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Abstract – We present a solution for the Euler and Navier-Stokes equations for 
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§ 1 

 Let 𝑝, 𝑞, 𝑟 be the three components of velocity of an element of fluid in the 3-

D orthogonal Euclidean system of spatial coordinates (𝑥, 𝑦, 𝑧) and 𝑡 the time in this 

system.  

 Lagrange in his Mécanique Analitique, firstly published in 1788, proved that 

if the quantity (𝑝 𝑑𝑥 + 𝑞 𝑑𝑦 + 𝑟 𝑑𝑧) is an exact differential when 𝑡 = 0 it will also 

be an exact differential when 𝑡 has any other value. If the quantity (𝑝 𝑑𝑥 + 𝑞 𝑑𝑦 +

𝑟 𝑑𝑧) is an exact differential at an arbitrary instant, it should be such for all other 

instants. Consequently, if there is one instant during the motion for which it is not 

an exact differential, it cannot be exact for the entire period of motion. If it were 

exact at another arbitrary instant, it should also be exact at the first instant.[1]   

 To prove it Lagrange used 

(1.1)  {
𝑝 = 𝑝𝐼 + 𝑝𝐼𝐼𝑡 + 𝑝𝐼𝐼𝐼𝑡2 + 𝑝𝐼𝑉𝑡3 + ⋯

𝑞 = 𝑞𝐼 + 𝑞𝐼𝐼𝑡 + 𝑞𝐼𝐼𝐼𝑡2 + 𝑞𝐼𝑉𝑡3 + ⋯

𝑟 = 𝑟𝐼 + 𝑟𝐼𝐼𝑡 + 𝑟𝐼𝐼𝐼𝑡2 + 𝑟𝐼𝑉𝑡3 + ⋯

 

in which the quantities 𝑝𝐼 , 𝑝𝐼𝐼 , 𝑝𝐼𝐼𝐼 , etc., 𝑞𝐼 , 𝑞𝐼𝐼 , 𝑞𝐼𝐼𝐼 , etc., 𝑟𝐼 , 𝑟𝐼𝐼, 𝑟𝐼𝐼𝐼, etc., are functions 

of 𝑥, 𝑦, 𝑧 but without 𝑡. 

 Here we will finally solve the equations of Euler and Navier-Stokes using 

this representation of the velocity components in infinite series, as pointed by 

Lagrange. We assume satisfied the condition of incompressibility, for brevity. 

Without it the resulting equations are more complicated, as we know, but the 

method of solution is essentially the same in both cases. We focus our attention in 

the general case of the Navier-Stokes equations, and for the Euler equations simply 

set the viscosity coefficient as 𝜈 =  0.  
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 To facilitate and abbreviate our writing, we represent the fluid velocity by 

its three components in indicial notation, i.e., 𝑢 = (𝑢1, 𝑢2, 𝑢3), as well as the 

external force will be 𝑓 = (𝑓1, 𝑓2, 𝑓3) and the spatial coordinates 𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑦,

𝑥3 ≡ 𝑧. The pressure, a scalar function, will be represented as 𝑝. As frequently used 

in mathematics approach, the density mass will be 𝜌 = 1. 

 The representation (1.1) is as the expansion of the velocity in a Taylor´s 

series in relation to time around 𝑡 = 0, considering 𝑥, 𝑦, 𝑧 as constant, i.e., for 

1 ≤ 𝑖 ≤ 3, 

(1.2)  𝑢𝑖 = 𝑢𝑖|𝑡=0 +
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 𝑡 +

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0  

𝑡2

2
+

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0  

𝑡3

6
+ ⋯ 

   +
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0  

𝑡𝑘

𝑘!
+ ⋯ 

or  

(1.3)  𝑢𝑖 = 𝑢𝑖
0 + ∑

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0  

𝑡𝑘

𝑘!

∞
𝑘=1 . 

 For the calculation of  
𝜕𝑢𝑖

𝜕𝑡
,

𝜕2𝑢𝑖

𝜕𝑡2
,

𝜕3𝑢𝑖

𝜕𝑡3
, … we use the values that are obtained 

directly from the Navier-Stokes equations and its derivatives in relation to time, 

i.e., 

(1.4)  
𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
− ∑ 𝑢𝑗

3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖 + 𝑓𝑖 , 

and therefore    

(1.5)  
𝜕2𝑢𝑖

𝜕𝑡2
= −

𝜕2𝑝

𝜕𝑡 𝜕𝑥𝑖
− ∑ (

𝜕𝑢𝑗

𝜕𝑡

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
)3

𝑗=1 + 𝜈 ∇2 𝜕𝑢𝑖

𝜕𝑡
+

𝜕𝑓𝑖

𝜕𝑡
, 

(1.6)  
𝜕3𝑢𝑖

𝜕𝑡3
= −

𝜕3𝑝

𝜕𝑡2 𝜕𝑥𝑖
− ∑ (

𝜕2𝑢𝑗

𝜕𝑡2

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2 )3
𝑗=1  

   +𝜈 ∇2 𝜕2𝑢𝑖

𝜕𝑡2
+

𝜕2𝑓𝑖

𝜕𝑡2
,  

(1.7)  
𝜕4𝑢𝑖

𝜕𝑡4
= −

𝜕4𝑝

𝜕𝑡3 𝜕𝑥𝑖
− ∑ 𝑁𝑗

33
𝑗=1 +  𝜈 ∇2 𝜕3𝑢𝑖

𝜕𝑡3
+

𝜕3𝑓𝑖

𝜕𝑡3
, 

  𝑁𝑗
3 =

𝜕

𝜕𝑡
𝑁𝑗

2, 𝑁𝑗
2 =

𝜕2𝑢𝑗

𝜕𝑡2

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
, 

  𝑁𝑗
3 =

𝜕3𝑢𝑗

𝜕𝑡3

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 3

𝜕2𝑢𝑗

𝜕𝑡2

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 3

𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
, 

(1.8)  
𝜕5𝑢𝑖

𝜕𝑡5
= −

𝜕5𝑝

𝜕𝑡4 𝜕𝑥𝑖
− ∑ 𝑁𝑗

43
𝑗=1 +  𝜈 ∇2 𝜕4𝑢𝑖

𝜕𝑡4
+

𝜕4𝑓𝑖

𝜕𝑡4
, 
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  𝑁𝑗
4 =

𝜕

𝜕𝑡
𝑁𝑗

3 =
𝜕4𝑢𝑗

𝜕𝑡4

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 4

𝜕3𝑢𝑗

𝜕𝑡3

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 6

𝜕2𝑢𝑗

𝜕𝑡2

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
+ 

    +4
𝜕𝑢𝑗

𝜕𝑡

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗

𝜕4𝑢𝑖

𝜕𝑡4
, 

and using induction we come to    

(1.9)  
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
= −

𝜕𝑘𝑝

𝜕𝑡𝑘−1 𝜕𝑥𝑖
− ∑ 𝑁𝑗

𝑘−13
𝑗=1 +  𝜈 ∇2 𝜕𝑘−1𝑢𝑖

𝜕𝑡𝑘−1
+

𝜕𝑘−1𝑓𝑖

𝜕𝑡𝑘−1
, 

  𝑁𝑗
𝑘−1 =

𝜕

𝜕𝑡
𝑁𝑗

𝑘−2 = ∑  (𝑘−1
𝑙

)𝑘−1
𝑙=0 𝜕𝑡

𝑘−1−𝑙𝑢𝑗  
𝜕

𝜕𝑥𝑗
𝜕𝑡

𝑙𝑢𝑖 , 

  𝜕𝑡
0𝑢𝑛 = 𝑢𝑛, 𝜕𝑡

𝑚𝑢𝑛 =
𝜕𝑚𝑢𝑛

𝜕𝑡𝑚
, (𝑘−1

𝑙
) =

(𝑘−1)!

(𝑘−1−𝑙)! 𝑙!
.  

 In (1.2) and (1.3) it is necessary to know the values of the derivatives 

𝜕𝑢𝑖

𝜕𝑡
,

𝜕2𝑢𝑖

𝜕𝑡2
, … ,

𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
  in 𝑡 = 0 then we must to calculate, from (1.4) to (1.9),   

(1.10)  
𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 = −

𝜕𝑝0

𝜕𝑥𝑖
− ∑ 𝑢𝑗

03
𝑗=1

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖

0 + 𝑓𝑖
0, 

the superior index 0 meaning the value of the respective function at 𝑡 = 0, and 

(1.11)  
𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 = −

𝜕2𝑝

𝜕𝑡 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

13
𝑗=1 |𝑡=0 + 

             + 𝜈 ∇2 𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 +

𝜕𝑓𝑖

𝜕𝑡
|𝑡=0,    

  𝑁𝑗
1|𝑡=0 = ∑ (

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 𝑢𝑗

0 𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0)3

𝑗=1 , 

(1.12)  
𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 = −

𝜕3𝑝

𝜕𝑡2 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

2|𝑡=0
3
𝑗=1 + 

                        + 𝜈 ∇2 𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 +

𝜕2𝑓𝑖

𝜕𝑡2
|𝑡=0,    

  𝑁𝑗
2|𝑡=0 =

𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 2

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 + 

           + 𝑢𝑗
0 𝜕

𝜕𝑥𝑗

𝜕
2

𝑢𝑖

𝜕𝑡2 |𝑡=0, 

(1.13)  
𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0 = −

𝜕4𝑝

𝜕𝑡3 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

33
𝑗=1 |𝑡=0 +  

                        + 𝜈 ∇2 𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 +

𝜕3𝑓𝑖

𝜕𝑡3
|𝑡=0,  

  𝑁𝑗
3|𝑡=0 =

𝜕3𝑢𝑗

𝜕𝑡3
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 3

𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
|𝑡=0 + 

                  + 3
𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 + 𝑢𝑗

0 𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0,  
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(1.14)  
𝜕5𝑢𝑖

𝜕𝑡5
|𝑡=0 = −

𝜕5𝑝

𝜕𝑡4 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

43
𝑗=1 |𝑡=0 + 

             + 𝜈 ∇2 𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0 +

𝜕4𝑓𝑖

𝜕𝑡4
|𝑡=0,   

  𝑁𝑗
4|𝑡=0 =

𝜕4𝑢𝑗

𝜕𝑡4
|𝑡=0

𝜕𝑢𝑖
0

𝜕𝑥𝑗
+ 4

𝜕3𝑢𝑗

𝜕𝑡3
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑡
+ 

              + 6
𝜕2𝑢𝑗

𝜕𝑡2
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕2𝑢𝑖

𝜕𝑡2
|𝑡=0 + 4

𝜕𝑢𝑗

𝜕𝑡
|𝑡=0

𝜕

𝜕𝑥𝑗

𝜕3𝑢𝑖

𝜕𝑡3
|𝑡=0 + 

   + 𝑢𝑗
0 𝜕

𝜕𝑥𝑗

𝜕4𝑢𝑖

𝜕𝑡4
|𝑡=0, 

and of generic form, 

(1.15)  
𝜕𝑘𝑢𝑖

𝜕𝑡𝑘
|𝑡=0 = −

𝜕𝑘𝑝

𝜕𝑡𝑘−1 𝜕𝑥𝑖
|𝑡=0 − ∑ 𝑁𝑗

𝑘−13
𝑗=1 |𝑡=0 + 

                + 𝜈 ∇2 𝜕𝑘−1𝑢𝑖

𝜕𝑡𝑘−1
|𝑡=0 +

𝜕𝑘−1𝑓𝑖

𝜕𝑡𝑘−1
|𝑡=0, 

  𝑁𝑗
𝑘−1|𝑡=0 = ∑  (𝑘−1

𝑙
)𝑘−1

𝑙=0 𝜕𝑡
𝑘−1−𝑙𝑢𝑗|𝑡=0  

𝜕

𝜕𝑥𝑗
𝜕𝑡

𝑙𝑢𝑖|𝑡=0, 

  𝜕𝑡
0𝑢𝑛|𝑡=0 = 𝑢𝑛

0 , 𝜕𝑡
𝑚𝑢𝑛|𝑡=0 =

𝜕𝑚𝑢𝑛

𝜕𝑡𝑚
|𝑡=0. 

 If the external force is conservative there is a scalar potential 𝑈 such as 

𝑓 = ∇𝑈 and the pressure can be calculated from this potential 𝑈, i.e.,  

(1.16)  
𝜕𝑝

𝜕𝑥𝑖
= 𝑓𝑖 =

𝜕𝑈

𝜕𝑥𝑖
, 

and then 

(1.17)  𝑝 = 𝑈 + 𝜃(𝑡), 

𝜃(𝑡) a generic function of time of class 𝐶∞, so it is not necessary the use of  the 

pressure 𝑝 and external force 𝑓, and respective derivatives, in (1.4) to (1.15) if the 

external force is conservative. In this case, the velocity can be independent of the 

both pressure and external force, otherwise it will be necessary to use both the 

pressure and external force derivatives to calculate the velocity in powers of time.  

 The result that we obtain here in this development in Taylor’s series seems 

to me a great advance in the search of the solutions of the Euler’s and Navier-

Stokes equations. It is possible now to know on the possibility of non-uniqueness 

solutions as well as breakdown solution respect to unbounded energy of another 

manner. 

 We now can choose previously an infinity of different pressures such that 

the calculation of 
𝜕𝑢

𝜕𝑡
 and derivatives can be done, for a given initial velocity and 

external force, although such calculation can be very hard. 
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 It is convenient say that Cauchy[2] in his memorable and admirable Mémoire 

sur la Théorie des Ondes, winner of the Mathematical Analysis award, year 1815,  

firstly does a study on the equations to be obeyed by three-dimensional molecules 

in a homogeneous fluid in the initial instant 𝑡 = 0, coming to the conclusion which 

the initial velocity must be irrotational, i.e., a potential flow. Of this manner, after, 

he comes to conclusion that the velocity is always irrotational, potential flow, if the 

external force is conservative, which is essentially the Lagrange’s theorem 

described in the begin of this article, but it is shown without the use of series 

expansion (a possible exception to the theorem occurs if one or two components of 

velocity are identically zero, when the reasonings on 3-D molecular volume are not 

valid). The solution obtained by Cauchy for Euler's equations is the Bernoulli's law, 

as almost always happens. Now a more generic solution is obtained, in special 

when it is possible a solution be expanded in polynomial series of time. Though not 

always a function can be expanded in Taylor’s series, there is certainly an infinity 

of possible cases of solution where this is possible. 

 If the mentioned series is divergent in some point or region may be an 

indicative of that the correspondent velocity and its square diverge, again going to 

the case of breakdown solution due to unbounded energy. With the three functions 

initial velocity, pressure and external force belonging to Schwartz Space is 

expected that the solution for velocity also belongs to Schwartz Space, obtaining 

physically reasonable and well-behaved solution throughout the space. 

 The method presented here in this first section can also be applied in other 

equations, of course, for example in the heat equation, Schrödinger equation, wave 

equation and many others. Always will be necessary that the remainder in the 

Taylor's series goes to zero when the order 𝑘 of the derivative tends to infinity 

(Courant[3], chap. VI). Applying this concept in (1.3) and (1.9), substituting 𝑡 by 𝜏, 

the remainder 𝑅𝑖,𝑘 of order 𝑘 for velocity component 𝑖 is 

(1.18)  𝑅𝑖,𝑘 =
1

𝑘!
∫ (𝑡 − 𝜏)𝑘𝑡

0
 
𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
𝑑𝜏, 

which can be estimated by Lagrange’s remainder, 

(1.19)  𝑅𝑖,𝑘 =
𝑡𝑘+1

(𝑘+1)!

𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
(𝜉), 

or by Cauchy’s remainder, 

(1.20)  𝑅𝑖,𝑘 =
𝑡𝑘+1

𝑘!
(1 − 𝜃)𝑘 𝜕𝑘+1𝑢𝑖

𝜕𝑡𝑘+1
(𝜉), 

with 0 ≤ 𝜉 ≤ 𝑡 and 0 ≤ 𝜃 ≤ 1. 

 Note that if it is not possible to make a series around 𝑡 = 0 (for example, to 

the functions log 𝑡 , √𝑡
3

, 𝑒−1/𝑡2
, according Courant[3], chap. VI) an other instant 𝑡0 
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of convergence and remainder 𝑅𝑖,𝑘→∞ zero must be found, and then replacing 𝑡𝑘 by 

(𝑡 − 𝑡0)𝑘 and the calculations in 𝑡 = 0 by 𝑡 = 𝑡0 in previous equations. 

   

§ 2 

 In this section we will build a series of powers of time solving the Navier-

Stokes equations, differently than that used in the previous section. From theorem 

of uniqueness of series of powers (A function 𝑓(𝑥) can be represented by a power 

series in 𝑥 in only one way, if it all, i.e., the representation of a function by a power 

series is “unique”; Every power series which converges for points other than 𝑥 = 0 

is the Taylor series of the function which it represents (Courant[3], chap. VIII)),   

both solutions need be the same, for a same initial velocity, pressure, external 

force, compressibility condition and all boundary conditions. 

 Defining 

(2.1)  𝑢𝑖 = 𝑢𝑖
0 + 𝑋𝑖,1𝑡 + 𝑋𝑖,2𝑡2 + ⋯ + 𝑋𝑖,𝑛𝑡𝑛 + ⋯ = ∑ 𝑋𝑖,𝑛𝑡𝑛∞

𝑛=0 ,  

  𝑋𝑖,0 = 𝑢𝑖
0 = 𝑢𝑖(𝑥1, 𝑥2, 𝑥3, 0), 

where each 𝑋𝑖,𝑛 is a function of position (𝑥1, 𝑥2, 𝑥3), without 𝑡, and 

(2.2)  
𝜕𝑝

𝜕𝑥𝑖
= 𝑞𝑖

0 + 𝑞𝑖,1𝑡 + 𝑞𝑖,2𝑡2 + ⋯ + 𝑞𝑖,𝑛𝑡𝑛 + ⋯ = ∑ 𝑞𝑖,𝑛𝑡𝑛∞
𝑛=0 ,  

  𝑞𝑖,0 = 𝑞𝑖
0 =

𝜕𝑝0

𝜕𝑥𝑖
, 𝑝0 = 𝑝(𝑥1, 𝑥2, 𝑥3, 0), 

(2.3)  𝑓𝑖 = 𝑓𝑖
0 + 𝑓𝑖,1𝑡 + 𝑓𝑖,2𝑡2 + ⋯ + 𝑓𝑖,𝑛𝑡𝑛 + ⋯ = ∑ 𝑓𝑖,𝑛𝑡𝑛∞

𝑛=0 ,  

  𝑓𝑖,0 = 𝑓𝑖
0 = 𝑓𝑖(𝑥1, 𝑥2, 𝑥3, 0), 

we can put these series in the Navier-Stokes equation,  

(2.4)  
𝜕𝑢𝑖

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥𝑖
− ∑ 𝑢𝑗

3
𝑗=1

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝜈 ∇2𝑢𝑖 + 𝑓𝑖 . 

 The velocity derivative in relation to time is 

(2.5)  
𝜕𝑢𝑖

𝜕𝑡
= 𝑋𝑖,1 + 2𝑋𝑖,2𝑡 + 3𝑋𝑖,3𝑡2 + ⋯ + 𝑛𝑋𝑖,𝑛𝑡𝑛−1 + ⋯ = 

                   = ∑ (𝑛 + 1)𝑋𝑖,𝑛+1𝑡𝑛∞
𝑛=0 , 

the nonlinear terms are, of order zero (constant in time) 

(2.6)  ∑ 𝑢𝑗
03

𝑗=1
𝜕𝑢𝑖

0

𝜕𝑥𝑗
, 

of order 1, 
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(2.7)   ∑ (𝑢𝑗
0 𝜕𝑋𝑖,1

𝜕𝑥𝑗
+ 𝑋𝑗,1

𝜕𝑢𝑖
0

𝜕𝑥𝑗
) 𝑡3

𝑗=1 , 

of order 2, 

(2.8)   ∑ (𝑢𝑗
0 𝜕𝑋𝑖,2

𝜕𝑥𝑗
+ 𝑋𝑗,1

𝜕𝑋𝑖,1

𝜕𝑥𝑗
+ 𝑋𝑗,2

𝜕𝑢𝑖
0

𝜕𝑥𝑗
) 𝑡23

𝑗=1 , 

of order 3, 

(2.9)   ∑ (𝑢𝑗
0 𝜕𝑋𝑖,3

𝜕𝑥𝑗
+ 𝑋𝑗,1

𝜕𝑋𝑖,2

𝜕𝑥𝑗
+ 𝑋𝑗,2

𝜕𝑋𝑖,1

𝜕𝑥𝑗
+ 𝑋𝑗,3

𝜕𝑢𝑖
0

𝜕𝑥𝑗
) 𝑡33

𝑗=1 , 

and of order 𝑛, of generic form, equal to  

(2.10)  ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0 𝑡𝑛3

𝑗=1 ,   

with 𝑋𝑗,0 = 𝑢𝑗
0,

𝜕𝑋𝑖,0

𝜕𝑥𝑗
=

𝜕𝑢𝑖
0

𝜕𝑥𝑗
. 

 Applying these sums in (2.4) we have 

(2.11)  ∑ (𝑛 + 1)𝑋𝑖,𝑛+1𝑡𝑛∞
𝑛=0 = − ∑ 𝑞𝑖,𝑛𝑡𝑛∞

𝑛=0 − 

  − ∑ ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0 𝑡𝑛3

𝑗=1
∞
𝑛=0 + 𝜈 ∑ ∇2𝑋𝑖,𝑛

∞
𝑛=0 𝑡𝑛 +  

  + ∑ 𝑓𝑖,𝑛𝑡𝑛∞
𝑛=0 ,  

and then 

(2.12)  (𝑛 + 1)𝑋𝑖,𝑛+1 = −𝑞𝑖,𝑛 − ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0

3
𝑗=1 +  

              + 𝜈∇2𝑋𝑖,𝑛 + 𝑓
𝑖,𝑛

,  

which allows us to obtain, by recurrence,  𝑋𝑖,1, 𝑋𝑖,2, 𝑋𝑖,3, etc., that is, for 1 ≤ 𝑖 ≤ 3 

and 𝑛 ≥ 0, 

(2.13)  𝑋𝑖,𝑛+1 =
1

𝑛+1
𝑆𝑛,  

  𝑆𝑛 = −𝑞𝑖,𝑛 − ∑ ∑ 𝑋𝑗,𝑘
𝜕𝑋𝑖,𝑛−𝑘

𝜕𝑥𝑗

𝑛
𝑘=0

3
𝑗=1 + 𝜈∇2𝑋𝑖,𝑛 + 𝑓𝑖,𝑛. 

 You can see how much will become increasingly difficult calculate the terms 

𝑋𝑖,𝑛 with increasing the values of 𝑛, for example, will appear terms in 

𝜈𝑛, ∇2∇2 … ∇2𝑢𝑖
0, etc. If 𝜈 > 1 certainly there is a specific problem to be studied 

with relation to convergence of the series, which of course also occurs in the 

representation given in section § 1. The same can be said for 𝑡 → ∞. In fact, I do not 

understand why a particle fluid initially in motion, without any collision with 
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another particle and submitted to a permanent impulsive force need always be 

with finite velocity as 𝑡 → ∞. For example, a constant resulting force 𝑓, not equal to 

zero, applied all time on a body will produce an infinite velocity 𝑢 to this body  

when 𝑡 → ∞, supposing possible such force and a way no obstacles, etc. 

 

§ 3 

 The previous solutions show us that we need to have, for all integers 

1 ≤ 𝑖 ≤ 3 and 𝑛 ≥ 0, 

(3.1)  
1

𝑛!

𝜕𝑛𝑢𝑖

𝜕𝑡𝑛
|𝑡=0 = 𝑋𝑖,𝑛, 

and both members of this relation are very difficult to be calculated, either 

equation (1.15) as well as (2.13). Add to this difficulty the fact that besides the 

main Navier-Stokes equations (1.4)-(2.4) must be included the condition of 

incompressibility, 

(3.2)  ∇ ∙ 𝑢 = ∑
𝜕

𝜕𝑥𝑖
𝑢𝑖

3
𝑖=1 = 0. 

 Using (2.1) in (3.2) we have  

(3.3)  ∇ ∙ 𝑢 = ∑
𝜕

𝜕𝑥𝑖

3
𝑖=1 ∑ 𝑋𝑖,𝑛𝑡𝑛∞

𝑛=0 = ∑ (∑
𝜕

𝜕𝑥𝑖

3
𝑖=1 𝑋𝑖,𝑛)∞

𝑛=0 𝑡𝑛 = 0. 

 As this equation need be valid for all 𝑡 ≥ 0 we have  

(3.4)  ∑
𝜕

𝜕𝑥𝑖

3
𝑖=1 𝑋𝑖,𝑛 = ∇ ∙ 𝑋𝑛 = 0, 

defining 𝑋𝑛 = (𝑋1,𝑛, 𝑋2,𝑛, 𝑋3,𝑛), i.e., all coefficients 𝑋𝑛 must obey the condition 

of incompressibility in the vector representation of velocity, 

(3.5)  𝑢 = ∑ 𝑋𝑛
∞
𝑛=0 𝑡𝑛. 

 Following Lagrange[1], getting two differentiable and continuous functions 𝛼 

and 𝛽 of class 𝐶2 and defining 

(3.6.1)  𝑢1 =
𝜕𝛼

𝜕𝑧
,  𝑢2 =

𝜕𝛽

𝜕𝑧
,  𝑢3 = − (

𝜕𝛼

𝜕𝑥
+

𝜕𝛽

𝜕𝑦
), 

(3.6.2)  𝑢1
0 =

𝜕𝛼0

𝜕𝑧
,  𝑢2

0 =
𝜕𝛽0

𝜕𝑧
,  𝑢3

0 = − (
𝜕𝛼0

𝜕𝑥
+

𝜕𝛽0

𝜕𝑦
), 

with 𝛼0 = 𝛼(𝑡 = 0) and 𝛽0 = 𝛽(𝑡 = 0), we have satisfied the condition (3.2), 

which it is easy to see. Other manner is when 𝑢 is derived from a vector potential 

𝐴, i.e., 
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(3.7.1)  𝑢 = ∇ × 𝐴, 

(3.7.2)  𝑢0 = ∇ × 𝐴0, 

with 𝐴0 = 𝐴(𝑡 = 0). 

 The relations (3.6) are very useful and easy to be implemented and we will 

use them to solve the Euler and Navier-Stokes equations when the 

incompressibility condition is required. Given any continuous, differentiable and 

integrable vector components 𝑢1 and 𝑢2 then 

(3.8.1)  𝛼 = ∫ 𝑢1 𝑑𝑧, 

(3.8.2)  𝛽 = ∫ 𝑢2 𝑑𝑧, 

and thus 𝑢3 and 𝑢3
0 need to be according 

(3.9.1)  𝑢3 = − ∫ (
𝜕𝑢1

𝜕𝑥
+

𝜕𝑢2

𝜕𝑦
) 𝑑𝑧 = − (

𝜕𝛼

𝜕𝑥
+

𝜕𝛽

𝜕𝑦
), 

(3.9.2)  𝑢3
0 = − ∫ (

𝜕𝑢1
0

𝜕𝑥
+

𝜕𝑢2
0

𝜕𝑦
) 𝑑𝑧 = − (

𝜕𝛼0

𝜕𝑥
+

𝜕𝛽0

𝜕𝑦
), 

which reminds us that the components of the velocity vector maintains conditions 

to be complied to each other, i.e., it is not any initial velocity which can be used for 

solution of Euler and Navier-Stokes equations in incompressible flows case.  

 In the equations of the sections § 1 and § 2, instead 𝑢1 we will use 
𝜕𝛼

𝜕𝑧
, 

instead 𝑢2 will be 
𝜕𝛽

𝜕𝑧
, and − (

𝜕𝛼

𝜕𝑥
+

𝜕𝛽

𝜕𝑦
) instead 𝑢3, as well as the correspondents 

initial values, replacing 𝑢1
0 by 

𝜕𝛼0

𝜕𝑧
,  𝑢2

0 by 
𝜕𝛽0

𝜕𝑧
, and 𝑢3

0 by − (
𝜕𝛼0

𝜕𝑥
+

𝜕𝛽0

𝜕𝑦
). Of this 

manner, we will be developing series for 
𝜕𝛼

𝜕𝑧
, 

𝜕𝛽

𝜕𝑧
 and − (

𝜕𝛼

𝜕𝑥
+

𝜕𝛽

𝜕𝑦
), so that ∇ ∙ 𝑢 = 0. 

Then this is a preliminary problem to be solved, the calculation of 𝛼0 and 𝛽0 giving 

𝑢1
0, 𝑢2

0 and 𝑢3
0 when ∇ ∙ 𝑢0 = 0 and it is necessary that ∇ ∙ 𝑢 = 0, i.e., 

(3.10.1) 𝛼0 = ∫ 𝑢1
0 𝑑𝑧, 

(3.10.2) 𝛽0 = ∫ 𝑢2
0 𝑑𝑧, 

with the validity of (3.9.2). Done this, the exact solution for the principal problem 

can be calculated from reasoning exposed here, if there is not an equivalent 

solution described in a most simplified formulation, for example, according 

Bernoulli’s law and Laplace’s equation.  

 

September-11,27-2016     

December-16-2016 
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What good would living on a planet without destruction, greed and envy,  

where the nations were dedicated to building a beautiful world  

and to the salvation of those in need.  

That there were no enemies and everyone could be happy where they live,  

in their own way. 
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