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„So God made the people speak many different languages …“ 

 

Virus 

„The World Health Organization has announced a world-wide epidemic of the Coordinate 
Virus in mathematics and physics courses at all grade levels. Students infected with the virus exhibit 
compulsive vector avoidance behavior, unable to conceive of a vector except as a list of numbers, and 
seizing every opportunity to replace vectors by coordinates. At least two thirds of physics graduate 
students are severely infected by the virus, and half of those may be permanently damaged so they 
will never recover. The most promising treatment is a strong dose of Geometric Algebra“. (Hestenes) 

Cat 

„When the spiritual teacher and his disciples began their evening meditation, the cat who lived 
in the monastery made such noise that it distracted them. So the teacher ordered that the cat be tied 
up during the evening practice. Years later, when the teacher died, the cat continued to be tied up 
during the meditation session. And when the cat eventually died, another cat was brought to the 
monastery and tied up. Centuries later, learned descendants of the spiritual teacher wrote scholarly 
treatises about the religious significance of tying up a cat for meditation practice.“  (Zen story) 

Empty your cup 

„A university professor went to visit a famous Zen master. While the master quietly served tea, 

the professor talked about Zen. The master poured the visitor's cup to the brim, and then kept pouring. 

The professor watched the overflowing cup until he could no longer restrain himself. - It's overfull! No 

more will go in! - the professor blurted. - You are like this cup,- the master replied, - How can I show 

you Zen unless you first empty your cup?“  (Zen story) 

 

Division algebra 

“Geometric algebra is, in fact, the largest possible associative division algebra that integrates 
all algebraic systems (algebra of complex numbers, vector algebra, matrix algebra, quaternion algebra, 
etc.) into a coherent mathematical language that augments the powerful geometric intuition of the 
human mind with the precision of an algebraic system.”  

 (Sabbata: Geometric algebra and applications in physics [28]) 
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Preface 

 

 

The aim of this paper is to introduce the interested reader to the world of geometric 
algebra. Why?  

Alright, imagine the Neelix and Vulcan (from the starship Voyager) conversation. The goal 
is to sell a new product to the Vulcan (Tuvok). This can be achieved so that Neelix quickly intrigue 
the Vulcan, giving him as little information as possible, and the ultimate goal is that Vulcan, after 
using it, be surprised by the quality of the product and recommend it to the others. Let's start. 

Neelix: “Mr Vulcan, would you like to rotate objects without matrices, in any dimension?” 

Vulcan: “Mr Neelix, do you offering me quaternions?” 

Neelix: “No, they only work in 3D, I have something much better. In addition you will be able to do 
spinors, too.” 

Vulcan: “Spinors? Come on, mr Neelix, you're not going to say that I will be able to work with 
complex numbers, too?” 

Neelix: “Yes, mr Vulcan, the whole complex analysis, generalized to higher dimensions. And you 
will be able to get rid of tensors.” 

Vulcan: “Excuse me, what? I'm a physicist, it will not pass …” 

Neelix: “It will, you do not need the coordinates. And you will be able to do the special theory of 
relativity and quantum mechanics using the same tool. And all integral theorems that you know, 
including the complex area, become a single theorem.” 

Vulcan: “Come on … nice idea … I work a lot with the Lie algebras and groups ...” 

Neelix: “In the package …” 

Vulcan: “Are you kidding me, mr Neelix? Ok, let's say that I believe you, how much would that 
product cost me?” 

Neelix: “Pennyworth, mr Vulcan, You must multiply vectors differently.” 

Vulcan: “That's all? All of this you offer me for such a small price? What's trap?” 

Neelix: “There is no one. But true, you will have to spend some time to learn to use the new tool”. 

Vulcan: “Time? Just do not have … And why would I ever forgo coordinates? You know, I am quite 
adept at juggling indices, I have my career …” 

Neelix: “Do physical processes you are studying depend on the coordinate systems you choose?” 

Vulcan: “I hope not.” 

Neelix: “There. Does a rotation by matrices provides you a clear geometric meaning when you do 
it?” 

Vulcan: “No. I have to work hard to find it out.” 

Neelix: “Now you will not have to, it will be available to you at each step.” 

Vulcan: “Mr. Neelix, I'm curious, where did you get this new tool?” 

Neelix: “Well, mr Vulcan, it is an old tool from Earth, 19th century, I think, invented by humans 
Grassmann and Clifford.” 

Vulcan: “What? How is that I'm not aware of it? Isn’t it strange?” 
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Neelix: “Well, I think that human Gibbs and his followers had a hand in it. Allegedly, human 
Hestenes was trying to tell the other humans about it, but they did not listen to him.  You will 
agree, mr Vulcan, that humans are really funny sometimes.” 

Vulcan: “Mr Neelix, this is a rare occasion when I have to agree with you.” 

Vulcan buys and lives long and prosper. And, of course, recommends the new tool to the captain 
… 

This text is not intended as a textbook, it is more motivationally directed, to see „what's 
up“. It is intended mainly to young people. Also, intention here was to use simple examples and 
reader is referred to the independent problem solving. The active reading of the text is recommended, 
with paper and pencil in hand. There is a lot of literature, usually available at Internet, so, reader is 
referred to the independent research. The use of available computer programs is also recommended. 
There are reasons to think  that geometric algebra is mathematics for future. Paradoxically, it has 
been established since the mid-19th century, but was ignored as a result of a series of 
(unfortunate) circumstances. It's hard to believe that those who have made careers will easily accept 
something new, hence belief that this text is mainly for young people. The background in physics and 
mathematics at the undergraduate level is necessary for some parts of the text, but it is somewhat 
possible to follow the exposure using Internet to find explanation for the less familiar terms. A useful 
source is the book  [35], which can certainly help to those who are just starting with algebra and 
geometry. The book [20] is hard one and it is recommended to those who think seriously. But, 
read Hestenes' articles first. 

It is important for the reader to adopt the idea that the vector multiplication here exposed is 
natural and justified. The rest are the consequences of such a multiplication. The reader can 
independently come up with arguments to justify the introduction of the geometric product. The 
goal is to understand that the geometric product is not just a "neat trick", but that naturally arises 
from the concept of vector.  That changes a lot of mathematics. A simple setting that parallel vectors 
commute while orthogonal anti-commute produces an incredible amount of mathematics  and unites 
many different mathematical disciplines into the language of geometric algebra. 

You can send me comments or questions at: 

miroslav.josipovic@gmail.com 

 

Miroslav Josipović 

Zagreb, 2017. 

 

 

 

mailto:miroslav.josipovic@gmail.com
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Geometric product (of vectors) 

 

Vectors will generally be denoted in small letters in italic format, wherever there's no 
possibility of confusion. We will use the bold format also, if necessary. We will use the Greek alphabet 
for real numbers. Multivectors are denoted in the uppercase italic format. If we define the orthonormal 
basis in a vector space then the number of unit vectors which square to 1 is denoted with p , the 

number of those with square -1 with q  and the number of those with square  0 with r . Then the 

common designation for such a vector space is ( , , ) p q r  or , , p q r , while triplet ( , , )p q r  is referred 

as the signature (in literature this is also the sum p q ). For geometric algebra of 3D Euclidean vector 

space 3  we use the abbreviation Cl3, which is motivated by the surname Clifford.  

Here, when we say “vector”, we do not refer to elements of an abstract vector space, we rather 
take that concept as an “oriented straight line”. To add vectors we use the parallelogram rule.  Vectors  

a  and b  that satisfy the relation  ,   ,   0  b a   , are said to be parallel. For parallel vectors 

we say that they have the same direction (attitude), but could have the same or opposite orientation. 

We can resolve any vector b   into the component in the direction of the vector  a   (projection) and 
the component without any part parallel to the vector a  (rejection) 

,     ,   ,   0    b b b b a   . 

Here we can immediately anticipate objections, like: „Yes, but if we talk about orthogonal vectors we 

need a scalar product …“. Although we use the character „ “, here, for a moment, we are not talking 

about the orthogonality of vectors. Simply, by the fact that vectors can be added, we conclude that 

any vector can be written as a vector sum of two vectors, in an infinite number of ways. One of these 

possibilities is just given by the previous relation, so it can be seen as a question of existence, and not 

how to practically implement it. Namely, for 
    b b b b a , if we assume that the vector b

contains a component parallel to a we can write  
   b a b a  , but then the vector 

b  is our 

rejection. If there is no 
b  then the vector b  is parallel to the vector a . After, eventually, we succeed 

to define a new product of vectors, we can return to the question how to find b  practically, and that 

is what the new product of vectors should certainly enable to us. 

Let's ask the question: how to multiply vectors? We will need to "forget" everything we have 

learned about the multiplication of vectors (i.e. scalar and cross products). Well, before we "forget" 

them, let's look at some of their properties. Can we uniquely solve the equation  a x   (here a x  

is a scalar product)? The answer is, clearly, we cannot, because if x  is a solution then each vector of 

the form ,    0  x b b x  is a solution, too. And what about the equation   a x b (cross product)? 

It also cannot be uniquely solved, because if x  is a solution then each vector of the form x a  is a 

solution, too. But, interesting, if we take into account both equations then we can find the unique 

solution. Notice that the scalar product is commutative, while the cross product is anti-commutative. 

For two unit vectors  m and n  in 3D we have 

cos m n    and    sin m n  , 

which suggests that these two products are somehow related, because of  

2 2sin cos 1   . 
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An interconnection could be anticipated if we look at multiplication tables in 3D ( ie  are 

orthonormal basis vectors): 

1 2 3

1

2

3

1 0 0

0 1 0

0 0 1

e e e

e

e

e

                        
3

1 2 3

1

3 1

1

2

2

23

0

0

0









e e e

e

e

e

e e

e e

e e

 

We see that the scalar product has values different from zero only on the main diagonal, while 
the cross product has zeros on the main diagonal (due to anti-commutativity). Multiplication tables 
simply lure us to unite them. The form of both products suggests similarity with complex numbers that 
can be elegantly written in the trigonometric form, but for this we need a quantity which gives -1 
squared, like the imaginary unit. But, it is not clear how to naturally relate the cross product to an 
imaginary unit like quantity. On the other hand, the cross product is anti-commutative, which suggests 
that it "should" have the feature to give  -1 when squared. Namely, if we imagine any quantities that 
give a positive real value when squared and whose products are anti-commutative and associative we 
would have  

 
2 2 2 0     AB ABAB ABBA A B . 

Let's look at an orthonormal basis in 3D, we can say that the vector 
1

e  is polar vector, while 

2 3 1
 e e e  is axial vector. So, what is 

1
e  like? Of course, we could play with more general definitions 

invoking tensors, but it is strange that in such an elementary example we immediately have a problem. 
Mathematicians would argue that the cross product can generally be defined in dimensions different 
from 3, but if you think about it a little and require a natural and simple definition, some questions 
arise immediately.  

 

Let's look at a 2D world where plane physicists want to define the torque. If they do not wish 
to look for new dimensions outside "their world", they will not even try to define a cross product, there 
is no vector orthogonal to their world. But, we can see that the torque makes sense also in 2D world: 
it is proportional to the magnitude of both force and force arm, the two possible orientations of 
rotation are clearly defined, therefore, how to multiply a force arm vector and a force vector to provide 
the desired torque? The answer to that question is found already in 19th century by great 
mathematician Grassmann, underestimated and neglected in his time. He defined the anti-

The cross product 
lives in 3D and have a lot 
of problems.  

A bivector is an 

oriented part of a plane, 

lives in all dimensions 

greater than 1 and it’s 

almost magical. 
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commutative exterior product of vectors and so got a bivector, an object contained in a plane, with 
orientation and module, so, it is ideal for our 2D problem. In addition, it can be easily generalized to 
higher dimensions. Grassmann himself and Clifford a little later managed to unite scalar and outer 
(exterior) product into one: geometric product, exactly what we are talking here about. The scalar 
product of vectors is not changed, but the cross product is replaced by the outer product and artificial 
difference between “axial” and “polar” vectors disappeared. All “axial” vectors are bivectors (magnetic 
field vector, for example, see in text). 

Alright, now "forget" the scalar and the cross products and let's find how to define a new one. 
It is reasonable to require an associativity and distributivity of the new multiplication (like for real 
numbers), i.e.  

   a bc ab c  and   ,    b c a ba ca      ,   ,   a b c ab ac      . 

Of course, we do not expect a commutativity of a vector multiplication, except for scalars (real 
numbers). After all, the definition of the cross product is motivated by the need for such a non-
commutative constructs (like torque, or Lorentz force, …).  

1) Let's consider the term 2a  first ( a  is a vector). We will assume that 2 a . Clarify 

immediately that we do not imply that  ab a b , as usual, where we have the scalar product 
denoted by dot. This is important to note, as it would lead to confusion otherwise. We expect 
that the square of the vector does not depend on the vector direction, but depends on its 
length (we exclude the possibility of nonzero vectors with the length zero, for now).  

 
2) We expect that the multiplication of the vector by a real scalar is commutative, which 

immediately results in that the multiplication of parallel vectors  ( a b ) is commutative: 

,    a a ab a a aa ba          . 

Actually, we could call principles of symmetry to help us, we immediately see that 
multiplication of parallel vectors must be commutative, because we have no criterion to distinguish 
which vector is the "first" and which is the "second". This is obvious if vectors have the same 
orientation, but if vectors have opposite orientations we can refer to the fact that all orientations in 
space are equal (isotropy). On the other hand, for perpendicular vectors we just expect anti-
commutativity because we always know which vector in the product comes first and vectors define 
the same part of the plane (parallelogram) no matter in what order they are multiplied. Therefore, 
there remains the possibility that products with a different order of vectors differ in a sign.  Our new 
product should also include multiplication of reals by reals. 

 

3) Due to the independence of the square of the vector on direction we have (recall, 


b  has no 

component in the direction of a ) 

     
2 2

0 2        b a b a b a ab , 

meaning that vectors 


b and a   anti-commute. You can design other "arguments", but recall, 

we do not assume the scalar or cross product, we are looking for properties of the new product 
of vectors "from scratch". This example is not the proof, just an idea how we could think about 
it. In figure p. 1 we can easily see what we demanded: that the square of vectors does not 
depend on the direction.  
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We can, of course, after we assumed non-commutative multiplication, just use 

 
2 2 2

       a b a b ab b a  

and immediately conclude that it must be 0
 
 ab b a  because we expect the Pythagorean 

theorem to be true. But figure p. 1 show us that we have symmetry here, namely, vectors a   
and a  define a “straight line”, here “right” and “left” is not important concept and we see 

that the direction of the vector 


b  suggests the symmetry in accordance with our intuitive 

concept of the orthogonality. Without this symmetry we enter a “skew land”, but let pure 
mathematicians to go there.   

 

4) Let us show now that, according to 3), 2a  commutes with b (without any assumption what 2a

is): 

 2 2 2 2 2 2

        a b a b b b a ab a b a b a ba , 

 

which justifies our (previous) assumption that 2 a . Again, it is important to understand 
that we are not giving proofs, we are to justify the new product of vectors. It follows 

immediately that ab  commutes with b, because of ,    b a  . Now we have  

2 2     ab ba ab b a ab ab , 

so ab ba  commutes with  b . It is clear that it commutes with a  also, which means that 

commutes with any vector in the plane defined by vectors a and b . But it obviously commutes 

with any vector perpendicular to that plane, because a  and b  anti-commute. 

We can always decompose any non-commutative product into the symmetric and 
anti-symmetric part: 

2 2
  

 


ab bab
a

ab a
Sb A , 

where we have 

S ab ,     A ab . 

Last two relations are very handy, for example we can see that 

2 2 2

    A ab ab a b . 

The symmetric part, we have seen, commutes with all vectors. This is also seen from  

 
22 2    ab ba a b a b , 

because the square of a vector is commutative. Note that we have not defined precisely yet 

what 2a  is, but it is obvious that regardless of the explicit value of 2a  we have for vectors a  

and 


b   
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 
2 2 2 2 2 2 2

                 a b a b ab b a a b ab ab a b , 

i.e. we have the Pythagorean theorem, here expressed through the new multiplication of 
vectors. If we define the term "orthogonal" as the relation between vectors in which the 

projection of one on another is zero (

 b a b ), we get the Pythagorean theorem, which now 

applies to orthogonal vectors regardless of the specific value of 2a , if we accept the arguments 
from the part 3). Let us recall that the Pythagorean theorem is, as a rule, expressed over the 
scalar product of vectors and that in this way we have a problem with negative signature 
(meaning that there are vectors whose square is negative), as is customary in the special 
theory of relativity. For any two vectors, the relation  

 
2 2 2    a b a b ab ba  

can be taken as the cosine rule, because the symmetric part of the new product commutes 
with all vectors, and thus is a "scalar" .  

We assumed that  2a  is a real number equal to 
2
, a   where  a  is the absolute 

length of the vector a   (we say that we are introducing metrics). Now we can write for the 
symmetric part  

  / 2   a b ab ba ab , 

that we call the inner product. We see that it coincides with the usual scalar product of vectors, 
but here we need a little bit of caution: in geometric algebra we generally distinguish several 
types of "scalar" products, one of them is the scalar product (generally different than that of 
Gibbs), and there are more: dot product, left contraction, etc. For vectors, all types of "scalar" 
products coincide, but generally they are a little different (see literature). Here we are to work 
with the inner product and the left contraction (see in text).  

For unit vectors of the orthonormal basis we have 2
1 

i
e  (null-vectors are not 

included here), which means 

2  i j j i ije e e e  . 

Caution: do not confuse 
i je e  with i je e ! If you are wondering what  

i je e  is,  the 

answer is: a completely new type of object, we will see about it in the text. 

Let's look at 2D examples: 
 

 

 

22 2 2 2 2

1 2 1 2 1 2 2 1 1 2

21,1 2 2 2 2

1 2 1 2 1 2 2 1 1 2

:    1 1 1 2 ,

:   1 1 1 0 ,

           

            

e e e e e e e e e e

e e e e e e e e e e
 

 
so we see that in both cases the Pythagorean theorem is valid, but with the new multiplication 
of vectors.  

 

For 3  we have: 
2 2 2

1 2 3 1,    2    i j j i ije e e e e e e  , 

but, here's a magic, there are known mathematical objects that meet precisely these relations: 
Pauli matrices, discovered in the glorious years of the development of quantum mechanics. 

We can say that Pauli matrices are 2D matrix representation of unit vectors in  3 , we only 
need vectors to be multiplied in a new manner, just described. That is to say, Pauli matrices 
have the same multiplication table as orthonormal basis vectors. Let's make sure of that. Pauli 
matrices are defined as  
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1 2 3

0 1 0 1 0
ˆ ˆ ˆ,   ,   

1 0 0 0 1

     
       

     

i

i
    , 

so, for example 

2 2 1 2 2 1

1 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ ,   

0 1 0 0

   
     
   

      . 

 

The designation ˆ
i

  is often used for Pauli matrices, so here we use 
i

  for unit vectors in 3 . 

Pauli matrices are important to describe the spin in quantum mechanics, so we see that vectors 
could serve to this purpose as well, but with our new product of vectors. Indeed, quantum 
mechanics can be nicely formulated by such mathematics, without matrices and the 
imaginary unit  (see below).  

 
Note that by a transposition of Pauli matrices followed by a complex conjugation we 

get again the same matrix (Hermitian adjoint), for example 

*

2

0 0 0
ˆ 

0 0 0

      
       

     

T
i i i

i i i
 , 

or simply †

2 2
ˆ ˆ  . Also we have, for example,  

†

2 3 3 2

† †

3 2
ˆ ˆ ˆ ˆ ˆ ˆ        (antiautomorphism, 

show that). This exactly matches the operation reverse (see below) on products of vectors, for 

example 
1 2 3 3 2 1

e e e e e e . Therefore, the character †  is often used to denote the reverse 

operation (we will do so here).  
 
Here we can immediately spot the important feature of the new multiplication of 

vectors. The vector is geometrically clear and intuitive concept, and the new product of vectors 
also has a clear geometric interpretation (see below). For example, we can clearly 

geometrically present the product 
1 2

e e  as the oriented area, it has the ability to rotate, 

unambiguously defines the plane spanned by vectors  
1

e  and 
2

e , etc. All this we can 

immediately conclude at a glance. For comparison, consider now the matrix representation of 

vectors 
1

  and 
2

  with their product: 

1 2

0 1 0 0
ˆ ˆ .

1 0 0 0

     
      

     

i i

i i
  . 

Can we derive similar conclusions about a geometric interpretation just by looking into 
the resultant matrix? Just looking certainly not, it would take a lot of effort, but we will often 
fail to get the clear geometrical interpretation. Which plane the resultant matrix defines (if any 
is to be defined)? Pauli matrices cannot do all that vectors can. In this text we will, hopefully, 
illuminate such a things in order to get an idea of the importance of the new multiplication of 
vectors. 

 It is time for the new multiplication of vectors to get the name "officially"  (due to Clifford, 
Hestenes, …): geometric product. The symmetric and anti-symmetric parts of the geometric product of 

vectors have special insignia: a b  and a b   ( a b  is the inner and a b  is the outer product), so we 
can write for vectors 

ab a b a b    . 
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An important concept, that we will often use, is the grade. Real numbers have the grade zero, 

vectors have the grade 1, all elements that are linear combinations of products ,    i je e i j , have 

the grade 2, and so on. Notice that geometric product of two vectors is a combination of grades 0 and 
2, it is even, because its grades are even. What grades generally has the geometric product of three 
vectors? 

A vector space over the real field with the geometric product (GP in text) becomes an algebra 
(geometric algebra, GA in text). Elements of geometric algebra obviously are not vectors only. Note 
that the inner product is zero for orthogonal vectors, for example, for orthonormal basis vectors we 
have 

1 1 1 1 1 2 2 1
1 1 1 2 1,   0

2 2

 
      

e e e e e e e e
e e e e 1 2 1 2 1 2 1 2     e e e e e e e e , 

so for orthogonal vectors the geometric product is the same as the outer product. How about the anti-
symmetric part? We have 

1 2 2 1 1 2 1 2 1 1 1 1
1 2 1 2 1 1,   = 0

2 2 2

  
     

e e e e e e e e e e e e
e e e e e e . 

Obviously, 
1 2

e e  is not a scalar, it doesn’t commute with all other vectors, for example 

     1 2 1 1 2 1 1 1 2 1 1 2e e      e e e e e e e e e e , 

but is neither a vector in 3 , it squares to -1: 

 
2

1 2 1 2 1 2 1 1 2 2 1    e e e e e e e e e e , 

 
so, we have a new type of mathematical object, it is like the imaginary unit, except that is non-
commutative. The name for such an object is the bivector. Generally, we will define a bivector as 

element of algebra of form a b . Let's look at some more properties of the bivector 
1 2

e e . We have 

   1 2 1 1 1 2 2 1 2 2 1e ,    e    e e e e e e e e e , 

so, acting from the left on vectors it rotates them by / 2 . How it rotates vectors if acting from the 
right? 

Recall the reverse operation on geometric product of vectors: ...x abc d     † ...x d cba , 
so we have 

       
† 2

1 2 1 2 1 2 2 1 1 2 1   e e e e e e e e e e , 

 
therefore we call it a unit bivector.  Generally, it is possible to find a module of bivectors, so, bivectors 

have the module and orientation. Furthermore, unit bivectors, like 1 2e e , except for the module, 

orientation (
1 2 2 1 1 2

  e e e e e e ) and the ability to rotate vectors, have another important feature, 

which the imaginary unit does not have, namely, it defines the plane spanned by vectors (here 
1

e  and 

2
e ). Later we will see how this is implemented in practice by the outer product.  

Now let's see how we can graphically present a (unit) bivector. The obvious option is to try 

with oriented parallelogram (square for 
1 2

e e ). But, the shape of an area which represents a bivector is 

not important, we should keep the magnitude of the area and orientation, therefore it is often a 

practical choice an oriented circle of radius  
1 2

/ 1/e e   . To justify our claims, look at  

 1 2 1 2 1 2 2 1 2     e e e e e e e e e , 
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it can illustrate the fact that the shape is not important.   

 

 
Notice immediately that two vectors, except that define a plane, generally define a 

parallelogram, too. The outer product of such vectors (bivector) has the magnitude  just equal to the 
parallelogram area (see below), while the direction we define as in figure p. 2. Find the area of the 

leftmost parallelogram in p. 2. Notice that bivector is just 
1 2

e e , but show that formula  

1 2 1 2 21 sin  e e e e e   

gives the area of the parallelogram.  

As previously for the symmetric part of the geometric product, we can write 

2     ab ba ab b a ab  

and see immediately that it anti-commutes with a , b  and b , so, it anti-commutes with b  and, 

consequently, with all vectors from the plane defined by vectors a  and b . Obviously, it commutes 
with vectors perpendicular to that plane. Also we have 

 
2 2 2

         ab ab ab aab b a b , 

meaning that this quantity is negative in Euclidean space. So, the anti-symmetric part of the geometric 
product is not a vector, it can square to a negative real number and it is not a scalar, it anti-commutes 
with some vectors. Note that from 

2 ab ba ab , 

2  ab ba ab , 

we can derive a lot of interesting properties of parts of geometric product, including their magnitudes, 
just using 

cosb b    and  sin b b  . 

Let's look at three vectors in 3 which sum is zero (a triangle), from 0  a b c  it follows 
that  

    a b b c c a . 
To see this it is enough to look at expressions    a b c a  and    a b c b  (check), but 

we can see it easy without calculation, it is enough to look at the figure on the left: each pair of vectors 
defines the parallelogram of the area equal to the double area of the triangle, and all pairs give the 
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same orientation of a bivector. This is important, often we can draw 
conclusions simply from the geometric observations, without 
calculation. In the formula for the area of a parallelogram appears the 
sine function, so we see that previous equalities are just the sine 
theorem. If we recall that bivector is not shape depended, we see that 
all three our bivectors have the same factor I  (the unit bivector). 
Now we have  

sin sin sina cI b bcI Ia    , 

 

sin sin sin

c a b

  
  . 

 
 
Bivectors define a plane. Consider the outer product in Cl3 

   1 2 1 1 2 2 3 3 3 1 2 3    e e a e a e a e a e e e , 

so, we can see that the outer product of a bivector with a vector gives the possibility to eliminate 
components of the vector that do not belong to the plane defined by the bivector. Therefore, the plane 
of the bivector B  (2D subspace) is defined by the relation    

0 B x . 

In our example, solutions are all vectors of the form 
1 1 2 2

 x a e a e .  

Imagine a unit bivector in Cl3. It defines a plane and have properties of (non-commutative) 
imaginary unit (in that plane). This is powerful: we can use the formalism of complex numbers in any 

plane, in any dimension. How? Let's take back our bivector 
1 2

e e and the vector 
1 2
xe ye . If we multiply 

our vector by 
1

e  from the left we get 

 1 1 2 1 2 1 2,        e xe ye x ye e x yI I e e , 

so, we have a complex number.  What we get if we multiply from the right? For more details see below. 

The reader may show that any linear combination of unit bivectors in Cl3 can be expressed as 

an outer product of two vectors.  This is not necessarily true in 4D, take for example 
1 2 3 4

e e e e . Prove 

that there are no two vectors in 4D with the property 
1 2 3 4

  a b e e e e . In 3D, for each plane we have 

exactly one orthogonal unit vector (up to the sign), while that is not true in higher dimensions. For 

example, in 4D, the plane defined by the bivector 
1 2

e e  has orthogonal unit vectors 
3

e  and 
4

e  (their 

linear combinations too).  

Take the bivector 
1 2

e e  in 3   and multiply it by 
1 2 3 1 2 3

:       e e e j e e j e , one can see that 

we get exactly the cross product of vectors 
1

e  and 
2

e , or, for arbitrary vectors 

 j   a b a b . 

This is valid in 3D, but the expression  a bI  is valid in any dimension, where I  is a general 
pseudoscalar. In 2D  a bI  is just a real scalar, while in 4D or higher we can take the advantage of the 
concept of duality. The cross product of vectors (Gibbs) requires the right hand rule and the use of 
perpendiculars to surfaces. With bivectors it will not be necessary, so, for example, we can completely 
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omit objects such as "rotation axis ", etc. Find the geometric product of two vectors 
3

1

a
i i

i

a e  and 

3

1

b
i i

i

b e in 3  and show that it can be expressed as  

   1 2 3 .e e e j       ab a b a b a b a b  

Algebra 

 

Let's look again at a 2D example. All possible outer products of vectors expressed in the 

orthonormal basis can provide a linear combination of "numbers" 1, 
1

e , 
2

e  and 
1 2 1 2
 e e e e  (any 

linear combination of these "numbers" we will refer to as a multivector). The outer product is anti-

commutative, so, all terms that have some unit vector repeated disappear.  “Numbers“ 1, 
1

e , 
2

e  and 

1 2
e e  form the basis of 22 – dimensional linear space. In fact, we have the basis of the algebra (Clifford 

algebra). When the geometric meaning is in the forefront we refer it as the geometric algebra (due to 
Clifford himself). The element 1 is a real scalar.  We have two vectors and one bivector (in the 
terminology of geometric algebra it is referred as the   pseudoscalar in the algebra, namely, a member 
of the algebra with the maximum grade). Note that scalars make a subspace (real numbers, grade zero, 
see below), vectors define 1D subspaces (grade 1) and pseudoscalar defines a 2D subspace (the space 
itself, of grade 2).  

In 3  we have the basis of the algebra (Cl3): 

1, 1e , 2e ,  3e , 1 2e e , 1 3e e , 2 3e e ,  1 2 3e e e , 

here 
1 2 3 1 2 3

   j e e e e e e  is the unit pseudoscalar.  Show that j commutes with all elements of the 

Clifford basis in Cl3 and that 2
1 j . Pseudoscalars in any dimension are all proportional to the unit 

pseudoscalar. Prove it, at least for j .  So, pseudoscalar j   is a perfect  (commutative) imaginary unit 

in Cl3. Such a pseudoscalar will appear also in Cl7, Cl11, … This has far-reaching consequences. But here 
one should be careful, the commutativity property of the pseudoscalar means the geometric product, 
while in terms with other products one should be cautious. Real scalars do not have this "problem", 
they can "walk" through all products. For the pseudoscalar we have, for example 

   1 3 1 3 1 3 1 3 1 3   je e e je e e j e j e e je , 

i.e. the geometric product allows "walking", but this is not generally valid with, say, the inner product  

     1 3 1 3 1 1 2 20      e e j e je e e e e , 

here we have a mixed product (see below). 

In 3D, for arbitrary four vectors we have  0.   a b c d  The outer product has distributivity 
and associativity properties also (see literature or prove itself).  If any two vectors here are parallel, 
relation is true due to anti-commutativity of the outer product. Otherwise we have, for example, 

,   , ,   d a b c      , so, our statement is true due to distributivity and anti- 

commutativity. 

The maximum grade of a multivector cannot be larger than the dimension of the vector space 

(show that). Show that number of elements in the Clifford basis with the grade k   equals to the 
binomial coefficient  
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 
 
 

n

k
 , 

where  n  is the dimension of the vector space. For real scalars we have 0k , so, there it is just one 

real scalar in the basis (i.e. 1). The same is for k n , there is just one element with the grade n   in 
the basis, which gave rise to the term “pseudoscalar”. Show that the number of elements in the Clifford 
basis for n -dimensional vector space equals to  2n.  

An important concept is the parity of a multivector and refers to the parity of its grades. All 
elements with even grades define a subalgebra (the geometric product of any two of such elements is 
even, too, show that!), while this is not true for the odd part of the algebra.  

Grades of a multivector M  are usually written as 
r

M , where r is the grade. For the grade 0 

we use just M , for example  a b ab . The grade 0 is a real number and it does not depend on 

the order of multiplication, so we have AB BA , which leads to the possibility of cyclical changes, 

like ABC CAB . This is a beneficial relation, for example, consider the inner product a b    and 

ask ourselves what would happen if we apply the transformations a nan  and b nbn  ( n is a unit 
vector). Note that the result of such a transformation is a vector (decompose the vector a  into 
components parallel and orthogonal to n ). The inner product of two vectors is just the zero grade of 
their geometric product, so we have, using cyclical changes 

         nan nbn nannbn nabn abnn ab a b . 

Such a transformation doesn’t change the inner product, so we have an example of an orthogonal 
transformation (this one is a reflection).  A transformation X nXn  ( n is a unit vector) generally 

doesn’t change the grade. For example, if we have X ab  then 

   nabn nannbn nan nbn , 

i.e. we have a geometric product of two vectors again. This is a very important conclusion.  To see that 
it is generally valid, recall that each multivector is a linear combination of elements of a Clifford basis. 

So we have, for example  1 1 3 1 3 1 1 3
  e e e e e e e e , so, the grade is still 2. If a grade of element is 

changed by a transformation then we obtain a new type of element, but we don’t want that generally. 
Rather, we usually want to transform vectors to vectors, bivectors to bivectors, etc.  

Let’s now discuss some important formulas in which mixed products appear. For example, let's 
look at the product 

     / 2 / 2    a b c a bc cb abc acb . 

We can take an advantage of the obvious (and useful) relation 2  ab a b ba  and show that (left to 
the reader)  

       2 2      a b c b c a a b c a c b . 

Here we have a situation in which the grade of the bivector is downgraded, so it is customary to write 
such a relationship as the inner product, i.e. a kind of contraction  

  / 2  a B aB Ba , 

( B  is a bivector) or,  

              a b c a b c a c b a bc a cb , 

where it is understood that the inner product is executed first. This is a useful and important formula.  
It is not difficult to show that  
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  / 2  a B aB Ba , 

   aB a B a B . 

Find  1 1 2
e e e  and  1 1 2

e e e .  

Here is one more useful relation (without proof)  

     
1

1 1 1 1

1

... 1 ... ...




         a a a a a a
n

k

n k k n

k

e e , 

where a
k

means that the factor a
k

 is missing in the outer product. Find  1
 a be . 

It is straightforward to find the projection and the rejection (we announced this possibility 
earlier), for example, for a vector a , using the orientation of the unit vector n , we have 

 2

          a n a n n a n a nn a nn a a a , 

where the geometric product is to be executed last. For general formulas (for any elements of the 
algebra) see literature, or derive them using the concept of the inverse of a vector. 

Important concepts 

Before we dive into Cl3 let's look at some more general terms.  

a) versor   geometric product of any number of vectors 

b) blade   outer product of any number of vectors 

c) involution   any function with the property f (f(x)) = f(x) 

d) inverse  for an element x it is the element y  such that 1xy , 1
y x   

e) nilpotent  x2 = 0  

f) idempotent   x2 = x  

g) zero divisors  0xy , , 0x y  

Let's explain those terms in some more details. 

a) An example of a versor is  abc , if factors are vectors. For geometric product of two vectors 
we generally have grades 0 and 2. For verification techniques that some multivector is a 
versor see Bouma and [19]. Show that the geometric product of versor and its reverse (for 

abc  it is cba ) is a real number. 
 

b) An example of a blade is  a b c  , if factors are vectors. For verification techniques that 
some multivector is a blade see Bouma and [19]. A blade is simple if it can be reduced to 
the outer product of basis vectors (up to the real factor).  

While the versor ab  generally have grades 0 and 2, the blade a b  has the grade 
2 and defines the 2D subspace. Show that any homogeneous versor (has single grade only) 
is a blade. Show that any blade can be transformed to a versor with orthogonal vectors as 
factors. Any blade in Cl3 which is an outer product of three linearly independent vectors is 
proportional to the unit pseudoscalar (show that, if you have not done it already). 

Consider an arbitrary set of indices of unit vectors of an orthonormal basis, some 
of which can be repeated. Find an algorithm for sorting indices, so as to take into account 
skew-symmetry for different indices. The goal is to find the overall sign. After sorting, the 
unit vectors of the same index are multiplied  and thus reduce to one unit vector (up to a 

sign) or a real number ( 1 ). Example:  2 3 1 2 1 2 3 2 1 2 2 3 1 3

2

2,     
s

e e e e e e e e e e e e e e es      . 



 17 

 

 
Elements of the Clifford basis are simple blades. 

We have seen that in Cl3 any linear combination of unit 
bivectors defines a plane (i.e. can be represented as an 
outer product of two vectors). Multiply every element 
of the Clifford basis by the pseudoscalar j . What you 

get? Figure p. 3 can help in thinking. You can use 
GAViewer and see how your products look like.  

 
 

 
c) In geometric algebra  the most commonly used are three involutions, and all of them come 

down to change the sign of elements in the Clifford basis.  
 
Grade involution is obtained by changing the sign of each basis vector of the vector 

space (inversion). In this way all even elements remain unchanged, while odd ones change 
the sign. Consider a general multivector  M   in Cl3: 

1 1 2 2 3 3 1 12 2 13 3 23       M t x e x e x e B e B e B e bj , 

where 
12 1 2
e e e , etc. The grade involution gives 

1 1 2 2 3 3 1 12 2 13 3 23
ˆ        M t x e x e x e B e B e B e bj . 

The grade involution is an automorphism  (show that), which means  

  ˆ ˆ
MN MN . 

Elements  ˆ / 2


 M M M  and  ˆ / 2


 M M M  give the even and the odd parts 

of the multivector M  (find them for general M  in Cl3). 
 

Reverse involution  is an anti-automorphism  (  
† † †
MN N M , show that): 

†

1 1 2 2 3 3 1 12 2 13 3 23       M t x e x e x e X e X e X e bj . 

Elements  ˆ / 2 
R

M M M  and  ˆ / 2 
I

M M M  give  real and imaginary parts 

of the multivector M  (see below, find them for general M  in Cl3). 
 

Clifford conjugation (involution) is an anti-automorphism ( MN NM , show 
that): 

1 1 2 2 3 3 1 12 2 13 3 23       M t x e x e x e X e X e X e bj . 

 

Elements  ˆ / 2 
S

M M M  and  ˆ / 2 
V

M M M  give (complex) scalar  and 

(complex) vector parts of the multivector M  (see below, find them for general M  in Cl3). 
 
What we get applying all three involutions on a multivector, and what we get 

applying any two of them? Each involution changes a sign of some grades. If overall sign 

of the grade is given in the form  
 

1
f r

 , r is a grade, find the function f  for each 

involution. Often we need to check the properties of some product, sum, etc. What is 

multivector if  M inv M , where inv  stands for any of three defined involutions? Show 
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that for versors V  relation     1 2 1 2
ˆ... ...     

k k
V v v v V v v v  is valid. Show that the 

multivector †V̂xV  is a vector if x  is a vector. 
 

d) An important consequence of the geometric multiplication of vectors is the existence of 
the inverse of a vector (and many other elements of algebra), i.e. we can divide by a vector. 
For vectors (null-vectors do not have an inverse) we have 
 

1 2/ a a a , 
 

which means that the unit vector is inverse to himself. The existence of the inverse has far-
reaching consequences and significantly distinguishes the geometric product from the 
ordinary scalar and cross product. Now we can solve the equation: 

1  ab c a bc ,  

etc. We can define inverses of other multivectors, for example, it is easy to see what the 
inverse of the versor is: 

 
1

1 2 1 2 1 2 2 1 1 2 2 1/ ( )

    e e e e e e e e e e e e . 

Here we are using the fact that geometric product of versor and his reverse is just a real 
number. There exist multivectors without the inverse, we will see it a little later. The 
existence and definition of an inverse isn’t always simple and obvious, but in Cl3 that task 
is relatively easy. It is important to note that the existence of an inverse depends on a 
possibility to define module (norm, magnitude) of a multivector, and that is not always 
unique. For a general approach see references cited. 

 
e) Geometric product allows the existence of multivectors different from zero, but whose 

square is zero. They are nilpotents in the algebra and have an important role here, for 
example, when formulated in Cl3, an electromagnetic wave in vacuum is just a nilpotent 
in the algebra. For example, we have  

        
2

1 1 2 1 2 1 2 1 1 2 21 1 1 1 0       e e e e e e e e e e e . 

 
Nilpotents don’t have an inverse. If 0N  is a nilpotent and M  is its inverse, than 

from 1NM  we have 2 N M N , i.e.  0 N . 
 

f) Idempotents have the simple property 2
p p . Show that multivector  1

1 / 2 e  is the 

idempotent. In fact, every multivector of the form    2
1 / 2,    1 f f , is an idempotent. 

Later in text we will find the general form of idempotents in  Cl3. The trivial idempotent is 
1. Show that the trivial idempotent is the only one with the inverse. 
 

g) Multiply (1 + e1)(1 – e1). There are multivectors different from zero that multiplied give 
zero  (zero divisors). Although it differs from properties of real numbers, it turns out to be 
very useful in many applications.  

 

We should mention that the addition of quantities like x  and nj  (or other expressions of 

different grades) is not a problem, as some people complain, we add objects of different grades, so, as 
with complex numbers, such a sum preserves separation of grades. Here sum is to be understood as a 
relation between different subspaces. Let us clarify this a little bit for Cl3. Real numbers have grade 
zero and define the subspace of "points". Vectors define oriented lines, bivectors define oriented 
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plains and pseudoscalars define oriented volumes. For example, a bivector B  defines an oriented 

plane by relation 0 xB . In that plane we can find a unit bivector B̂  which has a number of 
interesting properties: squares to -1, it is oriented, rotates vectors in the plane, etc. As an example,  

 1 2 2 3 2 3 1
    B e e e e e e e , so vectors  

2
e  and 

3 1
e e  span the plane. Relation 0 xB  gives 

vectors x  as a linear combinations of vectors 
2

e  and 
3 1
e e . Find †BB . We see, the (unit) bivector 

ˆ / 2B B  has a clear geometric interpretation, but it is also the operator which rotates vectors in 
the plane it defines. It can also serve as an imaginary unit for complex numbers defined in the plane it 

defines. A multivector of the form B  is the sum of different grades, but there is no way to “blend” 
real scalars and bivectors in sums: they are always separated. But together, as a sum, they are 
powerful, as rotors or spinors, for example (see below). 

Finally, any multivector can be expressed as a list of coefficients in a Clifford basis. As an 

example we can use the multivector 
2 1 2

3 e e e  in 2D, the list of coefficients is  3, 0, 1,1 . It is clear 

that we can add and subtract such lists, find a rule to multiply them, etc. Addition of elements of 
different grades is equivalent to making such a lists, as we are get used to do it for complex numbers. 

A complex number  i   we express as an ordered pair of numbers  ,  . 

  

Examples of solving equations  

 

Let's find real numbers    and   such that  x a b   in 3 . We have 

      x a a a b a b a   , 

      x b a b b b a b   . 

Note that bivectors x a  and b a  define the same plane and both are proportional to the 
unit bivector in that plane, i.e. their ratio is a real number (unit bivector divided by itself gives 1). 
Therefore we have 

 
 

 

x b x a
x a b

a b b a
. 

Let's use the GAViewer to show it graphically: 
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Now let's look the quadratic equation: 

2 1 0  x x . 

Show that /3  ix e  , 
1 2

i e e , is the solution. Can you find a solution for an arbitrary quadratic 

equation? Pay attention to the fact that we can interpret the expression 2 1 x x , with the above 
solution, as the operator which acting on some vector v   gives zero. This means that we have the sum 

of a vector ( v ), a rotaded vector ( xv ) and a twice rotaded vector ( 2x v ), three vectors that we can 
arange in the triangle. About rotations and an exponential form see below, here you can feel free to 

treat expressions like complex numbers with the imaginary unit 
1 2

i e e  (i.e. you can use the 

trigonometric form of the complex number). In the next chapter you will find an explanation for this 
approach. 

 

Geometric product of vectors in the trigonometric form 

 

Let's look at the square of a bivector in n  (for other signatures see literature, main ideas are 
the same),  

     

   

 

22

2 2 2 2 2 2sin ,

       

      

   

a b a b ab a b a b ba

ab a a b a b ab ba

a b a b a b 

 

where we used  
2 2 2 2

cos a b a b  . The another way to see this is to start from the form ab   

 
2 2 2

     ab ab ab a b . 

We see that in n the square of a bivector is a negative real number. Now we can define the magnitude 
of a bivector as 

sin a b a b  . 

We got a general expression for the square of a bivector, so we see that the geometric product of two 
vectors can be written as  

    2
ˆˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ cos sin ,   ,   1
ˆˆ


         



a b
ab a b ab a b a b a b a b B B B

a b
   , 

or 
ˆ

 Bab a b e  . 

Notice that we have a similar formula for complex numbers, but the situation is quite different here: 

the unit bivector B̂  is not just an „imaginary unit“, it defines the plane spanned by vectors a   and b .  
This is a great advantage compared to ordinary complex numbers, it brings the clear geometric 
meaning to expressions. For example, the formulation of quantum mechanics in geometric algebra 

uses real numbers, there is no need for 1 , and in every expression we can see the geometric 
meaning directly. This makes the new formulation more powerful, it provides new insights, which 
otherwise would be hidden or difficult to reach. 
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Here we have the opportunity to answer the question about multiplication tables. We have 
seen how multiplication tables for the scalar and cross product are almost complement. We know, the 
geometric product of two vectors can be decomposed into symmetric and anti-symmetric parts, then 
we can find their modules, they have functions sine and cosine as factors and that gives us “united” 

multiplication table. Here it is (note that, for example, 
1 2 3

e e ej ) 

1 2 3

1

2

3

1 0 0

0 1 0

0 0 0

e e e

e

e

e

                
3

1 2 3

1

3 1

1

2

2

23

0

0

0









e e e

e

e

e

e e

e e

e e

               
1 2 1 3

1 2 2 3

1 2

1 3

3

1

2

2 33

GP

1

1

1



 

e e e e

e

e e e

e

e

ee

e e e

e e e

 

and we can see that the new multiplication table has bivectors as non-diagonal elements (  is just 
for fun).  In fact, looking at those tables one can get nice insights about our 3D space and geometric 
algebra in general. 

 

Reflections, rotations, spinors, quaternions … 

 

The reader is now, perhaps, convinced that the geometric product is really natural and, 
actually, inevitable way  to multiply vectors. One way or another, the magic is still to come.  

Consider now the powerful formalism of geometric algebra applied to reflections and rotations 

(we are still in n , details for other signatures can be found in the literature). For the vector a   and 

the unit vector n   in 3  (just to imagine things easier, generalization is straightforward) we can find 

the projection (parallel to n ) and the rejection (orthogonal to n ) of the vector a , so, a a a


  . Now 

we have 

     
          a nan n a a n a a nn a a ,  

which means that vector a  is reflected on the plane 
orthogonal to n  (generally a hyper plane, figure p. 4). We can 
omit the minus sign, then the reflection is on the vector n . 
Recall, reflections do not change the grade of a reflected 
object. 

  

 

 

 

 

We should mention that in physics we are often interested 
in reflections on surfaces in 3D, so we can slightly adjust the 

pictures (p. 6, p. 7). We use the fact that 2
1 j , so    

2     a nan nan na n NaNj j j , 

where the unit bivector N   defines the reflection plane. 
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What if we apply two consecutive 
reflections, using two unit vectors m   and n ? 
There is a well-known theorem, which states 
that two consecutive reflections provide a 
rotation. In figure p. 5 we see that after the 

reflection on n  we have a a , then by 

reflection on m   we have  a a . If the angle 
between unit vectors m   and n  is    then the 

rotation angle of the vector a    is 2  (prove 

it). Respectively, if we want to rotate the vector by the angle   we need to use unit vectors which 

make the angle / 2 . We see how the half angle appears, so characteristic in the description of a spin 

in quantum mechanics. Here we see that there is nothing "quantum" in the half angle, it is simply a 
part of the geometry of our 3D space (with the geometric product). This will be discussed later.  Now 
we can write an expression for a rotation as 

   a m nan m mnanm . 

Another way to rotate a vector is to construct an operator which rotates and operates from 
the left. Thanks to the existence of an inverse of the vector this is easy to achieve: 

 1 1,          a a a a Oa O a a .  

But the method that uses reflections is very general and elegant (rotates any element of the algebra), 
has a "sandwich" form, which is actually common and preferable in geometric algebra, especially for  
generalizations to higher dimensions. Let's look more closely the term mnanm . Geometric products 
of two unit vectors consist generally of grades 0 and 2, so, it belongs to the even part of the algebra 
and makes a subalgebra, which means that the product of any two of these elements will result in an 

element of the even part of the algebra. We denote it as R mn  (rotor in text). Now we have 

† † †, 1    a RaR RR mnnm R R , 

where † 1R R  means reverse ( mn nm ). For the rotation angle   we need unit vectors with the 

angle / 2  between them. We have    m n m n m n , where  sin / 2 m n  . Using the unit 

bivector ˆ /  B n m n m  (note the order of vectors), we have 

     ˆ ˆcos / 2 sin / 2 exp 2       mn m n m n B B   , 

the minus sign here is due to the convention (positive rotation is counter clockwise). In Cl3 we can 

write a unit bivector B̂  as wj  , where w  is the unit vector defining the axis of rotation. The rotor 

inverse is 

 † ˆexp 2 R nm B , 

so the rotation is finally 
ˆ ˆ

† 2 2


 
B B

a RaR e ae
 

. 

This is the general formula. If a   commutes with B̂  the rotation transformation has no effect on a . If 

a  anti-commutes with B̂  we have an operator form 

ˆ  Ba e a . 

For example, for 
1 2

ˆ B e e   the vector 
3

e   commutes with B̂ , while the vector 
1

e   anti-commutes.  
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The bivector B̂  defines the rotation plane and it is clear that vectors orthogonal to that plane 
are not changed by the rotor. Notice, we do not need rotation matrices, Euler angles, or any other 
known mechanism. Once you define a unit bivector it will do all the necessary job. You can imagine it 
like a small spinning top that does exactly what we need. Notice that two different consecutive 
rotations make the rotation again (show that). This produces a group structure, but here we will not 
talk about it.  

Example. Rotate the vector 
1 2 3
 e e e  in the plane 

1 2
e e  by an angle  . We have 

 
1 2 1 2

2 2
1 2 3



 
e e e e

e e e e e
 

, 

so take the advantage of the fact that the vector 
3

e  commutes with the bivector 
1 2

e e , while 
1

e  and 
2

e

anti-commute: 

   
1 2 1 2 1 2 1 2 1 2 1 22 2 2 2 2 2

1 2 3 3 1 2

   

     
e e e e e e e e e e e e

e e e e e e e e e e e e
     

 

      3 1 2 1 2 3 1 2 1 2cos sin cos sin sin cos        e e e e e e e e e e      , 

and for vectors in the plane 
1 2

e e  we recognize the rotation matrix 

cos sin

sin cos

 
 
 

 

 
, 

where columns represent images of unit vectors. A rotation by an angle   we get using the bivector 

2 1 1 2
 e e e e .  

Consider the rotation 

1 2 1 2
0.7 0.7

2 2
 e e e e

e ae
 

 

and the corresponding rotation matrix 

0.588 0.809

0.809 0.588

  
 

 
. 

What can be said about the geometrical interpretation, that is, what you can conclude just looking at 
the matrix? Try now to make a rotation matrix for an arbitrary plane. Try to repeat all that in 4D. The 
easiness with which we perform rotations in geometric algebra is unseen before. There are no special 
cases, no vague matrices, just follow the simple application of rotors to any multivector. Many prefer 
quaternions, but they do not have the geometric clarity. And they are limited to 3D! If only elegance 
and power of rotations were results of using geometric algebra it would be worth of effort. But it gives 
us much, much more.  

Notice how any rotor can be factored in small rotations  

/2 /2 /2... I I n I n

n

R e e e    , 

which can be used in practice, for example, when interpolating.  

Let's look at the rotation of vector 
2

e  for a small angle in the plane 
1 2

e e  (p. 8, p.9). Recall the 

definition   
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lim 1


 
  

 

n

x

n

x
e

n
 , 

and let's construct the operator 1 21 e e ,   is a small real number. Acting from the left we have 

 1 2 2 2 11  e e e e e  , 

so we get an approximate small rotation of the vector 
2

e . Note the sign of the number  , for 0  

we would have  a counterclockwise rotation. Operator 1 21 e e  rotates all vectors in the plane for the 

same angle, so, by successive applications on 
2

e we get rotated 
2

e  first, then rotated the newly 

established vector, etc (we can neglect the small change of the magnitude). This justifies the definition 
of the exponential form of the rotor: each rotation is the composition of a large number of small 
successive rotations. Of course, all this is well defined for infinitely small rotations, so for the bivector 
B  we have  

lim 1


 
  

 

n

B

n

B
e

n
. 

Notice (or show it) that this rotor will not change the bivector B̂ , for example, so it is an 
invariant of the rotation. The fact that the blade can be invariant directly leads to the notion of a proper 
blade with real eigenvalues, which is a generalization of the common concept of eigenvectors and 

eigenvalues (see in linear transformations). Rotate the bivector 
1 2

e e  in the plane spanned by vectors 

1
e  and 

2
e . What do you notice?  

 

 

 

Rotations are linear, orthogonal transformations that are usually described by matrices in 
linear algebra. To find the invariants of these transformations we study the results of action of matrices 
on vectors only. For matrix A  (that represents a linear transformation) we seek for vectors x  such 

that Ax x , which provides solutions for the eigenvalues  . Here we see that in geometric 
algebra we can find invariants with respect to a bivector  (or any blade). Instead of the concept of 
eigenvector we can introduce the concept of the eigenblade (which includes eigenvectors). This allows 
reduction of the set of eigenvalues of transformation to the set of real numbers and gives a geometric 
meaning to the concept of eigenblades. Linear transformations will be discussed later in the text. 
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Rotor R  has the same effect as the rotor R , but the direction of the rotation is not the same, 

for example, the vector 
1

e  can be rotated to 
2

e  clockwise by / 2  or counter clockwise by 3 / 2 , 

so we see that rotor clearly shows the direction of rotation (try it with matrices!). For example 

 2 /2/2 /2    
II I Ie e e e

     , 

the minus disappears due to the "sandwich" form. For each rotation we have two possible rotors (find 
what double cover of a group is). 

 

Note that, due to the half-angle, rotor  

   
ˆ

2 ˆcos / 2 sin / 2


 
B

e B


   

has periodicity of 4  instead of 2 . Often for such objects we are using the name unit spinor. 
Geometric algebra is an ideal framework to study all unusual properties of rotations, but it would take 
a lot of space. 

Example: Let's rotate  (see [18]) some object in 3D around  
1

e  by / 2 , then around  2e  by 

/ 2 , what we get? Do that also using matrices.  

    /31 2 3 1 2 3

1 2
1 2/4 /4

2

1 1 1 1
1 1 ... 3 ,     

2 22 3 3

   
       v

v
jje je e e e e e e

je je j ee e  
 , 

so we have a rotation by 2 / 3  around the vector v . 

Question: What is the meaning of 1 ie  ? In 2D for 1 2i e e  we have ( v  is a vector in the 

1 2
e e  plane, you can choose 

1
v e   if you like) 

/2 /2 v vi ie e  , 

and using anti-commutativity 

/2 /2  v v vi i ie e e   , 

then multiplying by 1
v  on the right we get a clear meaning. The rotor /2ie   transforms the vector v  

to the vector v , i.e. rotates it by    (the sign is not important here). Of course, we also recognize 
the rotational properties of the imaginary unit in the complex plane (selected in advance), but bivector  
defines the rotation plane and we could write identical relations, without change, in any dimension, in 
any plane. In fact, a bivector in the exponent of the rotor could depend on time, formulas are still valid, 
the rotation plane changes with the bivector. Try to do that with the “square root of minus one”. 

Let's say you want to find the rotor in 3D that will transform the orthonormal coordinate basis 

i
e   to the orthonormal coordinate basis 

i
f  (see [18]). We need a rotor with the property †


i i

f Re R . 

Let's define ˆ R B  , where B̂  is a unit bivector, then † ˆR B   . Notice two simple and useful 

relations in 3D 
2

3 i

i

e       and    ˆ ˆ  i i

i

e Be B  
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(prove them). It follows  
† †ˆ3 4    i i

i

e R e B R    

and 

 † †
4 4 1     i i i i

i i

f e Re R e R R R  , 

so 

1

,    1

1



   








i i

i

i i

i

i i

i

f e
A

R A f e
AA

f e

. 

The rotation by    can be treated as a special case. Show that the rotor can be expressed using Euler 
angles as 

2312 12/2/2 /2 ee e
e e e

 
. 

Let's comment the historical role of Hamilton, who in the 19th century found a similar 

mechanism for rotations: quaternions. There is a connection between quaternions and formalism 

described here, namely, quaternions can be easily related to unit bivectors in Cl3. However, 

quaternions are like extended complex numbers, they do not have a clear geometrical interpretation. 

Moreover, they exist only in 3D. Hamilton wanted to give a geometric meaning to unit quaternions, 

trying to treat them as vectors, which did not gave expected results, but unit vectors ,  ,  i j k  inherited 

their names due to these attempts. The formalism of geometric algebra is valid for any dimension. 

Every calculation in which we use quaternions can be easily translated into the language of geometric 

algebra, while the reverse is not true. However, quaternions are still successfully used in the 

applications for calculating rotations, for example, in computers of military and space vehicles, as in 

robotics. If you implement the geometric algebra on computer, quaternions are not needed.  

Unit quaternions have the property 1 ijk  and the square of each of them is -1. It was 

enough to come up with objects that square to -1 and anti-commute to describe rotations in 3D 

successfully. The reader can check that replacements 
23 13 12

,  ,      i j ke e e  generate the 

quaternions multiplication table. 

Certainly it is good to understand that bivector 
12 2 1

 e e e  has a very clear geometrical 

interpretation, while the unit quaternion k  (like the imaginary unit or a matrix) has not. Unfortunately, 
the concept of geometric objects like bivectors is often strange to traditionally oriented people. 

Once we know how to rotate vectors we can rotate any element of geometric algebra. Note 
especially nice feature of geometric algebra: objects that perform transformations (“operators”) are 
also elements of the algebra. Let's look at the rotation of a versor 

     † † † † † † † RabcR RaR RbR RcR RaR RbR RcR , 
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which clearly shows how the rotation of versor can be reduced to rotations of individual vectors and 
vice versa. Every multivector is a linear combination of elements of Clifford basis which elements are 
simple blades, so, they are versors. We see that our last statement is always true, due to the linearity. 
The reader is advised to do rotations of different objects in Cl3.  Find on Internet the term „gimbal 
lock“ (it is fun, really). 
 

 
           It is interesting to look at the 
unit sphere in  3D and unit vectors 
starting at the center of the sphere. 
Each rotation of the unit vector 
defines the arc on some main circle. 
Such arches, if we take into account 
their orientation, can become a kind 
of vectors on the sphere, and 
composition of two rotations can be 
reduced to an addition (non-
commutative) of such vectors. See 
[4].  

 

 

 

 
 

If we take an arbitrary element of the even part of an algebra (for example in 3D), not only the 
rotors, except for a rotation we get the additional effect: dilatation, which is exactly the property of 
spinors. Spinors are closely associated with the even part of the algebra. Geometric algebra hides 
within itself an unusual amount of mathematics which is branched out in different disciplines. It's 
amazing how the redefinition of the multiplication of vectors integrates many different branches of 
mathematics into a single formalism. Spinors, tensors, Lie groups and algebras, various theorems of 
integral and differential calculus are united, …, theory of relativity (special and general), quantum 
mechanics, theory of quantum information, … one almost cannot believe. Many complex results of 
physical theories here become simple and get a new meaning. Maxwell's equations are reduced to 
three letters, with the possibility of inverting the derivation operator over the Green functions, hard 
problems in electromagnetism become solvable (see [2]), the Kepler problem is elegantly reduced to 
the problem of the harmonic oscillator, Dirac theory in Cl3 or the minimal standard model in Cl7 are 
nicely formulated ([34]), not to list further.  

Geometric algebra has a good chance to become mathematics of future. Unfortunately, it is 
difficult to break through the traditional university (and especially high school) programs.  
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One can study following 
pictures to better understand 
rotations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Contractions 

 

We defined the inner product  that for vectors coincides with the usual scalar multiplication of 
vectors. In general, in geometric algebra we can define various products that lower grades of elements 
(outer product raises them). It appears that the best choice is the left contraction. For vectors it is just 
as the inner product, but generally it allows avoiding various special cases, such as, for example, the 
inner product of a vector with a real number.  Here we will mention just few properties of the left 
contraction, see [19] for more details. The idea is that for any two blades (including real numbers) we 
define a „scalar“ multiplication that will generally reduce the grade of the blade that is on the right in 
the product: 

       grade A B grade B grade A , 

- m n  defines the plane, 
direction of rotation and the 
rotation angle 

- a is invariant to rotation, 

only a  is rotated by 2  

- The same picture is valid in 
any dimension (in dimensions 
higher than 3 there is a 
subspace invariant to 
rotation). 

- It is easy to obtain any 
composition of rotations in the 
same manner. 

- Geometric product of vectors 
gives us the possibility to 
maintain rotations easily. 
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whence immediately follows that the left contraction is zero if     grade B grade A . For vectors we 

have 

  a b a b , 

and generally for blades we have 

       A B C A B C . 

The useful relation for vectors is 

          x a b x a b x b a , 

while in general we can write for any  multivector 

,


  k l l k
k l

A B A B , 

where we have a geometric product between homogeneous (of the same grade) parts of multivectors. 

The left contraction for blades A  and B  ( A B )   is the subspace in B  orthogonal to  A .  If the vector 

x   is orthogonal to all vectors from the subspace defined by the blade A   then  0 x A . The left 
contraction can help us to define an angle between subspaces. Because of the generality, the clear 
geometric interpretation and benefits for use on computers (there are no exceptions, so if  loops are 
not needed) the left contraction should be used instead of the "ordinary" inner product. We can also 
define the right contraction, however, due to the properties of duality, it is not really necessary. 

 

Commutators and orthogonal transformations 

 

Let's define the commutator as a new kind of product of multivectors (here we use the 

character   to avoid a possible confusion with the cross product) 

  / 2  A B AB BA . 

This product is not associative, i.e.        A B C A B C , but we have the Jacobi identity  

      0        A B C C A B B C A . 

We have (prove it) general formulas ( A  is a bivector, not necessarily a blade, X  is a 
multivector,   is a real scalar, x  is a vector) 

 X X   

               xX x X x X  

                                    AX A X A X A X . 

Here we are particularly interested in commutators with a bivector as one of factors. Namely, 
commutators with the bivector keep the grade of multivector  (if they do not commute with it): 

     2 ,    0     grade B grade X B grade X X B . 

Instead of proving it let us look at examples. For the bivector 1 2B e e   the vector 3e  commutes with 

B , but for the vector 1e  (grade 1) we have 

 1 1 2 1 1 1 2 2/ 2    B e e e e e e e e , 
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the grade 1 again. Let us take the series expansion 

    /2 /2 / 2 / 3!  ...           B Be Xe X X B X B B X B B B  , 

so if we take a small bivector of the form  2ˆ ˆ,    1 B B  , we see that we can keep only two terms  

ˆ ˆ/2 /2 ˆ   B Be Xe X X B   . 

Preservation of grades is important here, because we want to, after the transformation, have a 
geometric object of the same type. The last transformation we see as an orthogonal transformation 
which will slightly change the initial multivector. Here we must mention that we look for the orthogonal 
transformation connected to the identity transformation, which means that they can be implemented 
in small steps. Reflections do not meet this requirement, we cannot perform "a little of reflection“. 
Such small transformations are called perturbations. Therefore, we can conclude that small 
perturbations of elements of geometric algebra are to be performed by rotors.  

Note that orthogonal transformations do not permit to just add a small vector x  to the 

vector x ,  orthogonal transformations must keep the vector length. So we must have 0 x x . 

Generally, such an element ( x ) of geometric algebra has the form  x x B  , where B  is a small 
bivector. We can show it 

      0        x x B x x B x x B   . 

It follows now that 

  / 2     x x B x B Bx x B      

and we have the desired shape in the form of a commutator. It may seem that the restriction on the 
rotations is too strict, it looks as if we cannot do a simple translation of a vector. However, here it just 
means that we need to find a way to describe translations by rotations. It is possible in geometric 
algebra, but we will not show it here  (see [19]).  

Here we will stop, but noting that a small portion of formalism just shown  leads to Lie groups 

and algebras. It can be shown  that every finite Lie group or algebra can be directly described in the 

context of geometric algebra. The infinite case is not yet absolutely clear, but it would be unusual for 

a result to be different. Anyway, another nice part of mathematics fits perfectly into the geometric 

algebra. Anyone who seriously studies the geometric algebra was initially probably astonished by the 

fact that different branches of mathematics show a new light in the language of geometric vector 

multiplication, but with time one gets used to it and does not expect exceptions. One cannot help 

wonder what our science would look like if the power of this magical language of mathematics was 

understood and accepted a century ago. And it was all at our fingertips. 

 

Complex numbers 

 

Let's specify the vector in 2D 1 2 r xe ye . Using the existence of the inverse we have  

   1 1 2 1 1 2,        r e x ye e e x i eiy e , 

and we see that we get a complex number x yi , but with a non-commutative "imaginary unit". The 

first thing to complain about is: „Yes, but your imaginary unit is not commutative, and quantum 
mechanics cannot be formulated without an imaginary unit  …“.  Immediately you see that the "critic" 
commented something he knows almost nothing about, because, first, quantum mechanics works 
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nicely (and even better) with real numbers, without the imaginary unit, but one should learn geometric 
algebra, then learn the formulation of quantum mechanics in the language of geometric algebra … Not 
only that we can without using the imaginary unit, but many relations obtain a clear geometric 
meaning  and thus provide a new insights into the theory in the language of geometric algebra. And 

second, non-commutativity of our bivector 1 2i e e  actually becomes an advantage, it enriches the 

theory of complex numbers and, as we are repeating until you get bored, gives it a clear geometric 

meaning. For our complex number 1 rz e  we have (due to anti-commutativity) 
1

  rz e , so 

2 2 2 2

1 1 1 1

     rrzz e e r e e r x y ,      or 

1 1 12 2     r r rz z e e e x , 

1 1 12 2     r r rz z e e e yi , 

 etc. We see that operations on complex numbers are, without any problem, confined to the 
operations in geometric algebra. Define the derivative operator in  2D 

1 2

 
  

 
e e

x

f f
f

y
, 

and introduce a complex field      , , , x y u x y iv x y , 1 2i e e . Simple calculation shows (do it) 

that the derivation of the field is  

      u v ui i v , 

1 2

      
       

      

u v v u
e e

x y x y
 . 

So, if we want the derivative to be identically zero (analyticity), Cauchy-Riemann equations 
immediately follow. Note how anti-commutativity of unit vectors gives correct signs. So, analyticity 
condition in geometric algebra has a simple form 0  , and we can immediately generalize it to 

higher dimensions. And yes, this is just a right moment to stop and think. Let advocates of the 
traditional approach do all that using just the commutative imaginary unit. Actually, it's amazing how 
this old, good imaginary unit has made a lot of work, given the modest possibilities! But, it is time to 
rest a little, let bivectors, pseudoscalars ... do the job. It should be noted, to make no confusion, the 

choice of the plane 1 2e e is unimportant here. We can take the bivector like   1 2 1 3 e e e e , 

normalize it and we get a new „imaginary unit“, but in the new plane. We can do that in 4D also, and 

take, for example 3 4i e e , all formulas will be valid. The plane 1 2e e  is just one of infinity of them, but 

geometrical relationships in each of them are the same. We can solve the problem in the plane 1 2e e , 

and then rotate all to the plane we want, we have powerful rotors in geometric algebra. And when it 
is said  „ powerful“ then it literally means  that we do not have to be experts in matrix calculations, 
here something like that an advanced high school student can make. We can rotate any object, not 
only the vectors. Linear algebra is the mathematics of vectors and operators, geometric algebra is 
mathematics of subspaces and operations on them. Anyone who uses mathematics should understand 
how important this is. 

We will show here that one can get solutions of the equation 0   by using series in z . 

Notice first an easy relation for vectors  

  2    abc bac ab ba c a bc , 
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where the inner product has priority. The operator   is acting as a vector (expressions like r are 

possible, but then we usually write r , which does not mean the time derivative, but indicates the 
element on which the derivation operator acts on and gives desired order in products of unit vectors), 
so take the advantage of the previous relation (a very useful calculation) 

 1 1 1 1 12 2 2 0        r r rz e e e e e . 

Now we have 

    
1

0 1 0 0 0


      r
n n

z z n e z z z , 

so, the Taylor expansion about 0z  automatically gives an analytical function. Again, in any plane, in 

any dimension. It is not only that geometric algebra contains all the theory of functions of complex 
variables  (including integral theorems, as a special case of the fundamental theorem of integral 
calculus in geometric algebra), but also extends and generalizes it to any dimension. Is not this a 
miracle? And we were just wondering how to multiply vectors. If one still have a desire to pronounce 
the sentence  „Yes, but …“, he could go back to the beginning of the text and see how all this began. 
Time of geometric algebra is yet to come, hopefully. Dark Ages of matrices and coordinates will 
disappear and it will be replaced by the time of synergy of algebra and intuitively clear geometry. 
Students will learn much faster and be superior to today's "experts". And when we learn computers to 
"think" in this magical language  (imagine a computer that knows how to perform operations on 
subspaces) children will be able to play with geometric shapes as now play a car racing or other 
computer games. The properties of triangles, circles, spheres and other shapes we will learn through 
a play, on computers, interactive. Language of geometric algebra is so powerful that it can "automate" 
even the process of proving theorems (there's still a lot of work to do, but possibilities are there).  We 
have reasons to think that geometric algebra is not just "another formalism", but it offers the possibility 
of deep questioning the very concept of a number.  

 

Spinors 

 

Let's look at elements of algebra which in the "sandwich" form do not change the grade of a 
vector  (i.e. a vector transform to a vector). Among them are transformations which rotate and dilate 
vectors, we usually call them spinors. Let's look at multivectors    with the property (v  is a vector) 

† † †,    ,    1  v vR R RR    , 

which is precisely the rotation of the vector with dilatation. If we define †U R , the previous 

relation becomes  
† v vU U  , 

and we will find the element U . Show that pseudoscalars of odd dimensions commute and of even 
dimensions anti-commute with vectors. Other grades do not possess such a general property (real 

scalars commute).  We see that an element U  induces a pure dilation of the vector v  and can 

commute or anti-commute with v , so it follows that the element U  is, generally, a real scalar, or 

pseudoscalar, or combination of both: 1 2 U I  . Now, using the definition of U , we get 

 2 † 2 †

1 1 2 2    v v v v vU I I I I     . 

In Cl3 ( 3,    0 p q  ) the pseudoscalar I j  commutes with all elements of the algebra and the 

reverse is †  I j , the middle term disappears, so we have 
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 2 2

1 2 1 2    R j      , 

and it is easy to check  

        † † † 2 2 † †

1 2 1 2 1 2 1 2 1 2        v v v v vR j j R j j R R R R R R             . 

In general, note that   

   
  

 
1 1 2 /2† † † †1 ,    1 ,    1
  

     v v v v
n n n q

I I I I II , 

 

(prove it, at least for signatures (3, 0) and (1, 3)) and we ca find solutions  (find them) dependent on 

the parity of the number     1 2 / 2n n  . 

Spinors in geometric algebra, as elsewhere, can be defined by (left) ideals of the algebra, but 
here we will not deal with it ([7]). 

 

A little of "ordinary" physics 

 

Let's see how we can solve a kinematic problem in its generality using simple calculations and 
intuitively clear. Consider the problem of an accelerated motion with a constant acceleration.  

 

 

 

 

 

 

 

The problem is easily reduced to relations  

0 v v at ,             0 2 / v v r t , 

wherein the second relation defines the average speed vector  /v r t , so we have  

  0 0 2   v v v v ra  

 2 2 2 2

0 0 0 0 02 2          v v vv v v r a r av v v v , 

where by comparison of the scalar and bivector parts we get  

2 2

0 2  r av v , 

0   v v r a , 

i.e. the law of conservation of energy and the surface of the parallelogram theorem. For the projectile 
motion problem ( a g  ) we have (figure on the right)  
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 

 

2 2 2

0 0 0

2

0

0 sin 2

sin 2

          



r g v v r gv v v rg

v
r

g




 

and this is the known relation for the range. Notice how properties of geometric product lead to simple 
manipulations. Another example is the Kepler problem. Immediately after setting the problem, after a 
few lines, we obtain non-trivial conclusions that textbooks usually put as hard part at the end. 
Examples here are to show how to obtain solutions without coordinate systems and coordinates. 
Unfortunately, research shows ([21]) that many physics students see vectors mainly as a series of 
numbers (coordinates) and it is a sad reflection of the current education systems, regardless of the 
place on the planet. The connection of linear algebra and geometry is usually quite neglected. With 
the geometric product  algebra and geometry go hand in hand. Instead of treating vectors as key 
elements of the algebra  we have a whole range of objects that are not vectors and have a very clear 
geometric meaning. We are calculating with subspaces! And in any dimension. Something like that is 
impossible to achieve just manipulating by coordinates. Emphasize this, impossible! Russian physicist 
Landau, famous for his math skills, ended up in Stalin's prison. After his release from the prison, he 
said that his prison was welcome, because he had learned to run tensor calculus “in the head”. 
Physicists of the future will be more skilled than Landau, they will use linear transformations in 
geometric algebra instead of tensor calculus. They will calculate faster, regardless of the dimension of 
space, without using coordinates and with a clear geometric interpretation at every step. Landau was 
also famous by the method of accepting students. He would said to a young candidate: "Here, solve 
the integral." Many have failed. In geometric algebra, there is a theorem (fundamental theorem) about 
integration that combines all known integral theorems used in physics, including complex area. Just 
imagine, Landau would be really surprised! He was a typical representative of the mathematics of the 
20th century, although in his time already existed the new mathematics. It existed, but almost 
completely neglected and forgotten. Part of the price paid (and we still pay it) is a rediscovery of what 
is neglected and forgotten. Pauli discovered its matrices – we have continued to use matrices. It is 
often said that the geometric algebra is non-commutative and that this discourages people. What 
about matrices? Not only that they are non-commutative, they are unintuitive. Then Dirac discovered 
his matrices, ideal for geometric algebra. Again, we continued with matrices. And many authors, on 
various occasions, rediscovered spinors, even giving them different names. Then we decided to make 
fast spacecrafts equipped with computers and found that we have problems with matrices. Then we 
started to use quaternions and improved things in some extent. We can find a number of other 
indications, and, after all, it is obvious that many of problems simply disappear when geometric 
product is introduced instead of products of Gibbs. In spite of everything, one of the great authors in 
the field of geometric algebra, Garret Sobczyk, wrote in an e-mail:  

„I am surprised that after 45 years working in this area, it is still not generally recognized in the 
scientific community. But I think that you are right that it deserves general recognition ... Too bad 
Clifford died so young, or maybe things would be different now.“  

 

Words and sentences  

 

Let's look, just for illustration, how „words“ in geometric algebra can have a geometric content. 

For example, the „word“ abba. From S A ab  (symmetric and anti-symmetric parts) 

  

   

22 2 2 2 2

22 2 2 2 2cos sin

S S S Sa b A A A A

a b  

        

    

abba

a b a b
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and we have the well-known trigonometric identity. This is, of course, just a game, but in geometric 
algebra it is important to develop intuition about the geometric content written in expressions. Due to 
properties of geometric product a structure of expressions is quickly manifested, as for relations 
between subspaces, to be an element of a subspace, orthogonality, to be parallel, etc. 

Let's compare exposed to the matrix approach. We have seen that in 3D we can represent 
vectors by Pauli matrices. Try to imagine that we are not aware of it, but we know about Pauli matrices 
(from quantum mechanics). We could write the word abba in the language of matrices, we could 
resolve matrices in symmetric and anti-symmetric parts (it is custom), but try to derive the sine and 
cosine of the angle and the basic trigonometric identity. If you succeed (it is possible), how would you 
interpret that angle? And more important, how to even come up with the idea to look for an angle, 
just looking at matrices? It is hard, for sure, but with vectors it is natural and straightforward. That is 
the main idea: the language of matrices hides an important geometric content. True, physicists know 
that Pauli matrices have to do something with the orientation of the spin, but generally, the problem 
of geometric interpretation still remains. Here is one more example. We have unit vectors 

 1 2 / 2 m e e   and  2 3 / 2 n e e  in 3D. It is not difficult to imagine or draw them, there is 

the plane spanned and bivector m n  in it (bivector defines the plane). Image again that we are using 
Pauli matrices, but, as before, without awareness that they represent vectors in 3D (we cannot even 
know it if we do not accept the geometric product of vectors). Someone could really investigate a linear 
combinations of the Pauli matrices, even come to the idea to look at anti-symmetric part of products 

of matrices, something like  ˆ ˆ ˆ ˆ / 2
m n n m

    , where   1 2
ˆ ˆ ˆ / 2 

m
    and  2 3

ˆ ˆ ˆ / 2 
n

   . 

We should now calculate this, so, we can compare the needed calculation with matrices and simple 
calculation of the outer product (in fact, there is no need to calculate the outer product, we have the 
geometric picture without effort). Whatever, the bivector is 

     1 2 2 3 1 2 1 3 2 3/ 2 / 2       m n e e e e e e e e e e . 

Fortunately, computer can help here with matrices (you see the problem?), so, the anti-symmetric part 
of the matrix product is 

1
/ 2

1

  
 
  

i i

i i
. 

Now, how, without connecting with vectors in 3D, to interpret this matrix as a plane? Or find the angle 
between - what? It is easy to express formulas from Cl3 via Pauli matrices, but the matrix form to 
vectors – it could be tricky, especially for blades of higher grades, or general multivectors. The language 
of matrices blurs the geometric content! In quantum mechanics with Pauli matrices we need the 
imaginary unit, and people say that the imaginary unit is necessary to formulate theories of the 
subatomic world. This often leads to a philosophical debates and questions about the „real nature“ of 
the world we live in. In the language of geometric algebra the imaginary unit is absolutely not 
necessary, quantum mechanics can be beautifully and elegantly formulated using just real numbers, 
with the clear geometric interpretation. Besides the real numbers, complex numbers and quaternions 
could be of interest in quantum mechanics, but it is clear now, they all are natural part of Cl3, as we 
discussed earlier.  In the article [1], author comments: “… instead of being distinct alternatives, real, 
complex and quaternionic quantum mechanics are three aspects of a single unified structure.” There 
are useful remarks on the Frobenius–Schur indicator in this article. True, there is no geometric algebra 
in the cited article, although there is the term “division algebra” in the title. Rather than comment, 
here is the sentence from [28], one that should be known to all mathematician and physicists. 
Unfortunately, it is not. 

“Geometric algebra is, in fact, the largest possible associative division algebra that integrates 
all algebraic systems (algebra of complex numbers, vector algebra, matrix algebra, quaternion algebra, 
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etc.) into a coherent mathematical language that augments the powerful geometric intuition of the 
human mind with the precision of an algebraic system.” To be honest, division algebra or not – it is 
unimportant. It unifies and it works! 

 

Linear transformations 

 

Often we are interested in transformations of elements of an algebra (eg, vectors, bivectors, 
…) to other elements in the same space. Among them are certainly the most interesting linear 
transformations. Let's look a linear transformation F  which translates vectors into vectors, with the 
property 

     F F F ,   ,     a b a b      . 

We can imagine that the result of such a transformation is, for example, the rotation of the vector with 
the dilatation. For such a simple picture we do not need vector components. Another example may be 
a rotation:  

    †F R a a RaR . 

We have seen that the effect of rotation of the blade is the same as the action of the rotation on each 
vector in the blade, so we require that all of our linear transformations have that property, which 
means 

     F F F  a b a b . 

A linear transformation acting on vector gives back a vector and we see that the form of outer product 
is preserved. Such a transformation have the special name: outermorphism. The action of two 

successive transformations can be written as   F G FGa a , which is handy for manipulating 

expressions.  

If for linear transformation F: WV   there is an adequate linear transformation 

F : W V , we'll call it a transposed transformation (adjoint). Here we will restrict to transformations 

F: V V . We say that they are transposed because we can always find a matrix representation in 

some basis and see that the matrix of F  is just the transposed matrix of F  (see [22]). Here is an implicit 
definition of the adjoint 

   a F F  b a b , 

for any two vectors a and b . To see what this means we can imagine a simple example. Let 1a e , 

1 1 2 2b e e    and imagine that F rotates vectors by /2  in the plane 1 2e e . Then we have 

  1 2F a ae e , for example,  1 1 21 2F ee ee e  . This gives  

     1 1 1 2 2 2 1 1 2 2 2F e e e e e e          . 

According to the figure bellow we see that our linear transformation transforms the vector 1a e  to 

 1 2F e e  and the inner product gives 2 cos  . But it is clear that we can take the vector b , rotate 

it and the inner product with the vector 1a e  will give us the same result. So, adjoint operation is just 

the rotation by /2  in the plane 1 2e e  (for a more general result for rotations see below). Then we 

have 

  1 2F b be e , 
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   1 1 2 2

2 1

2

1 2

1F b e e

e e

e e  

 

  


 

Define now reciprocal basis vectors 
ie  with the property 

 i

j ije e  . 

Here we are using an orthonormal 
basis of positive signature, so 

    i i i

j j j ije e e e e e   

and the definition is motivated by 
two facts: first, we want to use the  
Einstein summation convention 

1


n

i i

i i

i

e e e e  

and, second, we want the ability to generalize easily. The explicit form of the transposed 
transformation can be found using the orthonormal basis 

   F F  i ie a e a , 

so we have (recall, the inner product has priority) 

   F F , i

ia e a e  

where summation is understood and the inner product has a priority. The designation F  is not 

common, TF  or †F  is, but sometimes we use F  for linear transformations, so nice symmetry in 

expressions could occur if we use F . Furthermore,  F a  is not a matrix or a tensor, so designation 

highlights the difference. There cannot be confusion with Clifford conjugation in the text, we are 
consistently using format italic for multivectors.  For a transposed transformation of the "product" of 
transformations we have  

   FG GFa a , 

(see literature). Transformations with the property F F  are symmetric. Important symmetric 

transformations are FF  and FF  (show that). 

Let I  to be a unit pseudoscalar. The determinant of a linear transformation is defined as 

 F det F,  det FI I  . 

This definition is in full compliance with the usual definition. Notice that this relation looks like an 
eigenvalue relation. In fact, that is true, the pseudoscalar is invariant (eigenblade) and the determinant 
is an eigenvalue (real!). An example is the 3D rotation 

  † † †

123R det R 1,    R R RR ej jRRj j      , 

what we expect for rotors (for rotation matrices, too). Again, notice the power of formalism: without 
components, without matrices, by a simple manipulation, we get an important result. The 
pseudoscalar represents an oriented volume, so the linear transformation of the pseudoscalar is simply 
reduced to its multiplication by a real number. The determinant of the transposed transformation is  
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 

     1 1 1

F det F

det F F F F det F,  

 

   

I I

I I I I I I
 

where we take an advantage of the fact that determinant is a real number, therefore has the grade 
zero. For the composition of transformations we have 

          FG FG F det G det G F det Fdet G   I I I I I  

and it is the well known rule for determinants, but recall how much effort we need to prove that in the  
matrix theory. Here, proof is almost trivial. A beginner needs pretty much time to become skilled with 
matrices. Finally she(he) gets a tool that cannot effectively cope even with rotations. That time he 
could use to learn the basics of geometric algebra and get a powerful tool for many branches of 
mathematics. And geometric algebra today, thanks to Grassmann, Clifford, Artin, Hestenes, Sobczyk, 
Baylis and many other smart and hardworking people (see detailed list at the end of the text) has 
become a well-developed theory, with applications in many areas of mathematics, physics, 
engineering, including biology, studies of brain functions, computer graphic, robotics, etc. 

We will state without a proof (the reader can prove it) some useful relations. For bivectors we 
have 

   1 2 1 2F F  B B B B  . 

This can be extended to arbitrary multivectors as 

   F FA B A B . 

Now we will define the inverse of a linear transformation. For a multivector M  we have 

    det F=F F FIM I M I M , 

(see in literature). Let's take the multivector A IM  so we get 

  1det F=F F A I I A , 

and a similar relation can be written for F . It follows 

    

    

11 1

11 1

F = F det F ,

F = F det F .

 

 

A I I A

A I I A
 

For rotors in Cl3 we have   †R a RaR , applied to any multivector gives   †R M RMR  

and    †R M R MR ,  so using det R=1 we have 

   1 † 1 †R R   M jR j MR R MR M , 

i.e. the inverse of rotation is equal to the transposed rotation. This is actually the definition of each 
orthogonal transformation (transformation with the determinant 1 ). For nice examples see [18]. 
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Eigenvectors and eigenblades 

 

The concept of eigenvalues and eigenvectors should be known to the reader. Briefly, for an 

operator (matrix) m  we can define eigenvalues i and eigenvectors iv  as follows   

,     i i i imv v  . 

In geometric algebra we say that a linear transformation (function) has eigenvector e  and eigenvalue 

  if 

 F e e , 

which entails 

 det F 0 I , 

so, we have a polynomial equation (the secular equation). Generally, the secular equation has roots 
over the complex field, but, we have algebra over the field of real numbers and it is not desirable to 

spread to a complex area. For example, how to interpret the product 11 e , which is not an element 

of the algebra? Fortunately, this is not necessary in geometric algebra, because we can give a whole 
new meaning to complex solutions. For this purpose, we introduce the concept of an eigenblade. 
Namely, vectors are just elements of the algebra with the grade 1, but we have grades 2, 3, … in 
geometric algebra, which are not defined in the ordinary theory of vector spaces. It is therefore natural 

to extend the definition of eigenvalues to other elements of the algebra. For a blade rB  with grade r  

we define 

 F ,     r rB B  . 

In fact, we already have such a relationship, namely, for rB I  we have an eigenvalue det F , because 

of   F det FI I . Accordingly, pseudoscalars are eigenblades of linear transformations. To explain 

the concept of an eigenblade let's look at the following example (see [18]). Let's specify the linear 
function with the property  

   1 2 2 1F ,    F  e e e e , 

(recognize rotation?) so, it is not difficult to find a solution using matrices. The matrix of transformation 
is  

0 1

1 0

 
 
 

 , 

with eigenvalues i , 1 i , and eigenvectors 1 2e ie  (use secular equation and prove that). In 

geometric algebra, for the blade 1 2e e  we have (notice the elegance) 

       1 2 1 2 2 1 1 2 F  F F       e e e e e e e e , 

so, the blade 1 2e e  is the eigenblade with the (real) eigenvalue 1. Our blade is an invariant, but we 

know that from rotors formalism! There is no need for a imaginary unit, we have our blade. Notice that 

vectors in the plane defined by 1 2e e are changed by transformation, but the unit bivector is not. You 

see a simple mathematics and the important result. In standard methods, using matrices, there is no 
“blades” at all. Why? Simple, there is no geometric product. So, try to find such a result using matrices.  
All those who like to comment on geometric algebra by sentences as „Yes, but imaginary unit in 
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quantum mechanics …“ should think twice about this simple example, and when they come to the 
conclusion that „it does not make sense …“, well, what to say? Just think again. This is the question of 
how do we understand the very concept of a number. Probably, Grassmann and Clifford directed us 
well and their time is yet to come.  

If orthonormal basis vectors ie  and 
je  are eigenvectors of a linear transformation F , then 

   F    i j i j j j i je e e e e e  . 

Apply the previous relations to symmetric linear transformations and show that their eigenvectors 
with different eigenvalues must be orthogonal. 
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Euclidean 3D 
geometric algebra (Cl3) 

 

 

 

 

 

 

 

 

Generally, a multivector in Cl3  can be rewritten as   

1 2 3,    , ,     M t bj j jt b e e e     x n , 

where for three-dimensional vectors we are using the bold format here. We have seen already that 
the unit pseudoscalar  j   commutes with all elements of the algebra and squares to -1, making it an 

ideal replacement for the imaginary unit (there are many “imaginary units” in GA). A pseudoscalar with 
such properties will appear again in Cl7, Cl11, …  Here we use once more, a very useful, form of a 
multivector: 

,    ,         F F x nM Z Z t bj j . 

The element Z  obviously commutes with all elements of the algebra (belongs to the center of the 
algebra). This feature makes it a complex scalar. A complex scalar is really acting as a complex number, 

as we shall see below. This is the reason that we write Z , although, obviously, we have to change 
the meaning of the symbol , i.e. we replace the ordinary imaginary unit by the pseudoscalar. An 
element F  is a complex vector, with real vectors as components. The choice of designation ( F ), as 
well as for complex scalars, is not without significance, namely, due to a complex mixture of electric 
and magnetic field in electromagnetism. Here, when we say “real”, we mean a real scalar, or a 3D 
vector, or their linear combination. When a real element is multiplied by the pseudoscalar j  we get 

an imaginary element, so, the sum of real and imaginary elements gives a complex one. For example, 
x  (vector) is real,  xt (paravector) is real,  nt j (spinor) is complex, nj (bivector) is imaginary, 

 F x nj  (complex vector) is complex, etc. Note that a multivector could be written as  

        x n x nM t j bj t j b ,  

so, it is just a complex number, with real components (paravectors). Use an involution (which?) to 

extract the real (imaginary) part of a multivector. How about Z  and F ? Or   nt j ? The reader is 

suggested to write all three described involutions in this new form. You can use a complex conjugation. 

As an example we look at Clifford involution (i.e. Clifford conjugation¸ main involution)  FM Z  

  / 2  
S

M M Z M ,   (scalar part) 

  / 2  F
V

M M M   (vector part). 

Due to commutativity of the complex scalar Z   we have 

     2 2        F F F F FMM Z Z Z Z Z MM , 

the sum of two bivectors 
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where 
2 2 2 2  Z t b tbj ,     2 2 2 2 2 2       F xn nx x nx n j x n j . 

Here is the result to remember: the square of a complex vector is a complex scalar. It means that the 

element MM is a complex scalar. It can be shown that MM  is the only element of form MM (here 

M  stands for any involution of M , MM is referred as the square of the amplitude) that satisfies 

. MM MM We have 

       F F F F FFZ Z ZZ Z Z , 

so we have two possibilities 

,      F FZ Z   or ,      F FZ Z , 

which differ only in the overall sign. Any involution that changes the complex vector the other way, 
changes (up to overall sign) the bivector or vector part, so 

    2 2 2 2 2          FF x n x n nx xn x nj j x n j x n j , 

and we get the outer product of real vectors which cannot be canceled, it is absent in  F FZZ Z Z  

so it must be M M . We already found that MM MM , but we can show that from a demand 
that the amplitude (any) belongs to the center of the algebra follows commutativity  

        0      MM M MM MM M M MM M MM MM , 

due to associativity and distributivity. In a special case the expression in parentheses need not to be 
zero because there are zero divisors in the algebra, but we need general commutativity, so it must be 

zero. The scalar MM is referred as the amplitude of multivector (MA in text, in fact this is the square 
of the amplitude, but that will not make a confusion).  

Using MA we can define the inverse of a multivector, if 0MM : 

1 /M M MM  . 

To find 1/ MM  we use complex numbers technique 

 

 

*

*

1


MM

MM MM MM
, 

where * stands for a complex conjugation, which means j j . The technique is the same, but an 

interpretation is not, namely, the pseudoscalar j  is the oriented unit volume, it has an intuitive 
geometric interpretation.  

Example:  1/ 1 j ?  We have    1/ 1 1 / 2  i i         1/ 1 1 / 2  j j . 

Of course, this „trick“ is justified 

  
1 1 1

1 1 1 2

 
 

  

j j

j j j
. 

 We'll see that this procedure sometimes is not enough to find all possible solutions in geometric 
algebra, e.g. solutions for roots of complex numbers can be extended to complex vectors. A simple 

example is 11  e . 

An important concept is the dual of a multivector M  is defined  as  

M jM    
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(do not confuse with a complex conjugation *). Note that with the dual operation a real scalar becomes 
a pseudoscalar, a vector becomes a bivector (and vice versa). As mentioned, an element nj  is a 

bivector.  We suggest the reader to express nj  in an orthonormal basis and interpret it. Also, take any 

two vectors in orthonormal basis and make their outer product. Then find the dual of obtained bivector 
and check that this dual is just the cross product of your vectors. It follows that the cross product is 

   x y x yj , 

but, we can use it in 3D only, although the term on the right can be defined in any dimension.  

 

From the general form of a multivector in Cl3 

     x n FM t j bj Z  

we see that it is essentially determined by  two real numbers ( t , b ) and two vectors ( ,  x n ).  Bivectors 

are usually represented by oriented disks, while the pseudoscalar can be represented by a sphere with 
two possible colors to give the orientation, so we can imagine a simple image that represents a 
multivector (p. 10). It helps a lot. Figure p. 10 is created in the program Mathematica. For the reader, 
except an imagination, we certainly suggest the GAViewer. 

Let's look at properties of a complex scalar 2 2 2 2   F x nx n j . In particular, for 

orthogonal vectors  ( 0 x n ) we have  2 F   and values -1, 0 and 1 are of particular interest.  

Recall that nj is a bivector which defines the plane orthogonal to the vector n , so, for 

0 x n  the vector x  belongs to that plane. This is an often used situation (e.g.  a complex vector of 
the electromagnetic field in an empty space), so it is important to imagine a clear picture. Note that in 

this case the real value of 2 2 2 F x n  is determined by lengths of vectors x  and n . On the next 
picture you can see the situation described. There is no a special name for this kind of a complex vector 
in the literature (probably?), so we suggest the term whirl (short of whirligig). 

 

 

multivector in 3D: 

- disk represents an 
oriented bivector 

-  transparent  
sphere represents 
a pseudoscalar, 
orientation is 
given by color 
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Nilpotents and dual numbers 

 

1) 2 0F  

This means that such a complex vector is a nilpotent. Let’s 

find the general form of nilpotents in Cl3 (recall, 2 F ): 

 
2 2 2

2

2 0

0 0 ,   0,

     

      

F F F

F x n

Z Z Z

Z x n
 

(we excluded the trivial case  0F ). Notice how often we use the form  FZ  to draw conclusions 
here, it is not a coincidence. It is a good practice to avoid habits of some authors to frequently express 
multivectors by components, so formulas look opaque. Here the focus is on the structure of a 
multivector, and that structure reflects geometrical properties.  

One simple example of a nilpotent is 1 2e je  (check it). Functions with a nilpotent as an 

argument is easy to find using the series expansion, almost all terms just disappear. For example, from  
2 0N  follows 1 N Ne  (see below). 

Nilpotents are welcome in physics, for example, an electromagnetic wave in vacuum is a 
nilpotent in Cl3 formulation, a field is a complex vector ,   ,    1   F E Bj E B c , here E  and B  

are vectors of electric and magnetic field. We can define the direction of the nilpotent  N x nj  as 
2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ,    1      k x n x n x nj , so we have 

ˆ ˆ  kN Nk N ,  ˆ1 2 k N N . 

All this is not difficult to prove whether we recall that 

ˆ ,    / ,         x n x n xn x x x x n . 

There are many other interesting relations (see literature). These relations have a direct application in 
electromagnetism, for example. 

Let us now comment the possibility of defining the dual numbers. For the nilpotent 

j N x n  we have ,   0x n  x n , so let’s  define a „unit nilpotent“ (nilpotents have a zero MA) 
2ˆ ˆ/ ,   0x j   ε N x n ε . 

Now we can define dual numbers as ,   , ε    . The addition of these numbers is similar to 

complex numbers, while for multiplication we have 

    1 1 2 2 1 2 1 2 2 1
    ε ε ε          , 

so, for 
1 2 2 1

0      it is a real number. If  
1 2

0,  0    the product is zero, which distinguishes 

dual and complex numbers. For a dual number z   specified as z    ε  we define the conjugation  

z    ε  (notice, it is again just the Clifford involution), it follows   

   2   ε εzz      , 

and the module of a dual number is z   (could be negative). Notice that there is no dependence 

on  . For 0  we have the polar form 

 1 ,   /    ε εz        , 

 

whirl  
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here   is an argument of a dual number. Check that  

  1 1 1  ε ε     and       1 1 ,      ε ε
n

n n  . 

For polynomials we have (check that) 

     

   

0 1 ...

,

       



ε ε ε

ε

n

nP p p p

P P

     

  
 

where P  is the first derivation of the polynomial. This may be extended to analytic functions (see 
below), or to maintain the automatic derivation. The division by dual numbers is also defined as 

  

  

  
2

,   0
   

  
  

ε ε ε εε

ε ε ε

        


      
. 

Especially,  

  

 

1 1
1

1 1 1

1
1 1 ,

1


   

  

 
    

 

ε
ε

ε ε ε

ε ε
ε

n

n
n




  

 


 

and we see that the Moivre's formula is valid 

   1 1 ,       ε ε
nn n nz n n    . 

Dual numbers are of some interest in physics, for example, let’s define the special dual number 
(„event“) t x ε , where coordinates of time and position are introduced, and the proper velocity 

(„boost“) as 1u v  ε ,  1uu  . A speed v   is the argument of the dual number, / x t . It follows 

      1          ε ε ε ε εt x u t x v t x vt t x , 

which means  t t ,   x x vt , so we have Galilean transformations. The velocity addition rule 
follows immediately 

    1 2 1 2 1 2

1 2

1 1 1 1

.

         

 

ε ε ε εu v u u v v v v

v v v
 

Here we have a problem, namely, the velocity vector is not defined properly (there is no orientation), 
but if we recall a nilpotent direction, we can use it to specify the velocity vector  v εjv . The proper 

velocity now becomes 1  εu jv , 1uu . For an „event“ we then use  εt jx . It follows 

    1        ε ε ε εt jx jv t j x vt t jx , 

and we have Galilean transformations again.  

So, as for Lorentz transformations (hyperbolic numbers, vectors and complex vectors, see 
below) and rotors (complex numbers, bivectors), Galilean transformations (dual numbers, nilpotents) 

also have a common place in the geometry of  3 . Because all this is a part of larger structure (Cl3), 
one can get an idea that Galilean transformations are not just approximation of Lorentz 
transformations for small velocities, but that have some deeper physical content, independent of a 
speed. But, such an idea is just due to our special choice of components of the dual number (x, t). Dual 
numbers like  εt x  could be useful in non-relativistic physics, but certainly they are not in accordance 
with the special theory of relativity. In the chapter on special relativity it is shown that Galilean 
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transformations (with rotations and Lorentz transformations) follow from simple symmetry 
assumptions about our world (homogeneity and isotropy). If there is a deeper physics behind this 
formalism then it certainly does not include an explicit space-time events. But what if we choose 
differently? For example, a typical nilpotent is the electromagnetic wave in vacuum. If we define 

 E B  and   / ε E Bj   one could investigate dual numbers like ,    ε   , but then 

there is a question: how to interpret  ? According to the structure of expression it could be some sort 

of scalar field, but then we have another question: what is an argument of such a dual number, the 
ratio of a vector field (complex vector) and a scalar field should be a "velocity"? Ok, let’s stop. 

 

Idempotents and hyperbolic structure  

 

2)  2 1F  

For 2 2 2 1  F x n  we can find a general form using the relation 2 2
cosh sinh 1   , so, 

generally, we have 2 2
cosh sinh ,    1,    j      F f n m n m n m , where f  is a unit complex 

vector.  Example: 
1 2
cosh sinhe je  f . Such a complex vector can be obtained using  2

F , check 

that the multivector 2/f F F  has  requested properties. Check that   21 / 2   fp p p , 

so, we have an idempotent.  

Theorem 1. All idempotents in Cl3 have the form  1 / 2.  fp  

Proof: 

 
2 2 2 22 1/ 2 1/ 4 / 2           F F F F F F fZ Z Z Z Z . 

Notice again the " ,  "FZ  form. The general form of idempotents is now 

  2 21 cosh sinh / 2,    1,         n m n m n mp j  . 

Idempotents like   21 / 2,    1 n n  ( n  is a unit vector) are referred as simple. 

Theorem 2: Each idempotent in Cl3 can be expressed as the sum of a simple idempotent and 
a nilpotent.  

Proof: 

For the simple idempotent  1 / 2 np  and a nilpotent N  we have 

   
2

/ 2       N N N N nN Nnp p p p p , 

so we can see that the statement is correct if  0 nN Nn , which means that the vector n  must to 
anti-commutate with vectors which are defining ,N  i.e. must be orthogonal to them, or, parallel to 

the vector of the nilpotent direction: ˆˆ  n k .  The theorem is proved and we found conditions for the 
nilpotent. 

Example:     1 2 31 / 2,    / 2   Np e e je , 2 3 1
ˆ   k e e e . 
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Spectral decomposition and functions of multivectors 

 

Let’s define  1 / 2   fu , 
2 1f , with properties  

1,    ,       fu u u u 0    u u u u , 
2

 u u ,  u u . 

Note that idempotents 
u do not make a basis in Cl3 (for details about the spectral basis see [33]), and 

that we should write  Mf f  and  u u M
 
 , but we omit that. We can express a general 

multivector with 2 0F   as  

2 2,   1      F F f f ffM Z Z Z Z , 

so if we define complex scalars 
f

M Z Z

   we get the form 

M M u M u
   

  . 

We say that we have a spectral decomposition of a multivector. The spectral decomposition gives us a 
magic opportunity  

 
22 2 2

          M M u M u M u M u , 

and we can immediately generalize this to any positive integer in the exponent, but to negative 
integers also if the inverse of the multivector exists. Prove that in the spectral basis the form 

MM M M
 

  is valid. 

For analytic functions we can utilize series expansion to find 

        
 f M f M u f M u . 

Recall, to find  f M
  we use the complex numbers theory, switch 1  j i  , find our function and 

switch again i j . For multivectors 
2

 F F fM we have 

     2 2 2

  
     F F FM f M f u f u . 

Now for even functions follows 

      2 2
f f u u f

 
  F F F  

and for odd functions 

      2 2

 
  F F F ff f u u f . 

Multivectors of form 
2 2,   0M z   F F N  haven’t the spectral decomposition, but 

using 

  1   N N
nn n nM z z nz , 

we have 

   
 

  N N
df z

f z f z
dz

. 
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We can look at some special cases 

   1  f u f u , 

       1 1       ff f u u f u f u , 

                ff j f ju ju f j u f j u . 

For the inverse function we have 

       1 1 

         f y x f x y f x y x f y . 

If 0MM  (a light-like multivector) we have 

  2 2=z+z ,  z - 0 z-z z+z   F F FF f f FM z , 

so we have two options: 

1)    2 ,   0 2       F F Fz z M z M f M f z u , 

2)    0,   2 2          F F Fz z M M z f M f z u . 

Let us now see some examples of elementary functions.  

An inverse of a multivector ( 0MM ) is found easily 

  
1 1          

               

 
    

  

M u M u M u M u u u
M

M u M u M u M u M u M u M M M M
, 

with the power 

     

1
,      

     

   


n

n n n

u u
M n

M u M u M M
. 

The square root is simple, too (see [13] for a different form) 

   
2 2

                       M S S u S u M M u M u S u S u S M , 

or 

 
1/1/ ,   


    
nnM S S M n . 

Example: 

  / 2  e e
i i

j j . 

The exponential function is 

 

  
M MMe e u e u , 

so the logarithmic function is obtained as 

   log exp exp log                 XM X e M M u M u X u X u X M . 

With the definition 
2

/ ,    1j    I F F f I , the logarithmic function has a form (Chappell)  

log log  IM M  ,     arctan / F Z , 

but we can show that these two formulas are equivalent: 
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   
       log log log log

log log
2 2

M M M M
M u M u

   

   

 
   f  

log log 1 / / 1 / log arctan / log .
 

         
                  

      I F F I F IM j j z j z M z M   

Examples: 

log log  1e

1 1 1
e e eX X ,   (  1 / 2


 

1
eu ),   1e u u   , 

                 log log1 log 1           1 1e eu u u u j u  

                   log exp exp           1 1e e j u X j u j u u   . 

We leave to the reader to explore possibilities, and to find expressions for trigonometric functions. 

We can now take an example of the polynomial equation  

2 1 0 M , 

where solutions are all multivectors whose square is -1. We could try  

 
2 2 2 21 0 2 1 0 0 1            F F F FZ Z Z Z , 

and we  know (see the next chapter) the general solution. Using the spectral decomposition we have 

     
22 2 21 1 1 0                   M M u M u u u M u M u  

2 21 0,   1 0M M     , 

so we get two equations with complex numbers. This was just a little demonstration of possibilities, 
but the reader should do complete calculations. 

We have already pointed out that Cl3 has the complex and hyperbolic structures, the complex 
one due to  j  and other elements that square to -1, and hyperbolic due to elements that square to 1, 

unit vectors are hyperbolic, for example. There are also dual numbers here (using nilpotents). It is 
possible to efficiently formulate the special relativity theory using hyperbolic (double, split-complex) 
numbers, so, it should not be a surprise if it turns out that the theory is easy to formulate in Cl3 (see 
below). A unit complex vector f  is the most general element of the algebra with features of 

hyperbolic unit. For two multivectors that have the same unit complex vector f  (the same 

„direction“) 

1 1 1
 

F
fM z z  and  2 2 2

 
F

fM z z , 

we can define the square of the distance of multivectors as 

    1 2 1 1 2 2 1 2 1 2 1 2 2 1 i o        F F F F F Ff f f fM M z z z z z z z z z z z z h h , 

where hi and ho are hyperbolic inner and hyperbolic outer products. If 1 2
 M M M  we have the 

multivector amplitude. For 0oh   we say that multivectors are h-parallel, while for 0ih   are h-

orthogonal.  

Lemma: Let 1 2
0M M    for  1

0M    and  2
0M  . Then 1 2

0M M   and vice versa. 

  1 2 1 1 2 2 1 2 1 2 ,                 M M M u M u M u M u M M u M M u
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  1 2 1 1 2 2 1 2 1 2                 M M M u M u M u M u M M u M M u , 

so 1 2
0M M

 
  or 1 2

0M M
 

 , which means 1 2
0  &&  0M M

 
   or  1 2

0  &&  0M M
 
  , but both 

cases imply 1 2
0M M  . The reverse statement is similar to prove. 

 

What is 1 ? 

 

3)  2 1 F  

 

Generally, this kind of a complex vector can be obtained by 2
  F FF F , we have

2
/ ,    1    I F F f Ij . The general form is 

2 2
sinh cosh ,    1,        I n m n m n mj  . 

Note that we have a non-trivial solution for 1 .  In order to further substantiate we can look for all 

possible solutions for  z c jd , so we need to solve the equation  2 M z . One solution is just 

the ordinary square root of a complex number (for 0F ), but more generally 

 
2 2 22 0           F F F F v wZ z Z Z z Z z j , 

so 
2 2 2        v w v wc jd j c jd v w j , 

and 
2 2

,    2c v w d   v w . Amazing, the square root of a complex number is a complex vector (and 

this is expected because the square of a complex vector is a complex scalar)!  The reader is proposed 
to explore different possibilities.  

 

Trigonometric forms of multivectors 

 

Recall that for 2 0F  we defined dual numbers z    ε , 2 0ε , ,     and that 

for 0  we found the polar form 

 1 ,   /    ε εz        , 

where   is an argument of the dual number. 

Elements f  and I  can be utilized to define trigonometric forms of general multivectors. To 

take advantages of the theory of complex numbers we use  I . So, we define the argument of a 
multivector as 

arg atanM
Z


 

   
 

F
 . 
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Now we have (with conditions of existence), M MM ,  

cos 
Z

M
  , sin 

F

M
 , 

which gives 

 cos sin   F IM Z M   . 

Recalling that 2 1 I , the generalized Moivre's formula is valid 

   cos sin   I
nnM M n n  . 

Notice that we have a form as for complex numbers, but there is a substantial difference: the element 

I  has a clear geometric meaning, it contains the properties that are determined by vectors which 

define the vector part of the multivector. Using  F I F   and the series expansion we have 

 cos sin   F F
F I F

M Z Z Ze e e e e , 

which is possible due to the commutativity of a complex scalar Z . The case 2 0F  we discussed 
earlier. There is an interesting article where multivector functions are defined starting right from the 

properties of the complex vector I  ([13]). 

To take advantages of the theory of hyperbolic numbers we use f : 

  2 2cosh sinh ,    
 

           
 

F f f f
f

f f

ZZ
M Z Z Z MM Z Z    

 
. 

If 0MM  there is no polar form (light-like multivectors), but then we have  1  fM Z . Let’s 

define a „velocity“ tanh  , then follows 

    1 2cosh sinh 1 ,    1     f fM        . 

If we define the proper velocity   1 ,   1  fu uu  , it follows the „velocity addition rule“ as 

     

      

     

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2 1

1 2 1 2

2

1 / 1

1 / 1

1 1 1

1

,     ,

        



     

     

  



      

 

  

f f f

f  

which are formulas of the special theory of relativity. The proper velocity in a „rest reference system“ 

0 is 0
1u  , so we can transform to a new reference frame by 0

u u u , or, as in the previous 

example 0 1 2 1 2
u u u u u . These formulas represent geometric relations and are more general than those 

of the special theory of relativity, namely, for SR we usually need just the real part of a multivector 
(paravectors, see next chapter), here we have bivectors too.  

Using the spectral decomposition we have 

    11 1 

           fM k u k u k K     , 

where (here we use ln log
e

x x ) 
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   1 / 1 ,    lnK   K    , 

is the generalized Bondi factor. It follows 

    1 1 2 2 1 2 1 2 1 2/ / /          K u u K K u u K K K u u K K K K K , 

which is the exact formula from the special theory of relativity  and it is analogous to velocities addition 
rule.  

It goes without saying that the geometric product gave us the possibility of writing  
“relativistic” formulas  without the use of the Minkowski space. If Einstein knew that … 

 

The special theory of relativity 

 

The reader could take an advantage of the previous chapter and apply it to multivectors of 
form  xt  (paravectors) and so immediately get necessary formulas. But anyway, we have a lot to 
comment. 

The Special Theory of Relativity (SR), in its classic form, is the theory of transformations of 
coordinates and especially important is the concept of the velocity. Geometric algebra does not 
substantially depend on specific coordinates, which gives us the opportunity to consider general 
geometric relationships, not only relations between coordinates, which is certainly desirable because 
physical processes do not depend on coordinate systems in which they are formulated. Unfortunately, 
many authors who use geometric algebra cannot resist to use coordinates, and that makes formulas 
non-transparent and blurs the geometric content. It's hard to get rid of old habits. There are many 
texts and comments about SR, there is a lot of opponents too, which often only show a lack of 
understanding of the theory. So, for example, they say that Einstein "wrote nonsense" because in 
formulas he uses the “speed of photon” as  c  and c v , not realizing important and simple fact that 
the speed of a photon is c  in any inertial reference system. But if we want to find the time photon 
needs to reach the wall of the rail car that runs away from the photon  (viewed from the rails system, 
the collision time ) we must use c v . Why? Because it is the relative velocity of the photon and the 
wall of the rail car in the rails system. Speed of the photon and the speed of the wall are both measured 
in the same reference system, so are added simple, without a relativistic addition rule. It is quite 
another matter when we have the man in the rail car which walks in the direction of movement of the 
train with the speed u , relative to the train. Velocity of the man as measured in the rails system is 

   2/ 1 / c v u uv , but here the speed  u  is measured in the train system, while the speed v  (the 

speed of the train) is measured in the rails system. So, we use relativistic velocity addition formulas for 
velocities measured in different frames of reference. Quantities from one a single system of reference 
we are not to transform, so there is no formulas that arise from transformations (here Lorentz 
transformations).  

Before we proceed it may be useful to clarify some terms. We say that laws of physics need to 

be covariant, meaning that in different reference frames have the same form, so, a formula A B  
leads to  A B . A physical quantity is a constant if it does not depend on coordinates, for example, 
number 3 or the charge of an electron. The speed of light is not a constant in that sense, it is an 

invariant. It means that it depends on coordinates ( /c d dt r ), but has the same value in any inertial 

reference frame. The speed of light is a constant of nature in the sense that it is limiting speed, but 
related to Lorentz transformations it is an invariant (scalar).  
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Another common misconception is about postulates of the special theory of relativity. Let the 
covariance postulate be the first and invariance of the speed of light postulate the second one. From 

the first we have, for example, /v dx dt  and /  v dx dt . The second postulate is mainly motivated 
by Maxwell’s electromagnetic theory, which predicts the invariance of the speed of light in inertial 
reference frames. Now, it is important to note that we need the first postulate only to derive Lorentz 
transformations (LT)  (it is not hard to find references, so we highly recommend to do it, see [26]). 

Once we have LT immediately follows the existence of the maximum speed (
gv ), invariant one. It 

means that we don’t need the second postulate to have that in the theory. Accordingly, in relativistic 

formulas we can use 
gv instead of c . Einstein simply assumed that 

g v c , relaying mainly on 

Maxwell’s theory. However, the existence of the speed limit does not necessarily mean  that there 
must be an object that is moving at such a speed. We think that light is such an object. But we can 
imagine  that the limit speed is 1 mm/s  larger than c . What experiment could show the difference? 
But, if that were so, a photon would have to have a mass, no matter how small it was. We could then 
imagine a reference system that moves along with the photon, so that the photon is at rest in it. But 
light is a wave too, so, we would see a wave that is not moving. The wave phase would be constant to 
us (maximum amplitude, for example), so we couldn’t see any vibrations. Now, without the change of 
the electric field in time, there is no magnetic field, so we see an electrostatic field. However, there is 

no a charge distribution in space that could create such a field (Einstein). So, instead of 
gv  we use c , 

but that does not mean that the assumption of the invariance of the speed of light is necessary for 
validity of SR. Our first postulate is certainly deeply natural  and typical for Einstein, who was among 
the first which stressed the importance of symmetries in physics, and this is certainly the question of 
a symmetry. True, it is easier to make sense of the thought experiments and derive formulas using the 
postulate of the speed of light. It is done so in almost all textbooks, so students get the impression that 
there is no the theory without the second postulate.  Let us also mention that there are numerous 
tests that confirm SR, and none (as far as is known to the author) that refutes it, although many are 
trying to show things differently, even make up stories about a "relativists conspiracy". Let us mention 
two important facts. First, quantum electromagnetic theory (QED) is deeply based on the special 
theory of relativity, and it is known that the predictions of QED are in unusually good agreement with 
experiments. Second, we have the opportunity almost every day to monitor what is happening at 
speeds comparable to the speed of light, namely, we have particle accelerators. They are built using 
formulas of the special theory of relativity, and it is really hard to imagine that they would operate if 
SR was not valid. 

There is one more thing to discuss. Usually in textbooks is an inertial coordinate system defined 
as an “un-accelerated system”, but that implies homogeneity, in agreement with the Newton’s first 
law only, not all Newton laws, as authors state. To include the third Newton’s law we have to introduce 
the concept of isotropy (of inertia). Why? Consider two protons at rest and let them to move freely. 
Then we expect that protons move in opposite orientations due to the repulsion, but we also expect 
that both protons have exactly the same kinematical properties. All orientations in space are equal. 
Without that we have not the third Newton’s law. The isotropy is directly connected to the possibility 
to synchronize clocks. It is also natural to expect that the light speed is equal in all possible orientations 
(although this is not so important here, we will not use a light in the derivation of LT and clocks can be 
synchronized using our protons). Then we have an inertial coordinate systems (ICS) with the 
homogeneity and isotropy (of inertia) included. The class of inertial coordinate systems (rotated, 
translated) that are not moving relative to some inertial coordinate system we call the inertial 
reference frame (IRF). Now, with homogeneity and isotropy included we do not need the light speed 
postulate, symmetries are enough to obtain Lorentz transformations. Thus light loses the central role 
in the theory. 

Let's see how to do that. Due to the linearity we expect transformations like ( v  is a relative 
velocity between systems, measured in one of systems) 
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                     x Ax Bt t Cx Dt . 

For  x const  we have 0 dx , so,  B vA . Inverse transformations are 

               
     

 
 

Dx Bt Cx At
x t

AD BC AD BC
 , 

then from x const  we have  B vD , so, D A . If we denote  

 AD BC   and  / A  , 
2

2 2

1


v





 

we have transformations 

                    x x vt t t vx    , 

                      x x vt t t vx
 


 

. 

If we replace v  with v  these two transformations should be exchanged (due to isotropy) and we 

have 1 (note that it means that transformation is orthogonal). Now we have 

                    x x vt t t vx   , 

                      x x vt t t vx   . 

From  
21/ 1  v  , 

we get general transformations in the form 

2 2
           

1 1

 
  

 

x vt t vx
x t

v v



 
. 

Reader is encouraged to show (using three inertial coordinate systems) that   v const . Using 

appropriate physical units we get only three interesting possibilities for  : -1, 0, 1. Looks familiar? 

For 1  we have a pure Euclidean rotation in the  ,x t  plane, by the angle  1tan v .  For 

0  we have Galilean transformations. For 1 we have Lorentz transformations. Experiments in 

physics teaching us that we have to use 1 , but notice that Galilean relativity is the valid relativity 
theory, all of this is a consequence of our definition of the ICS. The direct consequence of Lorentz 
transformations is existence of the maximum speed, but we discussed this already. 

Recall that we have already seen numbers -1, 0, 1 here in text, we discussed rotations, dual 
numbers and hyperbolic numbers obtained from general multivectors in Cl3. 

Paravectors in Cl3, like   xt (a multivector with grades 0 and 1), give a paravector again when 
squared (check it), therefore the module of a paravector is to be defined differently. For complex and 
hyperbolic numbers (or quaternions) we have a similar obstacle, so we use conjugations. For 
paravectors we don’t need any ad hoc conjugation as we already have  the Clifford involution, so we 
define 

   2 2     x xpp t t t x , 

which is exactly the desired form of an invariant interval required in the special theory of relativity. 
Recall that the Clifford involution is combination of grade involution and reverse involution, so we can 
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try to interpret it geometrically in 3 , namely, the grade involution means a space inversion, while for 
the reverse involution we have seen that it is related to the fact that Pauli matrices are Hermitian. 

To be clear, if we specify the paravector 
1

e  , with 2

1 1e   we have a natural „hyperbolic 

unit“. It follows 

 
2 2 2

1 1   e e     , 

so, we have a paravector again, with the same direction of vector, but 

   2 2

1 1    e e      . 

Notice that with the Clifford involution there is no need for a negative signature (Minkowski). 
According to the Minkowski formulation of SR we can define the unit vector „in the time direction“ 

2

0 0,    1e e  and three space vectors 2,    1 i ie e , which means that we have a negative signature  (1, 

-1, -1, -1). Such an approach is possible in geometric algebra, too, we have STA (space-time algebra, 
Hestenes). But, everything you can do with STA you can do in Cl3 also, without the negative signature 
(Sobczyk, Baylis). Those who argue that the negative signature is necessary in SR are maybe wrong.  
Some authors write sentences like: „The principle of relativity force us to consider the scalar product 
with negative square of vectors“, forgetting that their definition of norm of elements prejudice such a 
result (Witte: Classical Physics with geometric algebra). Yet, it is possible to describe a geometry in one 
space using formalism of higher space, so we can say that the Minkowski geometry formulation of SR 
is a 3D problem described in 4D.  But in Cl3, all we need are three orthonormal vectors and one 
involution. Time is not a fourth dimension any more, it is just a real parameter (as is in the quantum 
mechanics). If there is a fourth dimension of time how it is that we cannot move through the time as 
we move through the space? There are other interesting arguments in favor of the 3D space, for 
example, gravitational and electrostatic forces depend on the square of the distance. And what about 

definition of velocity (we use it also in the theory of relativity): /dx dt ? If there is a time dimension 
then time is a vector, which means that the speed is naturally a bivector, like a magnetic field, not a 
vector. It does not matter if we use a proper time to define the four-velocity vector, the space velocity 
is still defined by the previous formula, up to a factor. Minkowski gave us a nice mathematical theory, 
but his conclusion about the fourth time dimension was pure mathematical abstraction, widely 
accepted among physicist. At that time, geometric ideas of Grassmann, Hamilton and Clifford were 
largely suppressed. This begs us to question what would Einstein choose if he knew that? At the 
beginning of the 20th century an another important theory was developing, the quantum mechanics, 
where Pauli introduces his matrices to formulate the half spin, we already commented it. Dirac’s 
matrices are also representation of one Clifford algebra, but again, Dirac’s theory has a nice 
formulation in Cl3 (Baylis), as well as the minimal standard model in Cl7 (Baylis) ... It is not without 
grounds to question the merits of introducing time as a fourth dimension. A usual argument is one that 
Minkowski gave, in fact, this is not an argument, it is just the observation that in the special theory of 

relativity an invariant interval is not 2 2
dt dx  but 2 2

dt dx . But we see that the invariant interval 
2 2
dt dx  is easy to get in Cl3, with completely natural requirements for a multiplication of vectors. 

Minkowski has introduced a fourth dimension ad hoc. If his formalism was undoubtedly the only 
possible  to formulate the special theory of relativity  then there would be a solid base  to believe that 
indeed there must be a fourth dimension of time. Thus, without that condition, with the knowledge 
that there is a natural way to formulate the theory without the fourth dimension, it is difficult to avoid 
the impression that  this widely accepted mantra of fourth dimension does not have a solid foundation. 
According to some authors, one of the stumbling blocks in the theory of quantum gravity is probably 
the existence of a fourth dimension of time in the formalism. Here we develop a formalism using 
paravectors which define the 4D linear space, but time is identified as a real scalar, we say that time is 
a real parameter. It would be interesting to investigate whether there is any experiment that would 
unambiguously prove the existence of a fourth dimension of time. Probably, there is no such an 
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experiment. Therefore, it is difficult to avoid the impression  how physicists are binding a ritual cat 
during the meditation. But the future will show, perhaps the time dimension does exist, maybe more 
of them (if time exists). In any case, it is not true that the Minkowski space is the only correct 
framework for the formulation of SR. Especially, it is not true that in SR we must introduce vectors 
whose square is negative.  

We'll use a system of physical units in which is 1c . In geometric algebra we are combining 
different geometric objects which may have different physical units. Therefore we always choose the 
system of units such that all is reduced to the same physical unit (usually the length). So we study 
geometric relationships, and that is the goal here. In an application to a particular situation 
(experiment) physical units are converted (analysis of physical units), so that there is no problem here.   

Starting from the invariant interval in SR  2 2 2 t x  ,  where   is the invariant proper time 
in the particle rest frame, it follows  

   2 2 2 2 2 2 2 2 21 / 1/ 1       t x t v t v   , 

where   is well known relativistic factor. Now, instead of the four-velocity vector, we define the proper 

velocity (paravector)  1  vu   which is simply 0 1u  in the rest frame. Notice that the proper 

velocity is not a list of coordinates, like a four-velocity vector, but plays the same role. Obviously, 

1uu . Let us imagine that a body initially at rest we want to analyze in a new reference frame in 
which the body has a velocity v  (boost). Recipe is very simple: just make geometric product of two 

proper velocities 0 0 u u u u . For the series of boosts we have a series of transformations 

0 0 1 0 1 2 1 2  u u u u u u u u . 

Notice that this is really easy to calculate, and that from the form of the proper velocity paravector we 
immediately see the relativistic factor   and the 3D velocity vector v . For example, let’s specify that 

all velocity vectors are parallel to  1e , then 

        1 1 1 2 2 1 1 2 1 2 1 2 1 1
1 2

1 2 1 2

1 2

1 1 1 11
1

 
       










v e v e v v v v e

v v
v v

v
e

v
     , 

so, from the form of the paravector (parts are colored in red) we immediately see that 

 1 2 1 21  v v   ,    1 2
1

1 21





v

v v
e

v v
, 

known results of the special theory of relativity (relativistic velocity addition). Notice how the 
geometric product makes the derivation of formulas easy and, as stated earlier, obtained formulas are 
just special cases of general formulas in Cl3.  So, from the polar form of general multivector 

    1 2cosh sinh 1 ,    1     f fM        , 

reducing to the real part of a multivector (paravector) we have  

cosh   , sinhv  ,      ˆ ˆ ˆcosh sinh cosh 1 tanh exp    v v vu      . 

Using the spectral decomposition we have 

   ˆ1 1 cosh sinh           vv k u k u k v    , 

defining implicitly the factor k  (Bondi factor)  ln k  and recalling definitions of hyperbolic sine and 

cosine we get 



 57 

 

1 cosh sinh  k   ,      1 / 1  k v v ,     1

  u ku k u . 

Our earlier example with two "boosts"  parallel to 1e  now has the form 

    1 2 1 1 2 2 1 2 1 2/ / /         u u k u u k k u u k k k u u k k , 

i.e. the relativistic velocity addition rule is equivalent to the multiplication of the Bondi factors: 

1 2k k k .  

Example: In the referent frame 
1

S  the starship has velocity v , in the referent frame of the 

starship another starship has velocity v  and so on, all in the same direction. Find the velocity nv  of 

the n-th starship in 1S . Discuss a solution for n ? 

Solution: 

Let    1 1 / 1  k v v , then         11 / 1 1 / 1      
n

n

n n nk v v k v v  , whence 

we find the required velocity nv .  

If velocity vectors do not lie in the same direction,  in expressions appears the versor  1 2v v , 

which may seem like a complication, but actually provides new opportunities for elegant research, for 
example, it is rather easy to get the Thomas precession (see [14]), for some time unnoticed, but the 
scope of this text seeks to stop here.  

 

Lorentz transformations 

 

We are now ready to comment on restricted Lorentz transformations (LT). Generally,  LT 

consists of „boosts“ B  and rotors R . We can write (see [22]), quite generally L BR , 1LL                     
(the unimodularity condition). Here we can regard this condition as the definition of Lorentz 
transformations, which is well researched and justified. If we define (see above)  

    ˆ/2ˆcosh / 2 sinh / 2   v
vB e  ,       ˆ /2ˆcos / 2 sin / 2    w

w
jR j e   , 

(the unit vector ŵ  defines the rotation axis) we can write LT of some element, say vector, as 

† † †  p LpL BRpR B . 

There is a possibility to write L as 

ˆ ˆ ˆ ˆ/2 /2 /2 /2  v w v wj jL e e e    , 

where we have to be careful due to a general non-commutativity of vectors in the exponent (see [19]). 

However, it is always possible to find (using logarithms) vectors ˆv and ˆ w  that satisfy  

ˆ ˆ ˆ ˆ/2 /2 /2 /2   v w v wj jL e e e    . 

It is convenient in applications to resolve an element into components parallel and orthogonal to v̂  or 

ŵ and take the advantage of commutation properties. For further details see Baylis articles about APS 
(algebra of physical space, Cl3). In [22] you can find a nice chapter about the special theory of relativity. 

We see that rotations are natural part of LT, so, geometric algebra formalism can provide a lot 
of opportunities because of powerful rotor techniques. Later in the text we will discuss some powerful 
techniques with spinors (eigenspinors).  
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Extended Lorentz transformations. Speed limit? 

 

This chapter is speculative, with interesting consequences (new preserved quantities and a 
change of the speed limit in nature). Those faint hearted  can take this as just a mathematical exercise.  

Earlier we defined  MA as 

 
2 2 2 2 2 2        x nMM M t x n b j tb , 

and showed its properties. Now we look for a general bilinear transformation  M XMY  that 

preserves MA (see [11]): 

2 2 2
     M XMY M M XMYYMX M X Y , 

so we have possibilities 

2 2
1  X Y , 

which gives 
2 2 1       F F FZ Z Z ZX e X e e e  

and we will choose (for now) the possibility 1 and Z = 0, although we could consider  / 2Z j , too.  

Now the general transformation is given by  

    p q r sj jM XMY e Me , 

so we have  12 parameters from four vectors in exponents.  

The question is what a motive for the consideration of such transformations we have. Elements 
of geometric algebra are linear combinations of unit blades of Clifford basis, each of which actually 
defines a subspace. If we limit ourselves to the real part of multivectors only (paravectors) we put in a 
privileged position space of real numbers (grade 0) and vectors (grade 1). The idea is that all subspaces 
we treat equally. In fact, this whole structure is based on a new multiplication of vectors, so, 
manipulating multivectors we actually manipulate subspaces. Addition of vectors and bivectors is 
actually an operation that relates subspaces and it is important to understand it well. If subspaces are 
treated equally, then we must consider all possible transformations of subspaces and all possible 
symmetries and they are more than what classical (restricted) Lorentz transformations imply. The 
reader should be able to stop a little and think carefully about this. Remember that symmetries in the 
flow of time give the law of conservation of energy, the translational invariance gives the law of 
conservation of momentum, etc. Where we to stop, and why? If we truly accept the naturalness of the 
new multiplication of vectors  we must accept the consequences of such a multiplication, too and they 
reveal an unusually rich structure of our good old  3D Euclidean space. But true, the final judgement 
will be given by experiments (hope). 

Considering the invariant MA expressed in two reference frames we can compare the real and 
the imaginary parts 

2 2 2 2 2 2 2 2         t x n b t x n b , 

                                                               x n x ntb t b . 

Differential of the multivector 
   x ndX dt d jd jdb  
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gives MA 

 
2 2 2 2 2 2      x ndX dt dx dn db j dbdt d d  

and we can try to find conditions for the existence of the real proper time. There are many reasons to 
define a real proper time, for example, makes it easy to define a generalized velocity. Typically, in the 
special theory of relativity we will chose the rest frame. Here, due to additional elements (except the 
velocity), it will not be enough, because we want (  is a proper time) 

 
2 2 2 2 2 22        x ndX dt dx dn db j dbdt d d d . 

The first condition, if we want a real proper time, is certainly the disappearance of the imaginary part 
of the MA in each system of reference (recall that the MA is invariant to our transformations and 
cannot have an imaginary part in one reference frame and not in the other). This means that in every 
reference frame must be valid  

   2 2 0 ,           x n x n x n x ndbdt d d dt db d d dt h d d h d d    db h ,  

with a common designation  / dx dt x , which implies     x nh d d . If we define x vd , ,n w  it 

follows  w vh . The vector w  comes from the bivector part of the multivector, so we expect it to 

be related to angular momentum-like quantities, then h   could be a flow of such a quantity, much like 
flow is defined for the flowing of a liquid through a tube.  The difference is that here bivectors do not 
transform as surfaces (see [11]). 

Considering  the invariance of MA and the proper time as a real number we have 

2 2 2 2 2 2 2      dX dX d dt dx dn db  

 
2 2 2 2

2 2 2 2

2 2 2 2
1 1 1

 
        

 

dt dx dn db
v w h

d dt dt dt



, 

 
22 2 2 2 2 2 21/ 1 1/ 1 cos        w vv w v w w v  . 

Note that our relativistic factor    now has contributions from all subspaces. It would be natural to 

require that the „rest frame“ (with the condition 0v ) be replaced by 1 , which would mean that 

there is no resting particles, but  

2 2 2 2 2 2 2cos 0 / 1 cos      v w w v v w w  . 

It is not so difficult to accept this, because what if the velocity of the particle may not be zero? For 
example, how to reconcile principles of quantum mechanics and the idea of completely peaceful 
electrons? Including all subspaces and all quantities related to them it follows that a „rest frame“ 
becomes something like a „center of energy-impulse-angular momentum, etc.  frame“.  

The relativistic factor    is defined as the ratio of two real times, so it must be a real number, 

which gives us condition 
2

2 2 2 2 2

max 2 2

1
1 cos 0

1 cos


     



w
v w w v v

w



. 

This is a completely new result: the limit speed is 1 for 0w  or cos 1  , otherwise it is greater 
than 1. This result is not new in geometric algebra (Pavšić, using C-algebras, but the author got this 
result independently, in the comment on the article [12]). What could be the physical meaning of this? 
Consider an electron, it certainly isn’t a „small ball“ (recall the great Ruđer Bošković and his points as 
the source of force), namely, it has the spin, and the spin is just „like angular momentum“ quantity. 
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Can we treat the relativistic electron as an Einstein's relativistic train? Probably not! In the eyes of 
geometry it is hard to accept that electron is just a very little ball with the spin packed in it, like a train 
with passengers in it. Relativistic formulas for a train do not depend on the type of cargo in it. But spin 
is probably not just a “cargo”, rather, it is a geometric property, so it should be a part of 
transformations.  If just derived formulas are applicable to the electron then its (limit) speed would 
depend on the orientation of the spin relative to the velocity vector. And more, the speed for a given 
energy would depend on the orientation of the spin, so electrons with the same energy are supposed 
to arrive at the target with different times. Maybe someone in the future will carry out such an 
experiment, a positive result would certainly significantly change our current understanding of the 
relativity. Especially interesting would be to see how electrons behave in quantum tunneling, because 
there are suggestions of some authors that an electron might be moving with speeds exceeding 1. This 
is sometime formulated by introducing complex numbers, making the whole philosophy about it, 
although it is likely the matter of an inappropriate mathematics.  But, it is hard to be sure. 

Now that we have defined (invariant, real) proper time we can define the multivector of 
generalized velocity  

 1        
x n

v w
dX dt d dt d dt db dt

V j j j jh
d d dt d dt d dt d


    

, 

with the invariant amplitude 

 
1 0    

d VV dV dV
VV V V

d d d  
, 

which is a kind of expression of the orthogonality of the generalized velocity and the generalized 
acceleration. Multiplying the generalized velocity with a mass we get the generalized momentum  

2 2 2 2 2,              p lP mV E j jH PP E p l H m . 

This is very different from the usual formula for energy-momentum 2 2 2
 E p m . Two additional 

conserved quantities appear, the last of which ( H ) is a brand new ([11]). Under the terms of our 
derivation must be   l vH mh , so the new conserved quantity has a form of flow, and we have 

finally 

 
22 2 2 2     l vPP E p l m . 

If this is physical,  the motion of particles with a spin should satisfy the law of conservation of flow, an 
idea that had been already presented by some authors (unfortunately, I forgot the source!).  The speed 
of a particle will be generally higher with  w  than without it for a given energy, which can be deduced 
from the previous formula: adding a positive term to the negative square of momentum gives the 
possibility to increase the speed. Let's make sure about it directly   

 
22 2/ 1/ 1      w vE m v w  

 

 

2 2 22 2 2
2 2

22 2 2

1 / /1 /
1 /

1 cos 1 / cos

  
   

 

l E m Ew m E
v m E

w l E 
. 

We should note at the end that just discussed formalism reduces to the usual special theory of 
relativity, it is sufficient to reject the imaginary part of multivectors and keep the real one, i.e. 
paravectors. All “strange” implications just disappear. Of course, there is a plenty of possibilities to 
treat a time differently, but we will stop here (see ([11] and ([12] for some interesting discussions). 
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Electromagnetic field in geometric algebra 

 

Here we will not describe the entire EM theory in Cl3 (see Hestenes, Baylis, Chappell, 
Jancewicz), we only comment on a few ideas. In the geometric algebra formalism, for electromagnetic 
(EM) wave in vacuum we define 

2
,  ,   0,    1      E B F E B FE B j c , 

so the complex vector F  is a nilpotent. Note that the term with magnetic field is a bivector. It is useful 
to expand the magnetic field bivector in an orthonormal basis, so, if we start with the magnetic field 
vector 

1 1 2 2 3 3
  B B e B e B e  

we get the bivector 

 1 1 2 2 3 3 3 1 2 2 3 1 1 2 3     Bj j B e B e B e B e e B e e B e e . 

The reader should check this simple expression and try to create a mental image of it. Also, we 
can represent bivectors using parallelograms, it is straightforward to see how to add them graphically 
(figure next to the main title). The GAViewer can help here. Although this may seem like "just a neat 
trick", here we are going to try to show that the bivector, as a geometric object, is fully adequate for 
the description of the magnetic field, actually, physical properties of the magnetic field require to be 
treated as a bivector. In any formalism that does not imply the existence of bivectors (as for the Gibbs 
vector formalism in the language of the scalar and cross products) problematic situations must 
necessarily occur. Here we will discuss the issue of the Maxwell's theory and the mirror symmetry, as 
an example. If we use a coordinate approach then in 3D we can define a richer structure by introducing 
tensors. Let's look at a quote from the article by Jancewicz: A system of units compatible with 
geometry, 2004: 

„For the three-dimensional description, antisymmetric contravariant tensors are needed of 
ranks from zero to three (they are known as multivectors) as well as antisymmetric covariant tensors 
of ranks from zero to three (called exterior forms). It makes altogether eight types of directed 
quantities.“ 

So, for example, axial vectors (like a cross product) become antisymmetric tensors of the 
second rank. This whole geometric structure becomes simple and intuitive in geometric algebra, 
without the need for introducing any coordinates (here we often introduce a basis, but it is solely for 
the purpose of easier understanding of the text and it is not necessary). Due to the independence of 
the basis, ceases to be important, for example, if we work in the right or the left coordinate system, 

geometric product takes care of everything. For two vectors we could have expressions like ab ba
and we do not need to use any basis to conclude that it is a scalar or a bivector, in any dimension.  

The Maxwell's electromagnetic theory is the first physical theory which initially met the 
postulate(s) of the special theory of relativity. It is therefore no wonder that both theories fit perfectly 
in Cl3. Let's look at some interesting facts related to the theory in the language of geometric algebra. 
For example, we can visualize solutions for an electromagnetic wave in vacuum  ([22]) by a simple and 

interesting picture, namely, a wave vector k is parallel to the  direction vector  of the nilpotent F , so 
solution can be written (for k x  ) as  

0


F

jkx j te e  ,    0 0 0 F E Bj . 
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We can imagine the spatial part of the wave  
0


F

jkxe  as spatial periodic steady spiral  which 

extends along the direction of the wave propagation. This "spiral" is the nilpotent here because it is 

proportional to 
0

F . It turns out (see below) that rotation of a nilpotent around his direction can be 

achieved by multiplying it by a complex phase, like j te  , so, we have a spiral in space which rotates 
around the direction of propagation of the wave. The bivector part Bj  defines the plane orthogonal 

to B , so the vector E  belongs to that plane. The bivector Bj  provides an opportunity for 

consideration of electromagnetic phenomena more complete and more elegant than a (axial) vector 
B . 

Let's look at some more properties of EM fields in vacuum. Maxwell's equations are completely 
mirror-symmetric in the language of geometric algebra, as well as their solutions. When we use the 
cross product we immediately need to introduce the right hand rule, and we see that we have the left 
hand rule in the mirror. If we set the figures (the original and the one in the mirror, p. 11) one over 
another they do not match, vectors are standing wrong. However, if vectors (axial) of the magnetic 
field are replaced by bivectors, images exactly match. And, of course, we don’t need the right hand 
rule, as stated, the geometric product takes care of everything. It is clear that for those who have 
thought for a long time in the language "vectors-right hand rule" will be difficult to accept a new 
paradigm. We're taught to imagine arrows, so we have yet to develop an intuition for objects that are 
not vectors or scalars. Geometry is the language of physics more than we dreamed of.  

The vector E  belongs to the plane defined by 
bivector Bj . The area of the circle which presents the 

bivector is  B , so its radius must be / 0.56 .B B  The 

direction and possible orientations of the wave 
propagation are plotted  in p. 12.  

 

 
 

This image is rotated about the wave propagation axis by an angle dependent on the position  

( k x  ), which gives a static image in space. It has been said, this whole spatial image rotates in time, 
depending on the frequency of the wave  ( ). This last assertion reader can check itself if he takes a 

simple nilpotent  
1 2
e je  and multiply it by a complex phase je  . Immediately we get the matrix of 

the rotation around the z-axis. We can rotate elegantly the whole picture, so this particular example is 
not special in any way.  

For any complex vector  F v wj  in Cl3 we have 
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  † 2 2 2 22 2          FF v w v w v w v wj j v w j v w , 

so if we use the complex vector of the electromagnetic field in vacuum (nilpotent)  F E Bjc , 

where we use SI system of units for a moment, we get 

† 2 2 2 2   FF E BE c B c . 

Now we have  

†

0

1

2
 FF Sc c  , 

with 

 2 2 2

0

1

2
 E c B  , 

0/ S E B  . 

Here   is the energy density and S  is the energy-current density (energy flow), known as Poynting 

vector. So, the Poynting vector is proportional to the nilpotent direction vector. Note also that 
generally 

2 2 2 2 2   F E BE c B jc  

is a complex scalar which we can use to classify fields (it is zero in vacuum). 

 

Eigenspinors 

 

Let's look at one rather elegant and 
powerful way to describe a motion of 
relativistic particles  ([5], [6], [7]).  Imagine 
the laboratory reference frame and the 
frame that is fixed to the particle in motion 
under the influence of, for example, an 
electromagnetic field. We shall consider 
here paravectors and restricted Lorentz 
transformations only. At any moment we 
can find a transformation which 
transforms elements from the lab frame to 
the inertial frame of reference that 
coincides with the particle movement 
(commoving frame). The proper velocity in 

the lab frame is 
0 0

1 u e , so, for that 

very instant of time we can get the proper 
velocity of the particle as 

†

0 ,  u e  

where   is the Lorentz transformation, 
named eigenspinor due to the special 

choice of the reference frame. Let us mention passing that applying such a transformation to 

orthonormal basis vectors 
† ,  0,  1,  2,  3   u e    we get so-called Frenet tetrad. Recall, for 

particle trajectory lab frame 

commoving  

frame 1 

commoving  
frame 2 
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Lorentz transformations we have 1   (unimodularity). If an eigenspinor   is known at every 
instant of time we have all information needed to describe the particle movement. Eigenspinors are 
changing in time, so we need the first time derivative 

/ 2,    2      Ω Ω . 

This all seems like a trivial relation, but it is not. We have 

  0 ,    
d

dt
 

and using       we see that Ω  is a complex vector (so it is in the bold format). For the 
first time derivative of the proper velocity we have 

 
 

†
†

† † † †

0 0 0 0
2


            

Ω Ω
Ω

R

u u
u e e e e u  , 

which is a paravector. The Lorentz force (see [8]) is now 
 

,     F F E B
R

p mu e u j , 

so we see how just defined Ω  gets a physical meaning: it is proportional to the complex vector of the 
electromagnetic field F . It is surprising how the electromagnetic theory simply and naturally 
formulates in Cl3. And this is not an isolated example. The geometric product makes the geometry of 
our 3D world a natural framework for physics. Someone who knows the geometric algebra well, but 
knows nothing about the electromagnetism, could probably discover an electromagnetic field as a 
purely geometric object. Gibbs scalar and cross products and then the whole apparatus of theoretical 
physics with coordinates, matrices, tensors ...  blurred the whole picture, a lot.  

This brief review on eigenspinors should point out on a powerful and elegant technique that is 
widely applicable, except in electromagnetism, for example, in quantum mechanics. 

 

Spinorial equations 

 

Having a particle radius-vector in 
2D we can write  

 

1 2 1 1 2

1 1 2exp .

x y
e x e y e r e e

r r

e r e e

 
    

 



r



 

We have seen how this expression cannot 
be generalized to higher dimensions, but 
we can do that in the "sandwich" form  

†

1r UeU . 

What we wrote? In 2D, U  is a complex 

number with the imaginary unit 
1 2

e e , but 

it generally can be treated as a spinor (for 
the definition of spinors see literature, it is enough here to use the term „spinor“ as an element of the 

even part of the Cl3, or just a rotor with a dilatation). Note that starting with the unit vector 
1

e  we can 

planet trajectory 

lab frame 
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get any vector in the plane defined by the bivector 
1 2

e e , where the special choice of the vector and the 

bivector is not important. These relations are easy to generalize to higher dimensions. If the spinor U
depends on time we have all dynamics contained in the spinor. This is a really powerful technique to 
describe various types of movement, that we will see below, informative only. It turns out that 
equations, as a rule, are much easier to solve if they are expressed in terms of  U  instead of r .  

Note that for a complex number U  we get a complex conjugate as †.U  The module of r  is 

just 2
 rr , i.e.  †r UU . The time rate of the vector r  is the first derivation of †

1
r UeU , what is 

generally the correct approach. In 2D, for simplicity, we will take the derivative of 2

1
U e , i.e. 

†

1 1 12 2 2    r r rUUe e UU eU rU . 

Introducing a new variable  

,     
d d dt

r r
ds dt ds

 

and using  
dU

U
ds

, we get a new equation for U  

12   rU Ue , 

or, deriving once more 

 2

1 12 / 2    r r rr rU r Ue U e U . 

For the particular problem, let's look at the motion of the body under the action of a central 
force (the Kepler's problem) 

3 r rk r , 

where   is a reduced mass and k  is a constant. The equation for U  now becomes 

21

2 2 2

,    ,

 
     

 

  

r k E
U U U

r

U U const



 

 

 

where we have introduced the total energy E . This is a well-known and relatively simple equation, 
which for bound states ( 0E ) takes the form of the equation for a harmonic oscillator. The 
advantages of this approach are numerous, like ease of solving specific equations, better stability of 

solutions (no singularities for 0r ) and observe that the equation is linear, which has a great 
advantages in the perturbation approach (a better stability).  

 

Cl3 and quantum mechanics 

 

We have already shown that orthonormal basis vectors in Cl3 could be represented by Pauli 
matrices. Now we are to develop this idea a little further in order to get a sense of how quantum 
mechanics fits nicely in the formalism of geometric algebra.  

In the “standard” quantum mechanics formulation a wave function of an electron has the form 

,   ,           , 

so that such a quantum state is usually given in the form of a spinor (see [18]) 
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 
  
 





. 

If we set the direction of the z-axis in the direction of the state   we get spin operators in the form 

1
ˆ ˆ

2
k ks  , 

where ˆ
k

  are earlier defined Pauli matrices. We can now look for observables in the form 

1
ˆ ˆ,    

2
  k k k k ks n s n     , 

where components are given as 

* *

1  n    ,    * *

2  n i    ,  * *

3  n   . 

We have  

 
2

2 2 2 2
  n      , 

so we can take the advantage of this relation and normalize the vector n  to be 1n . By introducing 

spherical coordinates we can write 

1 2 3sin cos ,    cos sin ,    cos  n n n     , 

or 

   cos / 2 ,    sin / 2 ,       i ie e        , 

which gives for the spinor 

 

 
 

/2

/2

/2

cos / 2

sin / 2




 

   
 

i

i

i

e
e

e


 







. 

We can neglect the overall phase   exp / 2i   . We see the dependence on half angles, 

suggesting a link to rotors in Cl3. Let us introduce now a common designation in Cl3: 
i i

e  , it follows 

the relation to rotors 

  3 2

3
/2 /2†

1 2 3 3

1

sin cos sin cos ,    
 



     n
j j

k k

k

n R R R e e
          . 

If we now introduce a spinor in Cl3, which by analogy we denote by  , we will seek a general form for 

this new object by comparison  

0 3

0

2 1

k

k

a ia
a a j

a ia
  

 
   

 



, 

where the summation over k  is understood. We see immediately that 
2

1,    j     and 

that appropriate vectors of  the observable have components (0, 0, ±1). For operators we can find the 
relationship 

3
ˆ

k k    , 
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where 
3

  is included to ensure belonging to the even part of the algebra. This choice is, of course, a 

consequence of the initial choice of the z-axis and does not affect the generality of the expression. The 
choice of the z-axis usually has a physical background, for example, the direction of an external 
magnetic field. What we get if we multiply all three Pauli matrices? We can establish an analogy with 
the multiplication by the imaginary unit as 

3i j   . 

Suggestive is that we have a multiplication by the bivector 
3

j , for it is to expect. Namely, we get 

vectors of observables just by rotation of the vector 
3

  which is invariant to rotations in the 
3

j  plane, 

which gives a geometric picture of the phase invariance. Notice here the role of pseudoscalars and 
bivectors, which, unlike the ordinary imaginary unit, immediately give a clear geometric meaning to 
quantities in the theory. This is definitely a good motivation for the study of quantum mechanics in 
this new language. Instead of non-intuitive matrices over complex numbers we have now elements of 
geometric algebra, which always introduce clarity. And we were just a little peek into the area …  

Now let's look at observables in the Pauli theory. We will assume that we can separate spatial 
and spin components. The inner product in quantum mechanics is defined as 

  1* * * *

1 2 1 1 2 2

2

,
 

   
 


       


. 

The real part can now be found as 
†Re     , 

for example 

  
3

† 0 0

0

Re j j k k

j j

k

a a j a a j a a     


    . 

We have  

Re Re  i i      , 

so we can find the analogy (do not confuse a b   with ab ,  a grade 0 ) 

† †

3 3j j         . 

Here we have †
  , the grade 0 of the product †

  ,   as well as †

3 3
j j    , the projection of the 

product †
   to the plane

3
j .  

Let's look for the expected value of the spin ˆ
k

s  . We demand 

† †

3 3
ˆ

k k k j j          . 

If we take the advantage of the reverse involution it follows  

 
†

† † † †  k k kj j j         , 

which means that there is no grades 0 or 1, so must be †
0

k
j   , what we expect because ˆ

k
  

are Hermitian operators. The element †

k
    has odd grades only and it is equal to its reverse, so, it 

is a vector. Using that, we define the spin vector as 



 68 

 

†

3

1

2
s   . 

The expected value is now 

†

3

1
ˆ

2
   sk k ks      . 

This expression is different from what we are accustomed in quantum mechanics. Instead of 
calculating the expected value of the operator here we have a simple projection of the spin vector on 
the desired direction in space. This immediately raises the question of a co-existence of all three 
components of the spin vector. The problem does not really exist, reader is referred to the article 
Doran et al, 1996b. 

We can use our form of spinors and define the scalar †
  , then if we define 

1/2R    

we see that † 1RR , so we have a rotor. According to that, spinors here are just rotors with dilatation, 
and the spin vector is 

†

3

1

2
s R R  . 

It follows that the form of the expected value is just instruction for the rotation of the fixed vector 
3

  

in the direction of the spin vector, followed by its dilatation.  Note again a clear geometric meaning, 
which is not so easy to achieve in quantum theory as is usually formulated.  

Let us imagine now that we want to rotate the spin vector, so let's introduce a transformation 
†

0 0
s sR R . In doing so, the spinor must transform as  

0
 R   (show that), what is often taken as a 

way to identify an object as a spinor. A similar property we have for already mentioned eigenspinors 
in the special theory of relativity, which under the general Lorentz transformation transform as  
  L , i.e. not a "sandwich" form, but a „spinor“ form of transformation. We leave to the reader, 
taking into account just shown property of transformation, to show that spinors change sign after 

rotation by 2 . This is a result that is also clear in "ordinary" quantum theory, but here we see that 
there is nothing "quantum" in this phenomenon, it's actually the property of our 3D space. This is 
certainly not an insignificant conclusion, one could say that we have good reason to re-examine the 
fundamentals (and philosophy, if you like) of the quantum theory. And again, all that is just due to the 
new product of vectors. So, if you want, this can also be support to grounds for the new multiplication 
of vectors.  

 

Differentiation  and integration 

 

Here we will only briefly comment on this area, reader is referred to the literature. Geometric 
algebra contains a powerful apparatus of differential and integral calculus. It should be no surprise that 
here we also have a significant improvement over the traditional approach. In particular, there is a 
fundamental theorem of calculus which combines and expands many well-known theorems of classical 
integral calculus. In addition, all elements of the algebra (including full multivectors) can be on equal 
footing included in the calculus, so we can derive in the "direction" of the multivector, a bivector for 
example. It is, in fact, very nice feature! What essentially distinguishes the classical theory of geometric 
algebra is reflected in several elements. 
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First, in the differential calculus we use various "operators" containing elements of the algebra, 
so, due to the property of non-commutativity, this provide us new opportunities. Let's look at an 
example of such an "operator" 

,    k

k k k
e

x


    


, 

the Einstein summation convention is understood. Here we introduced vectors of reciprocal basis 
again, which in an orthonormal systems are equal to base vectors, but this is convenient here for the 

Einstein summation convention and for a possible generalization. Notice that   
k

k
e  has the grade 

1, i.e. acts as a vector. In Cl3 is often used the operator  

   t , 

which has the form of  a paravector.  We can derive from left and from right, however, in this we have 
geometric products of basis vectors which is not commutative. Operators of derivation, as elements 
of the algebra, can be inverted. For example, Maxwell's equations can without much effort be written 
in the form  

 F J , 

and this makes it possible to find the inverse of the operator   using Green's functions. In this way, 
this simple mathematical form of the equation is not just a "neat trick" but actually provides features 
that without the geometric product would not exist (or it would be difficult to achieve). Note again 
that "operators" are also elements of the algebra, therefore here we do not consider them as 
operators. For interesting examples of the power of geometric algebra in electromagnetism see [10], 
or [2]. 

Second, in the integral calculus we encounter with the measure, objects like .dxdy  In 

geometric algebra such objects have the orientation (like blades), which gives many possibilities. For 
example, unification of all the important theorems of classical integral calculus  (Stokes, Gauss, Green, 
Cauchy …) in one is a great and inspiring achievement of geometric algebra. We refer the reader ready 
to learn this beautiful, but nontrivial topic, to the literature  [18], [20] (on the internet you can search 
for the phrase  “geometric calculus”).  

 

Geometric models  

 

It is known that the geometry of the 3D space can be formulated inserting 3D vector space in 
a space of higher dimension. Geometric algebra is an ideal framework for an investigation of such 
models. Here we will only briefly discuss one of them, conformal, developed and patented by Hestenes. 
The idea of the conformal model is that the n -dimensional Euclidean vector space is modeled in n +2   

- dimensional Minkowski space. For 3n  apart from the usual unit vectors let's introduce two more: 
2

,   1e e  and 
2

,   1 e e , so we have the basis 

 1 2 3, , , ,e e e e e . 

This is an orthonormal basis of the 5D vector space 4,1 . Two added unit vectors define the 2D 

subspace 1,1  in which we will introduce a new basis   ,o  (character   we use here as the 

designation of the vector that represents the point at infinity, while character o represents  the origin) 

  / 2 o e e ,             e e . 
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Factor ½ does not play an important role, may be dropped, but then the rest of formulas will have a 
little different form. Show that o  and   are nilpotents and that   e e o , 1    o o , 

0    o o . Now we have a new basis 

 1 2 3, , , ,o e e e  

in which geometric elements such as lines or circles have a simple form.  

If we have two points in  3   and two vectors p  and q  coming out of the common origin and 

end up in our points, the squared distance of points is given as      p q p q . The idea is to find 

vectors p and q   in this algebra which inner product will give us the distance of 3D points (up to a 

factor), i.e.    p q   p q p q . In this case, it should be 0 p p , because the distance is zero, 

so such vectors are called null-vectors. Accordingly, points are represented by null-vectors in this 
model, so it can be shown that for the 3D vector p  the corresponding null vector is given by  

2 / 2   p pp o , 

where 0p p    (check it). Find p q . In the conformal model points can have a weight, but here we 

will not deal with it, except for the note that weight has a geometric meaning, for example, the weight 
can show the way in which a straight line and a plane are intersecting. Vectors of the model that are 
not points (are not the null-vectors) can represent a variety of geometric elements. Take the vector  

  n   as an example, and if we want to find all points  x   that would belong to such an object 

we have to write the condition  0 x  , which means that the distance between the point 
represented by  x  and the point represented by     is zero. We have 

   2 / 2 0           x x n x nx o   , 

so we see that we have the equation of the plane perpendicular to the vector n , with the distance 

from the origin  / n . If we recall that a circle in 3D is defined by three points we could appreciate the 
fact that a circle in this model we get easily: make the outer product of their null-vectors. If one of the 
points is   we get a straight line. It cannot be easier than that. It is particularly important that 
transformations of elements can be implemented using a single formalism, thus, for example, the same 
formalism operate rotations and translations. Interested reader can find the beautifully exposed 
theory in  [19], where you can take advantage of the software that accompanies the book: GAViewer. 
Everything is available free on the Internet. 
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Appendix 

 

A1. Some properties of Pauli matrices 

 

Let's look at Pauli matrices and some of their properties. For linear combinations of Pauli 
matrices  

3

1

ˆ


 i i

i

a a       and      
3

1

ˆ


 i i

i

b b ,  ,  i ia b , 

we have 
3

2 2

1

1 0

0 1 

 
   

 
 i

i

a aa a , 

so a  behaves like a vector. Also we have  

3

1

1 0

0 12 

 
  
 

 i i

i

ab ba
a b , 

which means that Pauli matrices could be interpreted as unit vectors (we have a scalar product of 

vectors 
3

1

 i i

i

a a e   and   
3

1

 i i

i

b be ). Of course, it means that products of unit vectors 
i

e  should be 

anti-commutative (as for matrices). If we find the antisymmetric part 

2

ab ba
 

and multiply it by matrix 

0

0

 
 

 

i

i
  

we obtain coefficients of the cross product (show that). From ˆ ˆ ˆ ˆ i j j i     follows  

 
2 1 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
0 1

 
     

 
i j i j i j i i j j          . 

So, we have objects with the negative square, they are not vectors, obviously. It means that matrix 

ˆ ˆ
i j

  does not represent a vector. Here we have a problem of geometric interpretation. But, with unit 

vectors we have 
i je e  which clearly gives us geometric meaning (an oriented parallelogram), defining 

a plane along the way. Similarly, 
1 2 3
ˆ ˆ ˆ    is just the product of the unit matrix and imaginary unit, but 

1 2 3e e e  is the oriented volume that squares to -1 and commutes with all vectors, which means that we 

have again an „imaginary unit“, but this time with a clear geometric interpretation. Finally, if we seek 
for the 2D matrix representation of Cl3 we get Pauli matrices as a solution. The very existence of the 
matrix representation proves that Cl3 is a well-defined algebra.  



 72 

 

A2. Everything is a “boost” 

 

For the complex vector  F v wj  we have 2 FW   or 2 F F , so for 

2,   0 F N N   we define / ,F fW  2 1f  and 2/    F F I fj , 2 1 I . Suppose we 

have the exponential form  exp f , defining tanh W , 
21/ 1  W , 

     1 / 1 1     W W W  (the generalized Bondi factor, ln  ) and idempotents 

 1 / 2  f f , 0  f f  we have 

 

  1e cosh sinh 1 

       f
f f f fW     . 

 

Now we can read the “speed” as W  and it is easy to find successive “boosts” as 
 

      1 21 2

1 2
1 2

1 2 1 2

1

1 2

2

e e e 1 1 1 1
1

W W
WW

W
W

W
W

     
      


  


 

 

ff f
f f f , 

 

  1 2
1 2 1 2

1 2

1 ,                     
1

W W
WW W

WW


     


, 

or 

  1 2 1 1 1 1

1 1 2 2 1 2 1 2 1 2e e    

           
f f

f f f f f f
             . 

 

Generally we have a complex scalar R Iln   j     (explicit formulae for R  and I  are 

rather cumbersome, one can use Mathematica and j i , where i is the ordinary imaginary unit) 

which leads to       R Iexp exp expf f fj   . 

 

For  F v wj ,  
2 2 2 2     v w v wW j v w j , for 0w  we have well-known 

relations for boosts in the restricted special relativity.  
 

For F wj  we have  
2 2   wW j w jw , ˆ/ f w wj jw , 

21/ 1  w , 

   1 / 1  jw jw , log atanj w   ,    ˆ ˆexp 1  w wjw  and for successive 

transformations we have  
 

     1 2 1 2 1 2 1 21 ,              / 1w w w w w w w        . 

 

It is an interesting possibility to interpret such transformations like “boosts”, defining new 

“rotating” frames of reference with “time”  t   (   is a “proper time”), introducing thus such 
“rotating” frames as an analog to inertial frames. Regarding the invariance of MA instigates to 
reexamine the paradigm an “inertial frame of reference”. 
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For well-known pure rotations  ˆexp j n  we have  ˆ ˆ /j j j j   n n , j  , 

 tanh tan W j j  , 
21/ 1 tan    ,    1 tan / 1 tan  j j   ,  ˆ1 / 2  f n

and so  

 ˆ ˆe 1 tan  n
n

j j  , 

 1 2 1 21 tan tan ,        

     1 2 1 2 1 2tan tan tan / 1 tan tan tan           . 
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obtaining information, we will give a list of names of people active in this area, so the reader can easily 
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3D geometry 

 

http://geocalc.clas.asu.edu/GA_Primer/GA_Primer/index.html 

 

Some web resources 

 

https://gaupdate.wordpress.com 

http://geocalc.clas.asu.edu 

https://staff.science.uva.nl/l.dorst/clifford/ 
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Cinderella 

https://www.cinderella.de/tiki-index.php 
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CLIFFORD 

http://math.tntech.edu/rafal/ 

 

Clifford algebra for CAS Maxima 

https://github.com/dprodanov/clifford 

 

Clifford Multivector Toolbox for MATLAB 

http://clifford-multivector-toolbox.sourceforge.net/ 

 

CLUCalc/CLUViz 

http://www.clucalc.info/ 

 

GA20 and GA30 (Formerly called pauliGA) 

https://github.com/peeterjoot/gapauli 

 

Gaalet 

https://sourceforge.net/projects/gaalet/ 

 

Gaalop 

http://www.gaalop.de/ 

 

GABLE 

https://staff.fnwi.uva.nl/l.dorst/GABLE/index.html 

 

Gaigen 

https://sourceforge.net/projects/g25/ 

 

GAlgebra 

https://github.com/brombo/galgebra 

 

GA Sandbox 

https://sourceforge.net/projects/gasandbox/ 

 

GAViewer, http://www.geometricalgebra.net/downloads.html, this nice tool is recommended with 
the text. You can manipulate the images to some extent.  

 

http://math.tntech.edu/rafal/
https://github.com/dprodanov/clifford
http://clifford-multivector-toolbox.sourceforge.net/
http://www.clucalc.info/
https://github.com/peeterjoot/gapauli
https://sourceforge.net/projects/gaalet/
http://www.gaalop.de/
https://staff.fnwi.uva.nl/l.dorst/GABLE/index.html
https://sourceforge.net/projects/g25/
https://github.com/brombo/galgebra
https://sourceforge.net/projects/gasandbox/
http://www.geometricalgebra.net/downloads.html


 78 

 

GluCat 

https://sourceforge.net/projects/glucat/ 

 

GMac 

https://gacomputing.info/gmac-info/ 

 

SpaceGroupVisualizer 

http://spacegroup.info/ 

 

The GrassmannAlgebra package 

https://sites.google.com/site/grassmannalgebra/thegrassmannalgebrapackage 

 

Versor 

http://versor.mat.ucsb.edu/ 

 

Some important details can be found at https://gacomputing.info/ga-software/. 
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