A Classical System for Producing

“Quantum Correlations”
Robert H. McEachern

Abstract: It is almost universally supposed, that “Quantum Correlations”, as discussed in connection with Bell’s
Inequality Theorem, cannot be produced by any classical, macroscopic system. Nevertheless, this paper
demonstrates the actual construction of just such a system. It then discusses why this peculiar type of classical
system, unlike any other, behaves in this “weird” fashion. The reason illuminates the Physics Community’s
profound misunderstanding of exactly what a single, classical “bit” is, in the context of Shannon’s Information
Theory, and the resulting misinterpretation of the Heisenberg Uncertainty Principle and the EPR paradox.

Summary: The two figures shown below, depict the
“quantum correlations”, computed between randomized
pairs of polarity measurements, made on two sets of
images of “entangled coins”, that have polarized, noisy,
band-limited, surface features. Each set consists of
500,000 pairs, of oppositely-polarized (entangled) coin
images. Figure 1 (red) depicts the observed correlations
obtained, when the surface noise on each coin is low
enough to enable several bits of information to be
extracted from each image. In both figures, the blue curve
is the idealized “quantum correlation”.

Figure 2 (red) depicts the same correlations, when the
surface noise on each coin is increased enough to enable
only a single bit of information to be extracted from each
image. Figure 1, is exactly as expected for a classical
system!. Figure 2 is not. Yet the only significant
difference in generating the two figures, is that one set of
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images had a significantly higher, but carefully selected,
level of noise, than the other, along with resulting
“missed-detections”. These critical differences elucidate a
common, but profound misunderstanding of the nature of
a “bit” of information, within the physics community.
When only a single bit of information exists within any
received “message”, such as a physical particle or image,
then only a single independent measurement, can ever be
made on that “message”. Every subsequent attempt at
another measurement, even of a supposedly independent
variable, must be correlated with the first measurement,
unlike the ubiquitous cases in which more than a single
bit of information exists. The so-called “quantum
correlations” are nothing more than single-bit
correlations, whereas “classical correlations” result from
multi-bit correlations. But true, single-bit entities, are
extremely rare in the classical realm and thus unfamiliar.
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The previous two figures were

produced by the appended
MATLAB? simulation. To
understand the nature of the
phenomenon being produced,

consider the two figures depicted 0.02
above. Figure 3 depicts one of the
1,000,000 coin images, used to
generate Figure 1. It shows the
surface of the coin, polarized such
that the top half has a value of -1
and the bottom half has a value of
+1. The “entangled coin” has the 0.01
opposite polarity. A small amount of

random noise has been added. Each

coin is identical, except for the

added noise. Figure 4 depicts the 0.005
same coin, after it has been lowpass
filtered, to blur the image, and thus
reduce its information content, using
the two-dimensional, filter shown in
Figure 5. The filtering is
accomplished by performing a two
dimensional convolution of each
coin image with the lowpass filter.

In accordance with Shannon’s
Capacity Theorem, the information
content of each image can be
controlled by adjusting the added
noise level and the bandwidth of the
lowpass filter.
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It is important to recognize, that unlike the more
familiar cases of communication channels and
measurement theory, the noise and bandwidth being
simulated, are not properties of either the channel or
measurement process. Instead, they are intrinsic to the
surface of each coin. In other words, the coins have
irregular surfaces. Hence, the limitations imposed by the
noise and bandwidth (limited information content),
cannot be altered by any measurement process.

The figure on the right, depicts an unfiltered coin, with
the higher noise level, used to produce Figure 2. Note that
due to the noise, the polarization is not obvious. The four
figures below depict four typical, lowpass-filtered coin
images. The polarization is apparent, but too noisy to
enable any polarization measurements, with more
accuracy than approximately one, significant bit. It is this
property, which results in the “quantum correlations”.

NoiseAmp= 6.00 Lowpass-Filtered Polarized Coin
Filter Radius= 21 Coin#= 9000

100

90

80

60

50

40

30

20

10

10 20 30 40 50 60 70 80 90 100
X
NoiseAmp= 6.00 Lowpass-Filtered Polarized Coin
Filter Radius= 21 Coin#= 18000

100

90

80

70 i 12

60

50

40

30

20

Polarized Coin NoiseAmp= 6.00
Coin Radius=19

60 20

50

40 |

30 ' n e Ey "

20 T 1

-15

10 20 30 40 50 60
X

NoiseAmp= 6.00 Lowpass-Filtered Polarized Coin
Filter Radius= 21 Coin#= 16000

100

80

60

50

40

30

20

10 20 30 40 50 60 70 80 90 100
X

NoiseAmp= 6.00 Lowpass-Filtered Polarized Coin
Filter Radius= 21 Coin#= 90000

100

90

80

70 i H -2

60

50

40

30

20




The polarization is measured by multiplying each coin’s
image, by an angle-randomized “matched filter”, such as
that depicted in figure 11, then integrating over the
resultant image. In other words, each pixel in the coin’s
image, is multiplied by the corresponding pixel in the
matched filter, then all the pixels are summed together
and the polarization is declared to be +1, if the sum is
positive, and -1 if the sum is negative. In the simulation,
there are 360 precomputed matched filters, corresponding
to one degree phase increments in the polarization.

The phase difference between the pair of randomly
selected matched filters, used to determine the polarity of
each coin within an “entangled” pair, is then computed.
Next, histograms are computed, for each possible
entangled-pair polarity outcome (+ +, + -, - -, - +) versus
the phase difference. The histograms are then used to
compute the correlation versus phase difference, shown in
Figures 1 and 2. The correlation at each angle, a, is
computed by:

N=HistUU(a)+HistDD(a)+HistDU(a)+HistUD(a)
Corr(a)=(HistUU(a)+HistDD(a)-HistDU(a)-HistUD(a))/N

“D” and “U” refer to Down and UP polarizations respectively.

Note that Figure 1 was computed with a “Detection-
Threshold” of 0.0, resulting in a “Detection-Efficiency”
of 100%, whereas Figure 2 had a Threshold of 1000 and
an Efficiency of about 72%. Figure 12 depicts the same
noise level as figure 2, but with the Threshold=0 and a
100% Efficiency. The significance of these parameters is
as follows:

In any real experiment, the detectors will not be able to
detect the existence of every particle or coin-image.
Hence, the Detection-Efficiency will be less than 100%.
In the simulation, it is possible to detect every particle;
that is what is depicted in Figures 1 and 12. However,
when only a single bit of information can ever be
extracted from a received particle/image, the detection of
the particle/image existence, cannot be separated from the
detection of its polarity; they are one and the same thing.
At polarity detection angles of 90 and 270 degrees, the
correlation is zero. That means there is no “Signal” to
detect. There is only “Noise”.

Consequently, if a threshold is set, such that the absolute
value of the correlation, as measured by the matched
filters, must exceed the threshold, for both images in an
entangled pair, then the Detection-Efficiency will drop
below 100%. But contrary to popular belief, there is no
“Fair Sampling3”; The apparatus will systematically fail
to detect only those entities with near zero correlation (no
signal), which contribute nothing but noise variance, to
the numerator in the detection correlation equation given
above, but reduces the denominator in that equation, since
that is simply equal to the number of detected entities.

Thus, when all the coins are detected (Threshold=0),
“bit errors” are made, which lower the correlation peaks
to values below +1 and -1. But the thresholding
effectively renormalizes the correlations, by selectively
failing to detect only the low correlation value polarities.
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That is the difference between Figures 2 and 12; they
have the same noise level, but the thresholding reduces
the denominator in the correlation computation, without
significantly altering the numerator. The Numerator
effects the shape of the correlation curve, but the
denominator only effects its normalization. Hence this
“Unfair Sampling” effect, peculiar to the one-bit
information content of the measurements, results in the
Classical Correlation curve reproducing the “Quantum
Correlation” curve.



Shannon, Heisenberg and Bell

More generally, this “single bit of information”
phenomenon, is at the heart of the correct interpretation
of the Heisenberg Uncertainty Principle, of which the
EPR paradox* and Bell’s Theorem are merely special
cases. The uncertainty principle, in turn, is merely the
special case of Shannon’s Capacity Theorem?3, which
marks the transition from the classical to the quantum
realm, via the transition from measurements capable of
recovering multiple bits of information (classical realm)
to measurements in which only a single bit of information
can ever be recovered (quantum realm).

Once it is realized that some entities only contain a
single bit of recoverable information, it becomes obvious
why two variables, such as those appearing in the
uncertainty principle, cannot be simultaneously
measured; measuring two independent (uncorrelated)
variables would require extracting at least two bits of
information, one for each variable, from an entity that
only contains one: a self-contradiction.

Shannon’s Capacity Theorem is usually discussed in
regards to the number of states a system may have, or its
entropy. However, there is a much simpler way to
understand its significance. Shannon’s Capacity, states
that there is a maximum number of bits of information
that can ever be recovered from a continuous “signal”’:

Max number of bits of information =T B logx(1+S/N)

where T is the signal’s duration, B is the filter bandwidth
and S/N is the signal-to-noise ratio.

This limit exists, because the maximum number of
recoverable bits of information, cannot exceed the
number of bits of data, within a set of discrete, sample
measurements, that is sufficient for perfectly
reconstructing the continuous signal. That maximum
number of bits, is simply equal to the product of the
number of required samples (TB), multiplied by the
number of bits per sample (log2(1+S/N)), required to
encode all the “significant” bits, above the noise level.

The maximum number of samples required is limited,
because of the limited bandwidth of the signal®; a band-
limiting filter introduces correlations between closely-
spaced measurements, such that any more closely spaced
measurements cannot be independent, from those
sufficient for perfect reconstruction. Similarly, the noise
limits the number of bits required per sample.

With these facts in mind, it is obvious that the limiting
case is a signal that can be reconstructed from a single
sample (T B = 1), with a single significant bit per sample
(log2(1+S/N) = 1). The limiting case is thus, T B =1. This
is the Uncertainty Principle. To see this, in the case of a
photon, consider that:

¢ At = Ax = h/Ap = AA = ¢/Af, hence:
At=1/Af, or At Af =1, or, in the notation above T B =1

In other words, the Heisenberg Uncertainty Principle
simply states that once the bandwidth and noise intrinsic

to the object being measured is such that only a single bit
of information can ever be recovered from any
measurements of the object, then all classical independent
variables, like position and momentum and multiple spin
components, can no longer be independent - because they
have become correlated, as the result of the limit on the
information content. This is the nature of the correlations
being characterized by Bell’s Theorem. It has nothing to
do with “spooky action at a distance”, since it is simply
the consequence of an intrinsically limited information
content - the defining difference between the “classical”
and the “quantum”.

Identical Particles

Line number 82 in the script is commented out. If it is
uncommented and executed, the “Quantum Correlations”
disappear. Even the noise is now identical, except for a
sign, for each entangled pair; causing even the bit errors
(bad polarity decisions) to now be perfectly correlated.
This does not happen because no bit errors are being
made (as in figure 1), it happens because both detectors
now always make identical errors. In other words, in the
(incorrect) quantum interpretation, even when the actual
detected polarity is not even a possible state of the noise-
free wave-function (the detection was a total error) even
the bogus detections must be perfectly correlated, and
have nothing to do with the actual, noise-free wave-
function, in order to explain the classical result.

This begs the question, "What makes identical particles,
behave as if they are identical?" They cannot have
identical noise (actually be identical), because that will
fail to produce the observed quantum correlations. Thus,
they are identical if and only if, only their recoverable
information content is identical. If the intrinsic noise is
"too identical", then they cannot behave like identical,
quantum particles, instead, they will behave like identical,
classical particles. Particles with more than one identical
bit of information, are consequently, foo identical to ever
behave as identical, quantum particles.

Appendix A - MATLAB Simulation
The MATLAB script implementing the simulation
appears in an appendix. Note that by changing the value
of the variable “test”, on line number 24, the three cases,
used to generate Figures 1, 2 and 12, can be executed.
The associated file “Quantum_Correlations.txt’” contains
the actual script. It can be opened and viewed with any
text editor. By changing the extension for “.txt” to “.m”, it

can be directly opened and executed in MATLAB.



1 See for example https://en.wikipedia.org/wiki/Bell%27s_theorem

2 http://www.mathworks.com/products/matlab/

3 https://en.wikipedia.org/wiki/Loopholes in_Bell test experiments

4 https://en.wikipedia.org/wiki’lEPR_paradox

5 https://en.wikipedia.org/wiki/Shannon%E2%80%93Hartley theorem

6 https://en.wikipedia.org/wiki/Nyguist%E2%80%93Shannon_sampling theorem

7 http://fgxi.org/data/forum-attachments/Quantum_Correlations.txt
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