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Introduction
It was demonstrated in a previous1 article, that the Schwarzschild weak fields approximation (SWFA) could be
deduced from Newton's theory of gravitation with some supplementary axioms either: "the speed of light as
speed  limit",  "the  mass  energy  equivalence",  "the  relativistic  length  contraction",  "the  relativistic  weak
equivalence principle" and "the principle of the self-induction of the mass". Given that it has been demonstrated
long ago that Newton's gravitation is derivable from the weak fields approximation of the general relativity, the
inverse demonstration should not surprise anyone. What is interesting in this case, is that the resulting theorem is
actually a generalization of the weak fields approximation, while general relativity only speaks to the distortion
of time and space, the GEST (Gravitational Entropic Self-inductive Theory)  deals with the potential energy of
the system in the form of mass.  Indeed, the principle of the self-induction of mass, which implies that the
potential energy that generates mass must produce in turn its own mass, leads to an energy based definition of
the elasticity of the space.

The GEST leads us  to  the  conclusion that  classical  equation derived from the SWFA  tx/t0 = l0/lx = (1-Rs/x)
should rather be written as  mx/m0 = tx/t0 = l0/lx = k(1-Rs/x).  The gravitational  field,  in consequence,  not  only
distorts  space and time in an infinitesimal  point  p,  it  also stores  field energy as  mass,  thus  explaining the
phenomenon of galactic dark mass (matter). In addition, k is a renormalization factor so that if x tends to infinity
then mx approaches k m0, tx approaches k t0 and lx approaches l0/k. That is to say, that the units of time and length
of a gravitational system are renormalized by a common factor k, therefore, the system is at the energy level or
potential k. On the other hand, the unit of mass is an invariant in all reference frames, and the total mass of the
system is the same for all observers.

Thus, in a system of total mass  M0 composed of  n particles of mass  m0, the mass of each of these particles is
modified by the relationship mx/m0 = k(1-Rs/x). However, as in special relativity, the spatial distribution of this
extra  mass  is  not  indicated.  It  is  here  that  the  relationship  mx/m0 really differs  from the field relationships
tx/t0 = l0/lx. Indeed, the simplest approach is to assume that this extra mass is exactly in the same location as the
mass  m0 but  such  distribution  would  go  against  all  empirical  evidences  regarding  the  galactic  dark  mass.
Empirical evidences forces us to consider that this extra mass be found in a spherical halo that may exceed the
system's range. This extra mass does not belong to the component m0 but to the system M0.

The renormalization factor is equivalent to consider that a gravitational system is an inertial system such as a
body at a constant speed and has, for this reason, its proper time and its proper length. Therefore, a measure of
length  or  time  of  a  gravitational  system  from  another  distant  system  should  be  subjected  to  a  similar
transformation  to  that  of  Lorenz.  The  renormalization  of  galactic  systems  leads  us  to  postulate  that  this
phenomenon greatly affects the measurement of the frequency shift  of the light emitted by a galaxy with a
certain energy level from an another galaxy at another energy level.

The objective of this article is to draw some important consequences of the GEST, for instance the derivation of
the Tully-Fisher relation2, the derivation of the calculation function of the intrinsic frequency shift and the shape
of the distribution curve of dark mass. These theoretical extensions may help to understand the inexplicable
experimental errors in the calculation of the Hubble constant and the problem of the creation and stabilization of
galactic disks.
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The Baryonic Tully-Fisher Relation
It was demonstrated1 that if the spherical halo of the dark mass perfectly follows the density distribution of the
baryonic matter of mass M0 and moves at the same speed it follows that the dark mass coefficient  = M/M0 [1] is
given by the relation 4-3 = (RVc/8GM)2. It is possible to simplify this relationship by posing 4-3  2-/2-1/7
which allows to solve a simple quadratic equation and get   [1/4+(23/112+RVc/8GM)]. This equation gives a
maximum error of 0.4 % when  = 2, of 0.05 % when  = 3 and remains less than 0.01 % after  = 4, which is a
good  approximation.  It  is  possible  to  further  simplify  more  by  retaining  an  error  lower  than  1 %  by
  (RVc/8GM) + 0.3. To facilitate the calculations we will rather use    (RVc/8GM) [2] which produces a
systematic error of up to 15 %. The radius  R being the maximum radius,  V the speed and M the total galactic
mass, it is possible to apply the virial theorem3 M = 2V2R/G [3]. 

It is thus possible to obtain (M/M0)2  (RVc/8GM) by [1] and [2], then V5R2/M0
2  (cG2/64) by applying the virial

[3]  and  thus  V5  (cG2/64)(M0
2/R2).  By  simply  modeling  the  galaxy  as  a  disk  with  a  thickness  e and  a

homogeneous density d, we obtain M0 = deR2 so R2 = M0 /de therefore V5  M0 (de)(cG2/64) which implies a
relation  of  the  type  M0  V5.  However,  this  calculation  ignores  the  coefficient  (de)  which  lacks  only the
multiplication by R2 to get M0. Let e = R/a thus M0 = d(R3/a) [4] and so ln(M0) = ln(d/a)+3ln(R) [5], therefore,
by  posing  M0

 =  d(R/a)  so   =  [ln(d/a) + ln(R)]/ln(M0)  which  allows  to  obtain   =  [ln(d/a) + ln(R)]/
[ln(d/a) + 3ln(R)]  by [4]  and  [5].  Since  d/a is  on  the order  of  10-2 and  R on  the order  of  1020,  we  can
approximate    1/3 and therefore  V5  M0

4/3  (cG2/64),  which implies  a  relation of the  type  M0  V3.75.  This
relationship is in perfect agreement with the baryonic Tully-Fisher law4 V3.5  M0  V4 and it is therefore possible
to derive this law without changing Newton's gravitation5.

This  perfect  match  to  the  Tully-Fisher  relationship  reveals  that  the  calculation  of  the  dark  mass  by
4-3 = (RVc/8GM)2 is probably valid only for spiral galaxies. Indeed, the development of this equation requires
that the spherical  halo of dark mass perfectly follows the density distribution of baryonic matter  and has a
nonzero homogeneous angular momentum, some very specific conditions, that are probably only fully realized
in spiral galaxies.

The Intrinsic Frequency Shift
By the "relativistic weak equivalence principle" the gravitational dark mass is a Lorentz invariant equivalent to
the inertial  relativistic  mass.  Therefore,  it  is  necessary that  the  factor =  mx/m0 =  tx/t0 =  l0/lx =  k(1-Rs/x)  be
strictly equivalent to the Lorentz factor of a relativistic speed. Thus, the classical Lorentz transformation of the
velocities composition must consequently be used. This intrinsic frequency shift is distinct from the gravitational
shift.  Indeed,  the  gravitational  frequency  shift  measures  a  difference  within  the  same  reference  frame
(renormalized frame) while the intrinsic shift measures a frequency difference between two distinct reference
frames (renormalized frames).

It  is  possible  to  use  here  the  original  equation  of  the  GEST 1/ =  m0/mx =  t0/tx =  lx/l0 =  1/k+Rs/2x or  the
modification of the SWFA  = mx/m0 = tx/t0 = l0/lx = k(1-Rs/x) because Rs/x << 1 and in both cases, by summing
all the contributions of all the masses  = Mx/M0. Thus, from a radiation emitting galaxy 1/e = M0e/Me = 1/ke to a
galaxy receiving the radiation 1/r = M0r/Mr = 1/kr, it is possible to get the velocities equivalents ve = c(1-1/e

2)
and  vr =  c(1-1/r

2) which may be composed as  v = (vr - ve)/(1+(vrve/c2)) which gives a shift  z =  [(1+v/c)/(1-
v/c)] - 1.

Since for the Milky Way o  6 and the minimum for a galaxy is e = 2, then there exists a maximal redshift of
z = 6.7% which is not negligible. Between Andromeda (e = 12) and the Milky-Way, the blueshift is z = -0.53%,
this shift maxes quickly because with e = 1000 then z = -0.70%. It is therefore possible to see that the intrinsic
shift could cause a problem with speeds equivalent from 19000 km/s for e = 2, 6700 km/s for e = 3, 2700 km/s
for e = 4, 940 km/s for e = 5, -560 km/s for e = 7, -930 km/s for e = 8, -1200 km/s for e = 9, -1300 km/s for
e = 10, -1500 km/s for e = 11, -2000 km/s for e = 26, -2100 km/s for e = . 
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It is important to note that the time dilation is also not negligible. For example, in the worst case, a phenomenon
observed in a galaxy with  e = 2, gives a speed equivalent  v = 19000 km/s which produces a time dilation of
1/(1-(v/c)2) = 1.002. Thus, the pulsars in these galaxies appear rotate slightly faster by 0.2 %.

Astronomers  and  astrophysicists  discussed  the  existence  of  sources  of  errors  for  some  time 6,7,8,9,10,11 in  the
calculation of frequency shifts as they try to correct them12,13. The Tully-Fisher relation is the most important
secondary measure of the distance measurements of a broad set of spiral galaxies, it has a significant influence
on the conventional calculation (through the creation of distances scales) of the Hubble constant, yet the errors
persist inexplicably14. Some authors have analyzed the existence of an intrinsic shift factor that could explain
these errors. Russell (2015)15 after a comprehensive analysis concluded at the existence of an intrinsic redshift
which can exceeding 5000 km/s and a clear tendency for the intrinsic redshifts to be more important than the
intrinsic blueshifts.  The result  of this analysis is in perfect agreement with our theory.  In light of this,  it  is
imperative that astronomers and astrophysicists carry out the necessary tests to establish if this intrinsic shift is
indeed produced by the dark mass as previously calculated.

The Distribution of the Dark Mass
The structure of the dark mass halo was widely studied and several empirical models had been proposed 16,17. The
GEST, by using the principle of self-induction, allows us to apply a rigorous constraint on the mathematical
structure of the halo. Indeed, the principle of self-induction is the only original premise to pass from Newton to
SWFA and it is postulated that the induced mass is found at a position x identical to that of the original mass for
the self-induction may logically occur. Indeed, self-induction implies that an inert mass m at a distance x from
the center of mass induces a mass m' by the function m' = Rsm/2R - Rsm/2x. This function is applied recursively
for producing a mass m'' in exactly the same way, so m'' = Rsm'/2R - Rsm'/2x and so on. Therefore, for that self-
induction to occur, it  seems necessary that  the induced mass be at exactly the same position  x,  this  can be
achieved in three ways :

1. The mass generated is found exactly at the position x and is, in consequence, a form of intensification
(renormalization) of the gravitational field of the inert mass m. This distribution would perfectly follow
that of matter and does not form a halo, this concept is refuted by empirical evidence.

2. The mass generated is found uniformly distributed in a spherical shell at position x, and an inert mass m
produces a sort of dark mass hem. This distribution also perfectly follows that of matter but forms a
discontinuous halo, which would be physically difficult to explain.

3. The mass generated is found in a distribution of m' as the sum of the parts dm of this distribution applied
to the recursive function Rsdm'/2R - Rsdm'/2x produce the same total mass m''. In this case, by induction,
this distribution will generate the same total mass as in the cases (1) and (2).

Let  m/x = (x) a mass distribution function such that the integral from 0 to infinity gives m = (x) x, it is
then possible to write : m' = Rs/2R (x)x - Rs/2 (x)/x x = Rsm/2R - Rs/2 (x)/x x. Thus, the principle of self-
induction is observed for the first term regardless of the distribution function which implies that it is necessary
and sufficient that  Rs/2 (x)/x x = Rsm/2r such as r is the mass position m. Therefore, it's merely required to
find a function f(x,r) so that the integral of f(x,r) dx from 0 to infinity is 1 and the integral of f(x,r)/x dx from 0 to
infinity gives 1/r. Such functions exist, for example, the polynomial family {2 rx/(r+x)³,  12 r2x2/(r+x)5, 60 r3x3/
(r+x)7, 280 r4x4/(r+x)9, 1260 r5x5/(r+x)11, ...,  k rixi/(r+x)2i+1} seems to be valid for any value of i, this property is
checked up to i = 10. Just as the exponential family{xe-x/r/r2, 22x2e-2x/r/r3, 33x3e-3x/r/2r4, 44x4e-4x/r/6r5, 55x5e-5x/r/24r6,
…, iixie-ix/r/(i-1)!r(i+1) } which also appears valid for any value of i, this property was checked up to i = 10. There
are probably many other families of functions that have this property, and we are only considering the spherical
halos. There are also likely functions of six variables (x, y, z, a, b, c) generating ellipsoidal halos.

All these functions, despite their different natures, have the same form of left-shifted bell curve (see Figure 1 and
2), which seems to be a characteristic of functions such as f(x,r) dx = 1 and f(x,r)/x dx = 1/r. Another remarkable
property,  f(x,r) dr = 1 and  f(x,r)/r dr = 1/x,  that is to say, the property is symmetrical if we integrate over  r
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instead of x. Although this property is obvious for the polynomial family which remains the same by exchanging
x and r, however it is far less evident for the exponential family. A remarkable property of the exponential family
is that the apex of the curve (point of zero derivative) is x = r. This property has a profound physical meaning:
the dark mass  generated by the part  m0 has its  highest  concentration at  the location  r of  m0 and would be
distributed from the system's mass center to infinity. This property would reconcile the phenomenon of the dark
mass as both as a component of the whole and the part.

The dark mass distribution curves (see Figure 1 and 2) are those produced by a single particle (star)  m0 at
position r, the function g(x) of resulting distribution for n stars, of identical mass, is g(x) =  f(x,r). If we have a
distribution function of these stars D(r) then the resulting dark mass distribution function is g(x) = f(x,r) D(r) dr.
Another remarkable property is that if we assume that the dark mass follows one of these curves, for example,
f(x,r) = 2 rx/(r+x)³ then it is possible to determine a similar curve D(r) = 30 r2x2/(r+x)4 in a way that g(x) is also a
valid distribution, here g(x) = 60 r3x3/(r+x)7 dr. So whatever the real function of distribution of dark mass, there
is a distribution of baryonic matter such that the total dark mass distribution generated is similar to that of the
baryonic matter, which in addition is identical to that produced if the entire dark mass was produced by a single
particle (star) at the position R. We call "existence of a homogeneous attractor" the existence of a distribution of
baryonic matter, similar to the distribution of dark mass, which is a valid solution to the dark mass production
equation.

The resemblance of the homogeneous attractor and the distribution models of the baryonic matter created ad hoc
to model the distribution of matter in spiral galaxies is not likely coincidental. Let us note that one of the most
commonly used models is the exponential model  (x) =  e-x/r/2r2 which correctly gives the mass distribution
dm(x) = xe-x/r/r2 dx, precisely the simplest exponential distribution of dark mass we have found. That the baryonic
matter and the dark mass mysteriously follow the same distribution law was already noticed18, the existence of a
homogeneous attractor provides a solid theoretical justification for this phenomenon.

It is imperative that the galactic evolution simulations that take into account dark mass production by the stars
following the distribution curves discussed herein be carried out to confirm or refute this phenomenon. It would
be sufficient to slightly alter the galactic simulation models19,20,21 of cold dark matter (LCDM) so that the dark
mass is divided into "clouds" being distributed according to one of the curves shown which constantly follows
the movement of the masses that generates its.
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Illustration 1 : Polynomial distributions

1260 r5x5 / (r+x)11

280 r4x4 / (r+x)9

60 r3x3 / (r+x)7

12 r2x2 / (r+x)5

2 rx / (r+x)3

Illustration 2:Exponential distributions

3125 x5 exp(-5 x/r) / 24 r6

256 x4 exp(-4 x/r) / 6 r5

9 x3 exp(-3 x/r) / 2 r4

x exp(-x/r) / r2

4 x2 exp(-2 x/r) / r3



Discussion
The  results  presented  in  this  paper  confirm the  explanatory power  of  the  GEST.  This  theory has  a  clear
theoretical advantage that of being constructed from three generally accepted induced axioms. Indeed, the GEST
uses  as  induced axioms Newton's  gravitation,  the  speed of  light  as  a  limit  speed and the relativistic  weak
equivalence principle. It also uses as deducted axioms special relativity and two original axioms so the existence
of a minimal compact state which is the associated black hole and the principle of self-induction of the mass;
which are logically necessary axioms and therefore do not constitute real inductions but constrained deductions.

The question of whether the GEST is a modification of GR or is just an extension of it remains open but the fact
that the distribution of the dark mass is completely separate from the GR field suggests that this is another field,
most likely the BEHHGK field. According to the GEST, the BEHHGK field produces dark mass by coupling
itself via gravity. The principle of weak equivalence suggests that the type of distribution curve that we presented
is in fact the spatial distribution of the mass generated by the BEHHGK field. Thus, an inertial system moving at
uniform speed would see its dark mass expand according to the same type of curve and an observer, within this
system, could by gravitational measurements, detect that mass and conclude that he has a speed relative to the
absolute space. Indeed, it would easily distinguish that fact of a dark mass produced by gravitational energy by
knowing the internal properties of his system, such as its own baryonic mass.

We must consider the GEST as a theoretical bridge between GR indicating how space is deformed depending on
the energy and the BEHHGK field, that indicates how the potential energy can produce mass that in turn deforms
space22. Thus, according to the GEST, the BEHHGK field is a pure relativistic product as the gravitational field
and the two fields appear inextricably linked23. In fact, they are so closely related that it may well be that these
collectively represent  a single field.  The dark mass would then be the well of  gravitational potential at  the
bottom of which lies the galaxy. The fact that the dark mass is not detected and it is represented by the BEHHGK
field suggests that this field behaviour is indeed that of a condensate in which case, it may well be that it is also
responsible for gravitation24.

Conclusion 
If only one of the original consequences described in this article proves true, the GEST will demonstrate its
relevance.  For  now,  we  must  admit  that  its  explanatory  value  is  interesting.  In  fact,  it  has  already been
demonstrated1 that the GEST enables simply and naturally: 1) The prediction of a minimal dark mass ratio of
two (2)  for  every galaxy,  which  answers  to  one  of  the  great  shortcomings  of  the  MOND theory25.  2) The
generation of a simple model of the amount of dark mass in spiral galaxies k  [1/4+(23/112+ RVc/8GM)] such
as  M = kM0. It is unlikely that such an equation giving the precise values of 6 for the Milky Way and 12 for
Andromeda is the result of chance. 3) The prediction of an accelerated expansion of the universe in the accepted
order of magnitude.

The current contribution adds : 1) A simple calculation of the baryonic Tully-Fisher relation. 2) The derivation of
an intrinsic frequency shift factor that could explain the experimental errors of the current measures of the Tully-
Fisher  relation.  3) The  contraction  and  expansion  of  the  galactic  time.  4) A derivation  of  the  dark  mass
distribution curves in perfect agreement with the empirical currently accepted distribution curves of the matter
and the dark mass in the spiral galaxies.

This article, by predicting three extremely accurate new phenomena: the intrinsic frequency shift, the expansion
and contraction of galactic time and the shape of the distribution curves of the dark mass generated by the stars,
brings  a  possibility  of  confirmation  or  refutation  of  the  GEST which  is  most  likely  the  most  important
implication.
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