.76 0.1984 
 3.8 4.2 4.00 42.96 0.6225 47.58 0.4526 52.22 0.3499 63.80 0.2442 

 Range of ∆→ (0.07, 
2.60) 

(0.37, 
2.30) 

(0.10, 
2.57) 

(0.47, 
2.20) 

(0.12, 
2.55) 

(0.52, 
2.14) 

(0.08, 
2.59) 

(0.44, 
2.23) 

 ∆Best → (0.37, 2.30) (0.47, 2.20) (0.52, 2.14) (0.44, 2.23) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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Table 3.1 continued … 

p  = 2 
m→ 6 8 10 12 

h→ 10.8519 15.6740 20.8442 26.4026 

 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.3131 0.4385 0.5392 0.6816 
 0.1 0.2 0.15 48.51 0.6612 45.00 0.5405 45.90 0.4435 60.53 0.3065 
 0.4 0.6 0.50 57.95 0.6011 53.31 0.4913 53.85 0.4032 68.81 0.2786 
 0.4 1.6 1.00 76.84 0.5152 69.55 0.4211 68.94 0.3456 83.20 0.2388 
 1.0 2.0 1.50 106.11 0.4293 93.70 0.3509 90.35 0.2880 101.08 0.1990 
0.25 1.6 2.4 2.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 

 2.0 3.0 2.50 237.92 0.2576 189.27 0.2106 164.85 0.1728 147.06 0.1194 
 2.5 3.5 3.00 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
 3.5 3.5 3.50 627.92 0.0859 386.26 0.0702 280.49 0.0576 190.36 0.0398 
 3.8 4.2 4.00 789.74 0.0000 444.03 0.0000 307.45 0.0000 197.63 0.0000 

 Range of ∆→ (1.41, 
6.59) 

(2.68, 
5.32) 

(1.60, 
6.40) 

(2.96, 
5.04) 

(1.68, 
6.32) 

(3.08, 
4.92) 

(1.47, 
6.53) 

(2.97, 
5.03) 

 ∆Best → (2.68, 5.32) (2.96, 5.04) (3.08, 4.92) (2.97, 5.03) 
 0.1 0.2 0.15 52.26 0.6354 48.32 0.5194 49.09 0.4262 63.91 0.2946 
 0.4 0.6 0.50 76.84 0.5152 69.55 0.4211 68.94 0.3456 83.20 0.2388 
 0.4 1.6 1.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 
 1.0 2.0 1.50 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
0.50 1.6 2.4 2.00 789.74 0.0000 444.03 0.0000 307.45 0.0000 197.63 0.0000 

 2.0 3.0 2.50 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
 2.5 3.5 3.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 
 3.5 3.5 3.50 76.84 0.5152 69.55 0.4211 68.94 0.3456 83.20 0.2388 
 3.8 4.2 4.00 45.14 0.6869 42.00 0.5615 42.99 0.4608 57.36 0.3184 

 Range of ∆→ (0.71, 
3.29) 

(1.34, 
2.66) 

(0.80, 
3.20) 

(1.48, 
2.52) 

(0.84, 
3.16) 

(1.54, 
2.46) 

(0.74, 
3.26) 

(1.49, 
2.51) 

 ∆Best → (1.34, 2.66) (1.48, 2.52) (1.54, 2.46) (1.49, 2.51) 
 0.1 0.2 0.15 56.45 0.6096 52.00 0.4983 52.60 0.4090 67.54 0.2826 
 0.4 0.6 0.50 106.11 0.4293 93.70 0.3509 90.35 0.2880 101.08 0.1990 
 0.4 1.6 1.00 388.87 0.1717 277.82 0.1404 222.08 0.1152 171.43 0.0796 
 1.0 2.0 1.50 627.92 0.0859 386.26 0.0702 280.49 0.0576 190.36 0.0398 
0.75 1.6 2.4 2.00 154.14 0.3435 130.87 0.2808 121.15 0.2304 122.65 0.1592 

 2.0 3.0 2.50 57.95 0.6011 53.31 0.4913 53.85 0.4032 68.81 0.2786 
 2.5 3.5 3.00 29.50 0.8587 27.83 0.7019 28.97 0.5760 41.00 0.3980 
 3.5 3.5 3.50 17.73 1.1163 16.90 0.9125 17.83 0.7488 26.50 0.5175 
 3.8 4.2 4.00 11.79 1.3739 11.30 1.1230 12.01 0.9216 18.33 0.6369 

 Range of ∆→ (0.47, 
2.20) 

(0.89, 
1.77) 

(0.53, 
2.13) 

(0.99, 
1.68) 

(0.56, 
2.11) 

(1.03, 
1.64) 

(0.49, 
2.18) 

(0.99, 
1.68) 

 ∆Best → (0.89, 1.77) (0.99, 1.68) (1.03, 1.64) (0.99, 1.68) 
ARB of MMSE Estimator→ 0.2259 0.1463 0.1061 0.0820 
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 It has been observed from Table 3.1, that on keeping m, p, q fixed, the relative efficiencies of the 

proposed class of shrinkage estimators increases up to ∆ = q−1, attains its maximum at this point and then 

decreases symmetrically in magnitude, as ∆ increases in its range of dominance for all n, p and q. On the 

other hand, the ARBs of the proposed class of estimators decreases up to ∆ = q−1, the estimator becomes 

unbiased at this point and then ARBs  increases symmetrically in magnitude, as ∆ increases in its range of 

dominance. Thus it is interesting to note that, at q = ∆−1 , the proposed class of estimators is unbiased with 

largest efficiency and hence in the vicinity of  q = ∆−1 also, the proposed class not only renders the massive 

gain in efficiency but also it is marginally biased in comparison of MMSE estimator. This implies that  q  

plays an important role in the proposed class of estimators. The following figure illustrates the discussion. 

 

Figure 3.1 
 
 The effect of change in censored sample size m is also a matter of great interest. For fixed p, q and 

∆ , the gain in relative efficiency diminishes, and ARB also decreases, with increment in m. Moreover, it 

appears that to get better estimators in the class, the value of  w(p) should be as small as possible in the 

interval (0,1]. Thus, to choose p one should not consider the smaller values of w(p) in isolation, but also the 

wider length of the interval of  ∆.  
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4. MODIFIED CLASS OF SHRINKAGE ESTIMATORS AND ITS PROPERTIES  

The proposed class of estimators ),(
ˆ

qpβ  is not uniformly better than β̂ . It will be better if 1β  and 

2β  are in the vicinity of true value β . Thus, the centre of the guessed interval ( ) 2/21 β+β  is of much 

importance in this case. If we partially violate this, i.e., only the centre of the guessed interval is not of 

much importance, but the end points of the interval 1β  and 2β  are itself equally important then we can 

propose a new class of shrinkage estimators for the shape parameter β  by using the suggested class 

),(
ˆ

qpβ  as  
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 This modified class of shrinkage estimators is proposed in accordance with Rao(1973) and it 

seems to be more realistic than the previous one as it deals with the case where the whole interval is taken 

as apriori information.  

 

5. NUMERICAL ILLUSTRATIONS  

 The percent relative efficiency of the proposed estimator ),(
~

qpβ  with respect to MMSE 

estimator m

∧

β  has been defined as  

  PRE { } { }
{ } 100~MSE

ˆMSEˆ,~

),(
),( ×

β
β

=ββ
qp

m
mqp                  

(5.1) 

and it is obtained for n = 20 and different values of  p, q, m, 1∆  and 2∆  (or ∆ ). The findings are 

summarised in Table 5.1 with corresponding values of  h  and w(p). 

 

 
Table 5.1 

PREs of proposed estimator ),(
~

qpβ  with respect to MMSE estimator m

∧

β  

n = 20 
 p → -1  1 

m → 6 8 10 12 6 8 10 12 

 h → 10.8519 15.6740 20.8442 26.4026 10.8519 15.6740 20.8442 26.4026 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.7739 0.8537 0.8939 0.9180 0.6888 0.7737 0.8251 0.8779 

 0.2 0.3 0.25 50.80 41.39 34.91 30.59 49.84 40.10 34.66 31.15 
 0.4 0.6 0.50 117.60 81.01 67.45 63.17 113.90 79.57 65.63 61.55 
 0.6 0.9 0.75 261.72 227.42 203.08 172.06 227.59 191.97 172.31 156.69 
0.25 0.8 1.2 1.00 548.60 426.98 342.54 286.06 454.93 355.31 293.42 262.79 
 1.0 1.5 1.25 649.95 470.44 375.91 314.98 636.21 504.49 427.74 353.74 
 1.2 1.8 1.50 268.31 189.82 150.17 125.21 286.06 210.91 168.38 135.01 

 1.5 2.0 1.75 80.46 53.66 39.90 31.38 82.35 55.10 40.79 31.74 
 0.2 0.3 0.25 50.84 41.32 34.76 30.39 49.90 40.03 34.45 30.87 
 0.4 0.6 0.50 120.81 82.01 67.97 63.49 118.31 81.13 66.48 62.03 
 0.6 0.9 0.75 298.17 253.12 221.74 184.38 271.73 225.47 198.40 173.57 
0.50 0.8 1.2 1.00 642.86 473.19 368.65 303.15 583.65 433.16 344.05 292.64 
 1.0 1.5 1.25 626.09 435.87 345.16 289.53 658.77 481.87 390.95 317.87 
 1.2 1.8 1.50 247.90 175.97 140.57 118.43 264.16 191.09 152.66 124.73 

 1.5 2.0 1.75 78.41 52.66 39.39 31.11 79.96 53.72 40.02 31.36 
 0.2 0.3 0.25 50.89 41.24 34.60 30.19 49.97 39.95 34.23 30.59 
 0.4 0.6 0.50 124.02 83.01 68.50 63.81 122.74 82.68 67.32 62.50 
 0.6 0.9 0.75 339.92 282.24 242.46 197.73 325.66 266.36 229.58 192.68 
0.75 0.8 1.2 1.00 723.50 510.42 389.34 316.87 710.96 504.67 388.35 317.53 
 1.0 1.5 1.25 566.19 392.47 312.16 263.77 597.64 421.61 337.17 278.26 
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 1.2 1.8 1.50 224.67 161.95 131.14 111.81 233.41 169.19 136.65 114.63 
 1.5 2.0 1.75 76.05 51.59 38.85 30.83 76.93 52.14 39.17 30.95 
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Table 5.1 continued … 

 p → -2  2 
m → 6 8 10 12 6 8 10 12 

 h → 10.8519 15.6740 20.8442 26.4026 10.8519 15.6740 20.8442 26.4026 
q↓  

∆1↓ 
 

∆2↓  

∆↓  w(p)→ 0.7739 0.8537 0.8939 0.9180 0.6888 0.7737 0.8251 0.8779 

 0.2 0.3 0.25 46.04 34.18 30.92 30.53 46.77 34.81 30.96 31.23 
 0.4 0.6 0.50 92.48 72.59 59.44 53.42 98.00 73.36 59.48 54.88 
 0.6 0.9 0.75 106.83 95.44 92.75 90.11 128.68 102.24 93.16 100.45 
0.25 0.8 1.2 1.00 145.02 131.16 126.15 122.15 191.47 145.23 126.97 144.22 
 1.0 1.5 1.25 220.29 243.10 282.54 320.74 305.32 273.81 284.60 368.42 
 1.2 1.8 1.50 208.14 211.32 202.36 179.81 250.20 220.57 202.56 175.49 

 1.5 2.0 1.75 82.08 57.89 43.07 33.36 84.21 57.95 43.06 33.12 
 0.2 0.3 0.25 46.28 34.31 30.86 30.24 46.95 34.91 30.90 30.87 
 0.4 0.6 0.50 103.18 76.82 61.54 54.80 107.21 77.31 61.57 56.08 
 0.6 0.9 0.75 157.81 135.64 127.02 118.59 181.60 142.94 127.44 128.23 
0.50 0.8 1.2 1.00 267.16 228.67 207.62 190.69 331.58 246.71 208.58 212.20 
 1.0 1.5 1.25 445.44 443.06 448.55 438.38 541.60 467.49 449.42 432.21 
 1.2 1.8 1.50 289.70 240.03 198.56 163.98 298.93 238.16 198.30 156.40 

 1.5 2.0 1.75 84.92 57.28 42.13 32.67 84.44 57.03 42.12 32.44 
 0.2 0.3 0.25 46.50 34.43 30.78 29.92 47.13 34.99 30.82 30.50 
 0.4 0.6 0.50 114.64 81.04 63.59 56.13 116.87 81.23 63.61 57.24 
 0.6 0.9 0.75 247.11 202.90 181.31 160.85 266.60 209.00 181.65 167.34 
0.75 0.8 1.2 1.00 543.26 418.40 345.15 293.90 596.79 430.93 345.67 302.22 
 1.0 1.5 1.25 704.42 541.77 447.06 381.03 696.36 532.12 446.25 358.48 
 1.2 1.8 1.50 280.39 203.46 160.74 132.95 269.47 199.82 160.55 129.07 

 1.5 2.0 1.75 81.39 54.49 40.40 31.66 80.35 54.26 40.39 31.52 
 

 It has been observed from Table 5.1 that likewise ),(
ˆ

qpβ  the PRE of ),(
~

qpβ  with respect to mβ̂  

decreases as censoring fraction (m/n) increases. For fixed m, p and q the relative efficiency increases up to 

a certain point of  ∆ , procures its maximum at this point and then starts decreasing as ∆  increases. It 

seems from the expression in (4.3) that the point of maximum efficiency may be a point where either any 

one of the following holds or any two of the following holds or all the following three holds- 

(i) the lower end point of the guessed interval, i.e., 1β  coincides exactly with the true value β , i.e., 

1∆ = 1. 

(ii) the upper end point of the guessed interval, i.e., 2β  departs exactly two times from the true value 

β , i.e., 2∆ = 2.  

(iii) 1−=∆ q  

This leads to say that on contrary to ),(
ˆ

qpβ , there is much importance of 1∆  and 2∆  in addition to ∆ . 

The discussion is also supported by the illustrations in Table 5.1. As well, the range of dominance of 
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average departure ∆  is smaller than that is obtained for ),(
ˆ

qpβ  but this does not humiliate the merit of  

),(
~

qpβ  because still the range of dominance of  ∆  is enough wider. 

 

6. CONCLUSION AND RECOMMENDATIONS 

 It has been seen that the suggested classes of shrunken estimators have considerable gain in 

efficiency for a number of choices of scalars comprehend in it, particularly for heavily censored samples, 

i.e., for small m. Even for buoyantly censored samples, i.e., for large m, so far as the proper selection of 

scalars is concerned, some of the estimators from the suggested classes of shrinkage estimators are more 

efficient than the MMSE estimators subject to certain conditions. Accordingly, even if the experimenter has 

less confidence in the guessed interval ( )21 , ββ  of β, the efficiency of the suggested classes of shrinkage 

estimators can be increased considerably by choosing the scalars p and q appropriately.  

While dealing with the suggested class of shrunken estimators ),(
ˆ

qpβ  it is recommended that one 

should not consider the substantial gain in efficiency in isolation, but also the wider range of dominance of  

∆ , because enough flexible range of dominance of  ∆  will leads to increase the possibility of getting 

better estimators from the proposed class. Thus it is recommended to use the proposed class of shrunken 

estimators in practice.  
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