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Abstract: The management and combination of uncertain, im-
precise, fuzzy and even paradoxical or highly conflicting sources of
information has always been, and still remains today, of primal im-
portance for the development of reliable modern information sys-
tems involving artificial reasoning. In this introduction, we present
a survey of our recent theory of plausible and paradoxical reasoning,
known as Dezert-Smarandache Theory (DSmT), developed for deal-
ing with imprecise, uncertain and conflicting sources of information.
We focus our presentation on the foundations of DSmT and on its
most important rules of combination, rather than on browsing spe-
cific applications of DSmT available in literature. Several simple ex-
amples are given throughout this presentation to show the efficiency
and the generality of this new theory.
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1.1 Introduction

The management and combination of uncertain, imprecise, fuzzy and even
paradoxical or highly conflicting sources of information has always been, and
still remains today, of primal importance for the development of reliable modern
information systems involving artificial reasoning. The combination (fusion) of
information arises in many fields of applications nowadays (especially in de-
fense, medicine, finance, geo-science, economy, etc). When several sensors,
observers or experts have to be combined together to solve a problem, or if
one wants to update our current estimation of solutions for a given problem
with some new information available, we need powerful and solid mathemat-
ical tools for the fusion, specially when the information one has to deal with
is imprecise and uncertain. In this chapter, we present a survey of our recent
theory of plausible and paradoxical reasoning, known as Dezert-Smarandache
Theory (DSmT) in the literature, developed for dealing with imprecise, uncer-
tain and conflicting sources of information. Recent publications have shown
the interest and the ability of DSmT to solve problems where other approaches
fail, especially when conflict between sources becomes high. We focus this pre-
sentation rather on the foundations of DSmT, and on the main important rules
of combination, than on browsing specific applications of DSmT available in
literature. Successful applications of DSmT in target tracking, satellite surveil-
lance, situation analysis, robotics, medicine, biometrics, etc, can be found in
Parts II of this volume, in Parts II of [32, 36] and on the world wide web [38].
Several simple examples are given in this chapter to show the efficiency and
the generality of DSmT.

1.2 Foundations of DSmT

The development of DSmT (Dezert-Smarandache Theory of plausible and para-
doxical reasoning [9, 32]) arises from the necessity to overcome the inherent
limitations of DST (Dempster-Shafer Theory [25]) which are closely related
with the acceptance of Shafer’s model for the fusion problem under consider-
ation (i.e. the frame of discernment Θ is implicitly defined as a finite set of
exhaustive and exclusive hypotheses θi, i = 1, . . . , n since the masses of be-
lief are defined only on the power set of Θ - see section 1.2.1 for details), the
third middle excluded principle (i.e. the existence of the complement for any
elements/propositions belonging to the power set of Θ), and the acceptance of
Dempster’s rule of combination (involving normalization) as the framework for
the combination of independent sources of evidence. Discussions on limitations
of DST and presentation of some alternative rules to Dempster’s rule of com-
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bination can be found in [12, 16, 18–20, 22, 24, 32, 40, 48, 51, 52, 55–58] and
therefore they will be not reported in details in this introduction. We argue
that these three fundamental conditions of DST can be removed and another
new mathematical approach for combination of evidence is possible. This is
the purpose of DSmT.

The basis of DSmT is the refutation of the principle of the third excluded
middle and Shafer’s model, since for a wide class of fusion problems the in-
trinsic nature of hypotheses can be only vague and imprecise in such a way
that precise refinement is just impossible to obtain in reality so that the exclu-
sive elements θi cannot be properly identified and precisely separated. Many
problems involving fuzzy continuous and relative concepts described in nat-
ural language and having no absolute interpretation like tallness/smallness,
pleasure/pain, cold/hot, Sorites paradoxes, etc, enter in this category. DSmT
starts with the notion of free DSm model, denoted Mf (Θ), and considers Θ
only as a frame of exhaustive elements θi, i = 1, . . . , n which can potentially
overlap. This model is free because no other assumption is done on the hy-
potheses, but the weak exhaustivity constraint which can always be satisfied
according the closure principle explained in [32]. No other constraint is involved
in the free DSm model. When the free DSm model holds, the commutative and
associative classical DSm rule of combination, denoted DSmC, corresponding
to the conjunctive consensus defined on the free Dedekind’s lattice is performed.

Depending on the nature of the elements of the fusion problem under con-
sideration, it can happen that the free model does not fit with the reality
because some subsets of Θ can contain elements known to be truly exclusive
and even possibly truly non existing at a given time (specially in dynamic fu-
sion problems where the frame Θ changes with time with the revision of the
knowledge available). These integrity constraints are introduced in the free
DSm model Mf (Θ) in order to fit with the reality. This allows to construct
a hybrid DSm model M(Θ) on which the combination will be efficiently per-
formed. Shafer’s model, denoted M0(Θ), corresponds to a very specific hybrid
DSm model including all possible exclusivity constraints. DST has been devel-
oped for working with M0(Θ) whereas DSmT was proposed for working with
any hybrid models (including Shafer’s and free DSm models), to manage as
efficiently and precisely as possible imprecise, uncertain and potentially highly
conflicting sources of evidence while keeping in mind the possible dynamicity of
the frame. The foundations of DSmT are therefore totally different from those
of all existing approaches managing uncertainties, imprecisions and conflicts.
DSmT provides a new interesting way to attack the information fusion prob-
lematic with a general framework in order to cover a wide variety of problems.



6 Chapter 1: An introduction to DSmT

DSmT refutes also the idea that sources of evidence provide their beliefs
with the same absolute interpretation of elements of the same frame Θ and the
conflict between sources arises not only because of the possible unreliability
of sources, but also because of possible different and relative interpretations
of Θ, e.g. what is considered as good for somebody can be considered as bad
for somebody else. There is some unavoidable subjectivity in the belief assign-
ments provided by the sources of evidence, otherwise it would mean that all
bodies of evidence have a same objective and universal interpretation (or mea-
sure) of the phenomena under consideration, which unfortunately rarely occurs
in reality, but when basic belief assignments (bba’s) are based on some objec-
tive probabilities transformations. But in this last case, probability theory can
handle properly and efficiently the information, and DST, as well as DSmT,
becomes useless. If we now get out of the probabilistic background argumenta-
tion for the construction of bba, we claim that in most of cases, the sources of
evidence provide their beliefs about elements of the frame of the fusion problem
only based on their own limited knowledge and experience without reference
to the (inaccessible) absolute truth of the space of possibilities.

1.2.1 The power set, hyper-power set and super-power set

In DSmT, we take very care of the model associated with the set Θ of hypothe-
ses where the solution of the problem is assumed to belong to. In particular,
the three main sets (power set, hyper-power set and super-power set) can be
used depending on their ability to fit adequately with the nature of hypothe-
ses. In the following, we assume that Θ = {θ1, . . . , θn} is a finite set (called
frame) of n exhaustive elements1. If Θ = {θ1, . . . , θn} is a priori not closed (Θ
is said to be an open world/frame), one can always include in it a closure ele-
ment, say θn+1 in such away that we can work with a new closed world/frame
{θ1, . . . , θn, θn+1}. So without loss of generality, we will always assume that
we work in a closed world by considering the frame Θ as a finite set of exhaus-
tive elements. Before introducing the power set, the hyper-power set and the
super-power set it is necessary to recall that subsets are regarded as propo-
sitions in Dempster-Shafer Theory (see Chapter 2 of [25]) and we adopt the
same approach in DSmT.

1We do not assume here that elements θi are necessary exclusive, unless specified. There
is no restriction on θi but the exhaustivity.
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• Subsets as propositions: Glenn Shafer in pages 35–37 of [25] consid-
ers the subsets as propositions in the case we are concerned with the
true value of some quantity θ taking its possible values in Θ. Then the
propositions Pθ(A) of interest are those of the form2:

Pθ(A) � The true value of θ is in a subset A of Θ.

Any proposition Pθ(A) is thus in one-to-one correspondence with the
subset A of Θ. Such correspondence is very useful since it translates
the logical notions of conjunction ∧, disjunction ∨, implication ⇒ and
negation ¬ into the set-theoretic notions of intersection ∩, union ∪, in-
clusion ⊂ and complementation c(.). Indeed, if Pθ(A) and Pθ(B) are two
propositions corresponding to subsets A and B of Θ, then the conjunction
Pθ(A)∧Pθ(B) corresponds to the intersection A∩B and the disjunction
Pθ(A) ∨ Pθ(B) corresponds to the union A ∪ B. A is a subset of B if
and only if Pθ(A) ⇒ Pθ(B) and A is the set-theoretic complement of B
with respect to Θ (written A = cΘ(B)) if and only if Pθ(A) = ¬Pθ(B).
In other words, the following equivalences are then used between the
operations on the subsets and on the propositions:

Operations Subsets Propositions
Intersection/conjunction A ∩B Pθ(A) ∧ Pθ(B)
Union/disjunction A ∪B Pθ(A) ∨ Pθ(B)
Inclusion/implication A ⊂ B Pθ(A) ⇒ Pθ(B)
Complementation/negation A = cΘ(B) Pθ(A) = ¬Pθ(B)

Table 1.1: Correspondence between operations on subsets and on propositions.

• Canonical form of a proposition: In DSmT we consider all propo-
sitions/sets in a canonical form. We take the disjunctive normal form,
which is a disjunction of conjunctions, and it is unique in Boolean alge-
bra and simplest. For example, X = A ∩ B ∩ (A ∪ B ∪ C) it is not in
a canonical form, but we simplify the formula and X = A ∩ B is in a
canonical form.

• The power set: 2Θ � (Θ,∪)
Aside Dempster’s rule of combination, the power set is one of the corner stones
of Dempster-Shafer Theory (DST) since the basic belief assignments to combine

2We use the symbol � to mean equals by definition; the right-hand side of the equation
is the definition of the left-hand side.
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are defined on the power set of the frame Θ. In mathematics, given a set Θ, the
power set of Θ, written 2Θ, is the set of all subsets of Θ. In Zermelo–Fraenkel
set theory with the axiom of choice (ZFC), the existence of the power set of
any set is postulated by the axiom of power set. In other words, Θ generates
the power set 2Θ with the ∪ (union) operator only. More precisely, the power
set 2Θ is defined as the set of all composite propositions/subsets built from
elements of Θ with ∪ operator such that:

1. ∅, θ1, . . . , θn ∈ 2Θ.

2. If A,B ∈ 2Θ, then A ∪B ∈ 2Θ.

3. No other elements belong to 2Θ, except those obtained by using rules 1
and 2.

Examples of power sets:

• If Θ = {θ1, θ2}, then 2Θ={θ1,θ2} = {{∅}, {θ1}, {θ2}, {θ1, θ2}} which is
commonly written as 2Θ = {∅, θ1, θ2, θ1 ∪ θ2}.

• Let’s consider two frames Θ1 = {A,B} and Θ2 = {X,Y }, then their
power sets are respectively 2Θ1={A,B} = {∅, A,B,A∪B} and 2Θ2={X,Y } =
{∅, X, Y,X ∪ Y }. Let’s consider a refined frame Θref = {θ1, θ2, θ3, θ4}.
The granules θi, i = 1, . . . , 4 are not necessarily exhaustive, nor exclusive.
If A and B are expressed more precisely in function of the granules θi by
example as A � {θ1, θ2, θ3} ≡ θ1 ∪ θ2 ∪ θ3 and B � {θ2, θ4} ≡ θ2 ∪ θ4

then the power sets can be expressed from the granules θi as follows:

2Θ1={A,B} = {∅, A,B,A ∪B}
= {∅, {θ1, θ2, θ3}︸ ︷︷ ︸

A

, {θ2, θ4}︸ ︷︷ ︸
B

, {{θ1, θ2, θ3}, {θ2, θ4}}︸ ︷︷ ︸
A∪B

}

= {∅, θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

If X and Y are expressed more precisely in function of the finer granules
θi by example as X � {θ1} ≡ θ1 and Y � {θ2, θ3, θ4} ≡ θ2 ∪ θ3 ∪ θ4 then:

2Θ2={X,Y } = {∅, X, Y,X ∪ Y }
= {∅, {θ1}︸︷︷︸

X

, {θ2, θ3, θ4}︸ ︷︷ ︸
Y

, {{θ1}, {θ2, θ3, θ4}}︸ ︷︷ ︸
X∪Y

}

= {∅, θ1, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}
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We see that one has naturally:

2Θ1={A,B} 
= 2Θ2={X,Y } 
= 2Θref ={θ1,θ2,θ3,θ4}

even if working from θi with A ∪B = X ∪ Y = {θ1, θ2, θ3, θ4} = Θref .

• The hyper-power set: DΘ � (Θ,∪,∩)

One of the cornerstones of DSmT is the free Dedekind’s lattice [4] denoted
as hyper-power set in DSmT framework. Let Θ = {θ1, . . . , θn} be a finite set
(called frame) of n exhaustive elements. The hyper-power set DΘ is defined as
the set of all composite propositions/subsets built from elements of Θ with ∪
and ∩ operators such that:

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A,B ∈ DΘ, then A ∩B ∈ DΘ and A ∪B ∈ DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1
and 2.

Therefore by convention, we write DΘ = (Θ,∪,∩) which means that Θ gen-
erates DΘ under operators ∪ and ∩. The dual (obtained by switching ∪ and
∩ in expressions) of DΘ is itself. There are elements in DΘ which are self-dual
(dual to themselves), for example α8 for the case when n = 3 in the following
example. The cardinality of DΘ is majored by 22n

when the cardinality of Θ
equals n, i.e. |Θ| = n. The generation of hyper-power set DΘ is closely related
with the famous Dedekind’s problem [3, 4] on enumerating the set of isotone
Boolean functions. The generation of the hyper-power set is presented in [32].
Since for any given finite set Θ, |DΘ| ≥ |2Θ| we call DΘ the hyper-power set
of Θ.

Example of the first hyper-power sets:

• For the degenerate case (n = 0) where Θ = {}, one has DΘ = {α0 � ∅}
and |DΘ| = 1.

• When Θ = {θ1}, one has DΘ = {α0 � ∅, α1 � θ1} and |DΘ| = 2.

• When Θ = {θ1, θ2}, one has DΘ = {α0, α1, . . . , α4} and |DΘ| = 5 with
α0 � ∅, α1 � θ1 ∩ θ2, α2 � θ1, α3 � θ2 and α4 � θ1 ∪ θ2.
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• When Θ = {θ1, θ2, θ3}, one has DΘ = {α0, α1, . . . , α18} and |DΘ| = 19
with

α0 � ∅
α1 � θ1 ∩ θ2 ∩ θ3 α10 � θ2

α2 � θ1 ∩ θ2 α11 � θ3

α3 � θ1 ∩ θ3 α12 � (θ1 ∩ θ2) ∪ θ3

α4 � θ2 ∩ θ3 α13 � (θ1 ∩ θ3) ∪ θ2

α5 � (θ1 ∪ θ2) ∩ θ3 α14 � (θ2 ∩ θ3) ∪ θ1

α6 � (θ1 ∪ θ3) ∩ θ2 α15 � θ1 ∪ θ2

α7 � (θ2 ∪ θ3) ∩ θ1 α16 � θ1 ∪ θ3

α8 � (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3) α17 � θ2 ∪ θ3

α9 � θ1 α18 � θ1 ∪ θ2 ∪ θ3

The cardinality of hyper-power set DΘ for n ≥ 1 follows the sequence of
Dedekind’s numbers [27], i.e. 1,2,5,19,167, 7580,7828353,... and analytical ex-
pression of Dedekind’s numbers has been obtained recently by Tombak in [47]
(see [32] for details on generation and ordering of DΘ). Interesting investiga-
tions on the programming of the generation of hyper-power sets for engineering
applications have been done in Chapter 15 of [36] and in Chapter 7 of this vol-
ume.

Examples of hyper-power sets:

Let’s consider the frames Θ1 = {A,B} and Θ2 = {X,Y }, then their
corresponding hyper-power sets are DΘ1={A,B} = {∅, A ∩ B,A,B,A ∪ B}
and DΘ2={X,Y } = {∅, X ∩ Y,X, Y,X ∪ Y }. Let’s consider a refined frame
Θref = {θ1, θ2, θ3, θ4} where the granules θi, i = 1, . . . , 4 are now considered
as truly exhaustive and exclusive. If A and B are expressed more precisely in
function of the granules θi by example as A � {θ1, θ2, θ3} and B � {θ2, θ4}
then

DΘ1={A,B} = {∅, A ∩B,A,B,A ∪B}
= {∅, {θ1, θ2, θ3} ∩ {θ2, θ4}︸ ︷︷ ︸

A∩B={θ2}

, {θ1, θ2, θ3}︸ ︷︷ ︸
A

, {θ2, θ4}︸ ︷︷ ︸
B

,

{{θ1, θ2, θ3}, {θ2, θ4}}︸ ︷︷ ︸
A∪B={θ1,θ2,θ3,θ4}

}

= {∅, θ2, θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

= 2Θ1={A,B}
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If X and Y are expressed more precisely in function of the finer granules
θi by example as X � {θ1} and Y � {θ2, θ3, θ4} then in assuming that θi,
i = 1, . . . , 4 are exhaustive and exclusive, one gets

DΘ2={X,Y } = {∅, X ∩ Y,X, Y,X ∪ Y }
= {∅, {θ1} ∩ {θ2, θ3, θ4}︸ ︷︷ ︸

X∩Y =∅︸ ︷︷ ︸
∅

, {θ1}︸︷︷︸
X

, {θ2, θ3, θ4}︸ ︷︷ ︸
Y

, {{θ1}, {θ2, θ3, θ4}}︸ ︷︷ ︸
X∪Y

}

= {∅, {θ1}︸︷︷︸
X

, {θ2, θ3, θ4}︸ ︷︷ ︸
Y

, {{θ1}, {θ2, θ3, θ4}}︸ ︷︷ ︸
X∪Y

}

≡ 2Θ2={X,Y }

Therefore, we see that DΘ2={X,Y } ≡ 2Θ2={X,Y } because the exclusivity con-
straint X ∩ Y = ∅ holds since one has assumed X � {θ1} and Y � {θ2, θ3, θ4}
with exhaustive and exclusive granules θi, i = 1, . . . , 4.

If the granules θi, i = 1, . . . , 4 are not assumed exclusive, then of course the
expressions of hyper-power sets cannot be simplified and one would have:

DΘ1={A,B} = {∅, A ∩B,A,B,A ∪B}
= {∅, (θ1 ∪ θ2 ∪ θ3) ∩ (θ2 ∪ θ4), θ1 ∪ θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

= 2Θ1={A,B}

DΘ2={X,Y } = {∅, X ∩ Y,X, Y,X ∪ Y }
= {∅, θ1 ∩ (θ2 ∪ θ3 ∪ θ4), θ1, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4}

= 2Θ2={X,Y }

Shafer’s model of a frame: More generally, when all the elements of a given
frame Θ are known (or are assumed to be) truly exclusive, then the hyper-power
set DΘ reduces to the classical power set 2Θ. Therefore, working on power set
2Θ as Glenn Shafer has proposed in his Mathematical Theory of Evidence [25])
is equivalent to work on hyper-power set DΘ with the assumption that all
elements of the frame are exclusive. This is what we call Shafer’s model of the
frame Θ, written M0(Θ), even if such model/assumption has not been clearly
stated explicitly by Shafer himself in his milestone book.
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• The super-power set: SΘ � (Θ,∪,∩, c(.))

The notion of super-power set has been introduced by Smarandache in the
Chapter 8 of [36]. It corresponds actually to the theoretical construction of
the power set of the minimal3 refined frame Θref of Θ. Θ generates SΘ under
operators ∪, ∩ and complementation c(.). SΘ = (Θ,∪,∩, c(.)) is a Boolean
algebra with respect to the union, intersection and complementation. There-
fore working with the super-power set is equivalent to work with a minimal
theoretical refined frame Θref satisfying Shafer’s model. More precisely, SΘ is
defined as the set of all composite propositions/subsets built from elements of
Θ with ∪, ∩ and c(.) operators such that:

1. ∅, θ1, . . . , θn ∈ SΘ.

2. If A,B ∈ SΘ, then A ∩B ∈ SΘ, A ∪B ∈ SΘ.

3. If A ∈ SΘ, then c(A) ∈ SΘ.

4. No other elements belong to SΘ, except those obtained by using rules 1,
2 and 3.

As reported in [33], a similar generalization has been previously used in
1993 by Guan and Bell [15] for the Dempster-Shafer rule using propositions in
sequential logic and reintroduced in 1994 by Paris in his book [21], page 4.

Example of a super-power set:

Let’s consider the frame Θ = {θ1, θ2} and let’s assume θ1 ∩ θ2 
= ∅, i.e. θ1

and θ2 are not disjoint according to Fig. 1.1 where A � p1 denotes the part of
θ1 belonging only to θ1 (p stands here for part), B � p2 denotes the part of θ2

belonging only to θ2 and C � p12 denotes the part of θ1 and θ2 belonging to
both. In this example, SΘ={θ1,θ2} is then given by

SΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(∅), c(θ1 ∩ θ2), c(θ1), c(θ2), c(θ1 ∪ θ2)}
where c(.) is the complement in Θ. Since c(∅) = θ1 ∪ θ2 and c(θ1 ∪ θ2) = ∅, the
super-power set is actually given by

SΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪ θ2, c(θ1 ∩ θ2), c(θ1), c(θ2)}
Let’s now consider the minimal refinement Θref = {A,B,C} of Θ built by

splitting the granules θ1 and θ2 depicted on the previous Venn diagram into
disjoint parts (i.e. Θref satisfies the Shafer’s model) as follows:

3The minimality refers here to the cardinality of the refined frames.
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Figure 1.1: Venn diagram of a free DSm model for a 2D frame.

θ1 = A ∪ C, θ2 = B ∪ C, θ1 ∩ θ2 = C

Then the classical power set of Θref is given by

2Θref

= {∅, A,B,C,A ∪B,A ∪ C,B ∪C,A ∪B ∪ C}
We see that we can define easily a one-to-one correspondence, written ∼, be-
tween all the elements of the super-power set SΘ and the elements of the power

set 2Θref

as follows:

∅ ∼ ∅, (θ1∩θ2) ∼ C, θ1 ∼ (A∪C), θ2 ∼ (B∪C), (θ1∪θ2) ∼ (A∪B∪C)

c(θ1 ∩ θ2) ∼ (A ∪B), c(θ1) ∼ B, c(θ2) ∼ A

Such one-to-one correspondence between the elements of SΘ and 2Θref

can
be defined for any cardinality |Θ| ≥ 2 of the frame Θ and thus one can consider

SΘ as the mathematical construction of the power set 2Θref

of the minimal
refinement of the frame Θ. Of course, when Θ already satisfies Shafer’s model,
the hyper-power set and the super-power set coincide with the classical power
set of Θ. It is worth to note that even if we have a mathematical tool to build
the minimal refined frame satisfying Shafer’s model, it doesn’t mean necessary
that one must work with this super-power set in general in real applications
because most of the time the elements/granules of SΘ have no clear physical
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meaning, not to mention the drastic increase of the complexity since one has
2Θ ⊆ DΘ ⊆ SΘ and

|2Θ| = 2|Θ| < |DΘ| < |SΘ| = 2
|Θref |

= 22|Θ|−1 (1.1)

Typically,

|Θ| = n |2Θ| = 2n |DΘ| |SΘ| = |2Θref | = 22n−1

2 4 5 23 = 8
3 8 19 27 = 128
4 16 167 215 = 32768
5 32 7580 231 = 2147483648

Table 1.2: Cardinalities of 2Θ, DΘ and SΘ.

In summary, DSmT offers truly the possibility to build and to work on re-
fined frames and to deal with the complement whenever necessary, but in most
of applications either the frame Θ is already built/chosen to satisfy Shafer’s
model or the refined granules have no clear physical meaning which finally
prevent to be considered/assessed individually so that working on the hyper-
power set is usually sufficient for dealing with uncertain imprecise (quantitative
or qualitative) and highly conflicting sources of evidences. Working with SΘ

is actually very similar to working with 2Θ in the sense that in both cases we
work with classical power sets; the only difference is that when working with
SΘ we have implicitly switched from the original frame Θ representation to a
minimal refinement Θref representation. Therefore, in the sequel we focus our
discussions based mainly on hyper-power set rather than (super-) power set
which has already been the basis for the development of DST. But as already
mentioned, DSmT can easily deal with belief functions defined on 2Θ or SΘ

similarly as those defined on DΘ.

Generic notation: In the sequel, we use the generic notation GΘ for denoting
the sets (power set, hyper-power set and super-power set) on which the belief
functions are defined.

Remark on the logical refinement: The refinement in logic theory pre-
sented recently by Cholvy in [2] was actually proposed in nineties by a Guan
and Bell [15] and by Paris [21]. This refinement is isomorphic to the refine-
ment in set theory done by many researchers. If Θ = {θ1, θ2, θ3} is a language
where the propositional variables are θ1, θ2, θ3, Cholvy considers all 8 possible
logical combinations of propositions θi’s or negations of θi’s (called interpreta-
tions), and defines the 8 = 23 disjoint parts/propositions of the Venn diagram
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in Fig. 1.2 [one also considers as a part the negation of the total ignorance] in
the set theory, so that:

i1 = θ1 ∧ θ2 ∧ θ3

i2 = θ1 ∧ θ2 ∧ ¬θ3

i3 = θ1 ∧ ¬θ2 ∧ θ3

i4 = θ1 ∧ ¬θ2 ∧ ¬θ3

i5 = ¬θ1 ∧ θ2 ∧ ∧θ3

i6 = ¬θ1 ∧ θ2 ∧ ¬θ3

i7 = ¬θ1 ∧ ¬θ2 ∧ θ3

i8 = ¬θ1 ∧ ¬θ2 ∧ ¬θ3

where ¬θi means the negation of θi.

Θ

θ1

θ1 ∧ ¬θ2 ∧ ¬θ3

p1

θ3θ2

¬θ1 ∧ θ2 ∧ ¬θ3

p2

¬θ1 ∧ ¬θ2 ∧ θ3

p3

¬θ1 ∧ θ2 ∧ θ3

p23

θ1 ∧ θ2 ∧ θ3

p123

θ1 ∧ θ2 ∧ ¬θ3

p12

θ1 ∧ ¬θ2 ∧ θ3

p13

¬θ1 ∧ ¬θ2 ∧ ¬θ3 p0
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Figure 1.2: Venn diagram of the free DSm model for a 3D frame.

Because of Shafer’s equivalence of subsets and propositions, Cholvy’s logical
refinement is strictly equivalent to the refinement we did already in 2006 in
defining SΘ - see Chap. 8 of [36] - but in the set theory framework.
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We did it using Smarandache’s codification (easy to understand and read)
in the following way:

- each Venn diagram disjoint part pij , or pijk represents respectively the
intersection of pi and pj only, or pi and pj and pk only, etc; while the
complement of the total ignorance is considered p0 [p stands for part].

Thus, we have an easier and clearer representation in DSmT than in logical
representation. While the refinement in DST using logical approach for n very
large is very hard, we can simply consider in the DSmT the super-power set
SΘ = (Θ,∪,∩, c(.)). So, in DSmT representation the disjoint parts are noted
as follows:

p123 = θ1 ∧ θ2 ∧ θ3 = i1

p12 = θ1 ∧ θ2 ∧ ¬θ3 = i2

p13 = θ1 ∧ ¬θ2 ∧ θ3 = i3

p23 = ¬θ1 ∧ θ2 ∧ θ3 = i5

p1 = θ1 ∧ ¬θ2 ∧ ¬θ3 = i4

p2 = ¬θ1 ∧ θ2 ∧ ¬θ3 = i6

p3 = ¬θ1 ∧ ¬θ2 ∧ θ3 = i7

p0 = ¬θ1 ∧ ¬θ2 ∧ ¬θ3 = i8

As seeing, in Smarandache’s codification a disjoint Venn diagram part is
equal to the intersection of singletons whose indexes show up as indexes of
the Venn part; for example in p12 case indexes 1 and 2, intersected with the
complement of the missing indexes, in this case index 3 is missing.

Smarandache’s codification can easily transform any set from SΘ into its canon-
ical disjunctive normal form. For example, θ1 = p1 ∪ p12 ∪ p13 ∪ p123 (i.e. all
Venn diagram disjoint parts that contain the index “1” in their indexes ; such
indexes from SΘ are 1, 12, 13, 123) can be expressed as

θ1 = (θ1 ∩ c(θ2) ∩ c(θ3)) ∪ (θ1 ∩ θ2 ∩ c(θ3))(θ1 ∩ c(θ2) ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3)

where the set values of each part was taken from the above table.
θ1 ∧ θ2 = p12 ∪ p123 (i.e. all Venn diagram disjoint parts that contain the

index “12” in their indexes) equals to (θ1 ∧ θ2 ∧ ¬θ3) ∨ (θ1 ∧ θ2 ∧ θ3).



Chapter 1: An introduction to DSmT 17

The refinement based on Venn Diagram, becomes very hard and almost im-
possible when the cardinal of Θ, n, is large and all intersections are non-empty
(the free model). Suppose n = 20, or even bigger, and we have the free model.
How can we construct a Venn Diagram where to show all possible intersections
of 20 sets? Its geometrical figure would be very hard to design and very hard
to read (you don’t identify well each disjoint part of a such Venn Diagram
to what intersection of sets it belongs to). The larger is n, the more difficult
is the refinement. Fortunately, based on Smarandache’s codification, we can
algebraically design in an easy way for all such intersections (for example, if n
is very big, we can use computer programs to make combinations of indexes
{1, 2, ..., n} taken in groups or 1, of 2, ..., or of n elements each), so the refine-
ment should not be a big problem from the programming point of view, but
we must always keep in mind if such refinement is really necessary and if it has
(or not) a deep physical interpretation and justification for the problem under
consideration.

The assertion in [2], upon Milan Daniel’s, that hybrid DSm rule is equivalent
to Dubois-Prade rule is untrue, since in dynamic fusion they give different
results. Such example has been already given in [8] and is reported in section
1.2.6.3 for the sake of clarification for the readers. The assertion in [2] that
“from an expressivity point of view DSmT is equivalent to DST” is partially
true since this idea is true when the refinement is possible (not always it is
practically/physically possible), and even when the spaces we work on, SΘ =

2Θref

, where the hypotheses are exclusive, DSmT offers the advantage that the
refinement is already done (it is not necessary for the user to do (or implicitly
presuppose) it as in DST). Also, DSmT accepts from the very beginning the
possibility to deal with non-exclusive hypotheses and of course it can a fortiori

deal with sets of exclusive hypothesis and work either on 2Θ or 2Θref

whenever
necessary, while DST first requires implicitly to work with exclusive hypotheses
only.

The main distinctions between DSmT and DST are summarized by the
following points:

1. The refinement is not always (physically) possible, especially for elements
from the frame of discernment whose frontiers are not clear, such as:
colors, vague sets, unclear hypotheses, etc. in the frame of discernment;
DST does not fit well for working in such cases, while DSmT does;

2. Even in the case when the frame of discernment can be refined (i.e. the
atomic elements of the frame have all a distinct physical meaning), it
is still easier to use DSmT than DST since in DSmT framework the
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refinement is done automatically by the mathematical construction of
the super-power set;

3. DSmT offers better fusion rules, for example Proportional Conflict re-
distribution Rule # 5 (PCR5) - presented in the sequel - is better than
Dempster’s rule; hybrid DSm rule (DSmH) works for the dynamic fu-
sion, while Dubois-Prade fusion rule does not (DSmH is an extension of
Dubois-Prade rule); therefore DSmT with its fusion rules cannot be con-
sidered as a special case of DST, contrariwise to some authors’ claims in
the literature (see [5] by example).

4. DSmT offers the best qualitative operators (when working with labels)
giving the most accurate and coherent results;

5. DSmT offers new interesting quantitative conditioning rules (BCRs) and
qualitative conditioning rules (QBCRs), different from Shafer’s condi-
tioning rule (SCR). SCR can be seen simply as a combination of a prior
mass of belief with the mass m(A) = 1 whenever A is the conditioning
event;

6. DSmT proposes a new approach for working with imprecise quantita-
tive or qualitative information and not limited to interval-valued belief
structures as proposed generally in the literature [6, 7, 49].

1.2.2 Notion of free and hybrid DSm models

Free DSm model: The elements θi, i = 1, . . . , n of Θ constitute the finite set
of hypotheses/concepts characterizing the fusion problem under consideration.
When there is no constraint on the elements of the frame, we call this model the
free DSm model , written Mf(Θ). This free DSm model allows to deal directly
with fuzzy concepts which depict a continuous and relative intrinsic nature and
which cannot be precisely refined into finer disjoint information granules hav-
ing an absolute interpretation because of the unreachable universal truth. In
such case, the use of the hyper-power set DΘ (without integrity constraints) is
particularly well adapted for defining the belief functions one wants to combine.

Shafer’s model: In some fusion problems involving discrete concepts, all the
elements θi, i = 1, . . . , n of Θ can be truly exclusive. In such case, all the exclu-
sivity constraints on θi, i = 1, . . . , n have to be included in the previous model
to characterize properly the true nature of the fusion problem and to fit it with
the reality. By doing this, the hyper-power set DΘ as well as the super-power
set SΘ reduce naturally to the classical power set 2Θ and this constitutes what
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we have called Shafer’s model , denoted M0(Θ). Shafer’s model corresponds
actually to the most restricted hybrid DSm model.

Hybrid DSm models: Between the class of fusion problems corresponding to
the free DSm model Mf (Θ) and the class of fusion problems corresponding to
Shafer’s model M0(Θ), there exists another wide class of hybrid fusion prob-
lems involving in Θ both fuzzy continuous concepts and discrete hypotheses.
In such (hybrid) class, some exclusivity constraints and possibly some non-
existential constraints (especially when working on dynamic4 fusion) have to be
taken into account. Each hybrid fusion problem of this class will then be char-
acterized by a proper hybrid DSm model denoted M(Θ) with M(Θ) 
= Mf (Θ)
and M(Θ) 
= M0(Θ).

In any fusion problems, we consider as primordial at the very beginning and
before combining information expressed as belief functions to define clearly the
proper frame Θ of the given problem and to choose explicitly its corresponding
model one wants to work with. Once this is done, the second important point
is to select the proper set 2Θ, DΘ or SΘ on which the belief functions will be
defined. The third important point will be the choice of an efficient rule of com-
bination of belief functions and finally the criteria adopted for decision-making.

In the sequel, we focus our presentation mainly on hyper-power set DΘ (un-
less specified) since it is the most interesting new aspect of DSmT for readers
already familiar with DST framework, but a fortiori we can work similarly on

classical power set 2Θ if Shafer’s model holds, and even on 2Θref

(the power
set of the minimal refined frame) whenever one wants to use it and if possible.

Examples of models for a frame Θ:

• Let’s consider the 2D problem where Θ = {θ1, θ2} with DΘ = {∅, θ1 ∩
θ2, θ1, θ2, θ1 ∪ θ2} and assume now that θ1 and θ2 are truly exclusive (i.e.

Shafer’s model M0 holds), then because θ1 ∩ θ2
M0

= ∅, one gets DΘ = {∅, θ1 ∩
θ2
M0

= ∅, θ1, θ2, θ1 ∪ θ2} = {∅, θ1, θ2, θ1 ∪ θ2} ≡ 2Θ.

• As another simple example of hybrid DSm model, let’s consider the 3D case
with the frame Θ = {θ1, θ2, θ3} with the model M 
= Mf in which we force
all possible conjunctions to be empty, but θ1 ∩ θ2. This hybrid DSm model
is then represented with the Venn diagram on Fig. 1.3 (where boundaries of

4i.e. when the frame Θ and/or the model M is changing with time.
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intersection of θ1 and θ2 are not precisely defined if θ1 and θ2 represent only
fuzzy concepts like smallness and tallness by example).
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Figure 1.3: Venn diagram of a DSm hybrid model for a 3D frame.

1.2.3 Generalized belief functions

From a general frame Θ, we define a map m(.) : GΘ → [0, 1] associated to a
given body of evidence B as

m(∅) = 0 and
∑

A∈GΘ

m(A) = 1 (1.2)

The quantitym(A) is called the generalized basic belief assignment/mass (gbba)
of A.

The generalized belief and plausibility functions are defined in almost the same
manner as within DST, i.e.

Bel(A) =
∑
B⊆A

B∈GΘ

m(B) Pl(A) =
∑

B∩A �=∅
B∈GΘ

m(B) (1.3)

We recall that GΘ is the generic notation for the set on which the gbba is
defined (GΘ can be 2Θ, DΘ or even SΘ depending on the model chosen for
Θ). These definitions are compatible with the definitions of the classical belief
functions in DST framework when GΘ = 2Θ for fusion problems where Shafer’s
model M0(Θ) holds. We still have ∀A ∈ GΘ, Bel(A) ≤ Pl(A).

Note that when working with the free DSm model Mf (Θ), one has always
Pl(A) = 1 ∀A 
= ∅ ∈ (GΘ = DΘ) which is normal.
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Example: Let’s consider the simple frame Θ = {A,B}, then depending on
the model we choose for GΘ, one will consider either:

• GΘ as the power set 2Θ and therefore:

m(A) +m(B) +m(A ∪B) = 1

• GΘ as the hyper-power set DΘ and therefore:

m(A) +m(B) +m(A ∪B) +m(A ∩B) = 1

• GΘ as the super-power set SΘ and therefore:

m(A) +m(B) +m(A ∪B) +m(A ∩B)

+m(c(A)) +m(c(B)) +m(c(A) ∪ c(B)) = 1

1.2.4 The classic DSm rule of combination

When the free DSm model Mf(Θ) holds for the fusion problem under consid-
eration, the classic DSm rule of combination mMf (Θ) ≡ m(.) � [m1 ⊕ m2](.)
of two independent5 sources of evidences B1 and B2 over the same frame Θ
with belief functions Bel1(.) and Bel2(.) associated with gbba m1(.) and m2(.)
corresponds to the conjunctive consensus of the sources. It is given by [32]:

∀C ∈ DΘ, mMf (Θ)(C) ≡ m(C) =
∑

A,B∈DΘ

A∩B=C

m1(A)m2(B) (1.4)

Since DΘ is closed under ∪ and ∩ set operators, this new rule of com-
bination guarantees that m(.) is a proper generalized belief assignment, i.e.
m(.) : DΘ → [0, 1]. This rule of combination is commutative and associative
and can always be used for the fusion of sources involving fuzzy concepts when
free DSm model holds for the problem under consideration. This rule can be
directly and easily extended for the combination of k > 2 independent sources
of evidence [32].

According to Table 1.2, this classic DSm rule of combination looks very
expensive in terms of computations and memory size due to the huge number

5While independence is a difficult concept to define in all theories managing epistemic
uncertainty, we follow here the interpretation of Smets in [39] and [40], p. 285 and consider
that two sources of evidence are independent (i.e distinct and noninteracting) if each leaves
one totally ignorant about the particular value the other will take.
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of elements in DΘ when the cardinality of Θ increases. This remark is however
valid only if the cores (the set of focal elements of gbba) K1(m1) and K2(m2)
coincide with DΘ, i.e. when m1(A) > 0 and m2(A) > 0 for all A 
= ∅ ∈ DΘ.
Fortunately, it is important to note here that in most of the practical appli-
cations the sizes of K1(m1) and K2(m2) are much smaller than |DΘ| because
bodies of evidence generally allocate their basic belief assignments only over a
subset of the hyper-power set. This makes things easier for the implementation
of the classic DSm rule (1.4). The DSm rule is actually very easy to imple-
ment. It suffices for each focal element of K1(m1) to multiply it with the focal
elements of K2(m2) and then to pool all combinations which are equivalent
under the algebra of sets. While very costly in term on memory storage in the

worst case (i.e. when all m(A) > 0, A ∈ DΘ or A ∈ 2Θref

), the DSm rule
however requires much smaller memory storage than when working with SΘ,
i.e. working with a minimal refined frame satisfying Shafer’s model.

In most fusion applications only a small subset of elements of DΘ have
a non null basic belief mass because all the commitments are just usually
impossible to obtain precisely when the dimension of the problem increases.
Thus, it is not necessary to generate and keep in memory all elements of DΘ

(or eventually SΘ) but only those which have a positive belief mass. However
there is a real technical challenge on how to manage efficiently all elements
of the hyper-power set. This problem is obviously much more difficult when
trying to work on a refined frame of discernment Θref if one really prefers
to use Dempster-Shafer theory and apply Dempster’s rule of combination. It
is important to keep in mind that the ultimate and minimal refined frame
consisting in exhaustive and exclusive finite set of refined exclusive hypotheses
is just impossible to justify and to define precisely for all problems dealing with
fuzzy and ill-defined continuous concepts. A discussion on refinement with an
example has be included in [32].

1.2.5 The hybrid DSm rule of combination

When the free DSm model Mf(Θ) does not hold due to the true nature of the
fusion problem under consideration which requires to take into account some
known integrity constraints, one has to work with a proper hybrid DSm model
M(Θ) 
= Mf (Θ). In such case, the hybrid DSm rule (DSmH) of combination
based on the chosen hybrid DSm model M(Θ) for k ≥ 2 independent sources
of information is defined for all A ∈ DΘ as [32]:

mDSmH(A) = mM(Θ)(A) � φ(A)
[
S1(A) + S2(A) + S3(A)

]
(1.5)
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where all sets involved in formulas are in the canonical form and φ(A) is the
characteristic non-emptiness function of a set A, i.e. φ(A) = 1 if A /∈ ∅ and
φ(A) = 0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements of DΘ

which have been forced to be empty through the constraints of the model M
and ∅ is the classical/universal empty set. S1(A) ≡ mMf (θ)(A), S2(A), S3(A)
are defined by

S1(A) �
∑

X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

k∏
i=1

mi(Xi) (1.6)

S2(A) �
∑

X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

k∏
i=1

mi(Xi) (1.7)

S3(A) �
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A
X1∩X2∩...∩Xk∈∅

k∏
i=1

mi(Xi) (1.8)

with U � u(X1) ∪ u(X2) ∪ . . . ∪ u(Xk) where u(X) is the union of all θi that
compose X , It � θ1 ∪ θ2 ∪ . . .∪ θn is the total ignorance. S1(A) corresponds to
the classic DSm rule for k independent sources based on the free DSm model
Mf(Θ); S2(A) represents the mass of all relatively and absolutely empty sets
which is transferred to the total or relative ignorances associated with non ex-
istential constraints (if any, like in some dynamic problems); S3(A) transfers
the sum of relatively empty sets directly onto the canonical disjunctive form of
non-empty sets.

The hybrid DSm rule of combination generalizes the classic DSm rule of
combination and is not equivalent to Dempter’s rule. It works for any models
(the free DSm model, Shafer’s model or any other hybrid models) when manip-
ulating precise generalized (or eventually classical) basic belief functions. An
extension of this rule for the combination of imprecise generalized (or eventually
classical) basic belief functions is presented in next section. As already stated,
in DSmT framework it is also possible to deal directly with complements if
necessary depending on the problem under consideration and the information
provided by the sources of evidence themselves.

The first and simplest way is to work with SΘ on Shafer’s model when
a minimal refinement is possible and makes sense. The second way is to deal
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with partially known frame and introduce directly the complementary hypothe-
ses into the frame itself. By example, if one knows only two hypotheses θ1,
θ2 and their complements θ̄1, θ̄2, then we can choose to switch from original
frame Θ = {θ1, θ2} to the new frame Θ = {θ1, θ2, θ̄1, θ̄2}. In such case, we
don’t necessarily assume that θ̄1 = θ2 and θ̄2 = θ1 because θ̄1 and θ̄2 may in-
clude other unknown hypotheses we have no information about (case of partial
known frame). More generally, in DSmT framework, it is not necessary that the
frame is built on pure/simple (possibly vague) hypotheses θi as usually done
in all theories managing uncertainty. The frame Θ can also contain directly as
elements conjunctions and/or disjunctions (or mixed propositions) and nega-
tions/complements of pure hypotheses as well. The DSm rules also work in
such non-classic frames because DSmT works on any distributive lattice built
from Θ anywhere Θ is defined.

1.2.6 Examples of combination rules

Here are some numerical examples on results obtained by DSm rules of com-
bination. More examples can be found in [32].

1.2.6.1 Example with Θ = {θ1, θ2, θ3, θ4}
Let’s consider the frame of discernment Θ = {θ1, θ2, θ3, θ4}, two independent
experts, and the two following bbas

m1(θ1) = 0.6 m1(θ3) = 0.4 m2(θ2) = 0.2 m2(θ4) = 0.8

represented in terms of mass matrix

M =

[
0.6 0 0.4 0
0 0.2 0 0.8

]

• Dempster’s rule cannot be applied because: ∀1 ≤ j ≤ 4, one gets m(θj) =
0/0 (undefined!).

• But the classic DSm rule works because one obtains: m(θ1) = m(θ2) =
m(θ3) = m(θ4) = 0, andm(θ1∩θ2) = 0.12, m(θ1∩θ4) = 0.48, m(θ2∩θ3) =
0.08, m(θ3 ∩ θ4) = 0.32 (partial paradoxes/conflicts).

• Suppose now one finds out that all intersections are empty (Shafer’s
model), then one applies the hybrid DSm rule and one gets (index h
stands here for hybrid rule): mh(θ1 ∪ θ2) = 0.12, mh(θ1 ∪ θ4) = 0.48,
mh(θ2 ∪ θ3) = 0.08 and mh(θ3 ∪ θ4) = 0.32.
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1.2.6.2 Generalization of Zadeh’s example with Θ = {θ1, θ2, θ3}
Let’s consider 0 < ε1, ε2 < 1 be two very tiny positive numbers (close to zero),
the frame of discernment be Θ = {θ1, θ2, θ3}, have two experts (independent
sources of evidence s1 and s2) giving the belief masses

m1(θ1) = 1− ε1 m1(θ2) = 0 m1(θ3) = ε1

m2(θ1) = 0 m2(θ2) = 1− ε2 m2(θ3) = ε2

From now on, we prefer to use matrices to describe the masses, i.e.[
1− ε1 0 ε1

0 1− ε2 ε2

]

• Using Dempster’s rule of combination, one gets

m(θ3) =
(ε1ε2)

(1− ε1) · 0 + 0 · (1− ε2) + ε1ε2
= 1

which is absurd (or at least counter-intuitive). Note that whatever posi-
tive values for ε1, ε2 are, Dempster’s rule of combination provides always
the same result (one) which is abnormal. The only acceptable and correct
result obtained by Dempster’s rule is really obtained only in the trivial
case when ε1 = ε2 = 1, i.e. when both sources agree in θ3 with certainty
which is obvious.

• Using the DSm rule of combination based on free-DSm model, one gets
m(θ3) = ε1ε2, m(θ1 ∩ θ2) = (1 − ε1)(1 − ε2), m(θ1 ∩ θ3) = (1 − ε1)ε2,
m(θ2 ∩ θ3) = (1 − ε2)ε1 and the others are zero which appears more
reliable/trustable.

• Going back to Shafer’s model and using the hybrid DSm rule of combi-
nation, one gets m(θ3) = ε1ε2, m(θ1∪θ2) = (1− ε1)(1− ε2), m(θ1∪θ3) =
(1− ε1)ε2, m(θ2 ∪ θ3) = (1− ε2)ε1 and the others are zero.

Note that in the special case when ε1 = ε2 = 1/2, one has

m1(θ1) = 1/2 m1(θ2) = 0 m1(θ3) = 1/2

m2(θ1) = 0 m2(θ2) = 1/2 m2(θ3) = 1/2

Dempster’s rule of combinations still yields m(θ3) = 1 while the hybrid DSm
rule based on the same Shafer’s model yields now m(θ3) = 1/4, m(θ1 ∪ θ2) =
1/4, m(θ1 ∪ θ3) = 1/4, m(θ2 ∪ θ3) = 1/4 which is normal.
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1.2.6.3 Comparison with Smets, Yager and Dubois & Prade rules

We compare the results provided by DSmT rules and the main common rules
of combination on the following very simple numerical example where only
2 independent sources (a priori assumed equally reliable) are involved and
providing their belief initially on the 3D frame Θ = {θ1, θ2, θ3}. It is assumed
in this example that Shafer’s model holds and thus the belief assignments m1(.)
and m2(.) do not commit belief to internal conflicting information. m1(.) and
m2(.) are chosen as follows:

m1(θ1) = 0.1 m1(θ2) = 0.4 m1(θ3) = 0.2 m1(θ1 ∪ θ2) = 0.3

m2(θ1) = 0.5 m2(θ2) = 0.1 m2(θ3) = 0.3 m2(θ1 ∪ θ2) = 0.1

These belief masses are usually represented in the form of a belief mass matrix
M given by

M =

[
0.1 0.4 0.2 0.3
0.5 0.1 0.3 0.1

]
(1.9)

where index i for the rows corresponds to the index of the source no. i and
the indexes j for columns of M correspond to a given choice for enumerating
the focal elements of all sources. In this particular example, index j = 1 cor-
responds to θ1, j = 2 corresponds to θ2, j = 3 corresponds to θ3 and j = 4
corresponds to θ1 ∪ θ2.

Now let’s imagine that one finds out that θ3 is actually truly empty because
some extra and certain knowledge on θ3 is received by the fusion center. As
example, θ1, θ2 and θ3 may correspond to three suspects (potential murders) in
a police investigation, m1(.) and m2(.) corresponds to two reports of indepen-
dent witnesses, but it turns out that finally θ3 has provided a strong alibi to
the criminal police investigator once arrested by the policemen. This situation

corresponds to set up a hybrid model M with the constraint θ3
M
= ∅.

Let’s examine the result of the fusion in such situation obtained by the
Smets’, Yager’s, Dubois & Prade’s and hybrid DSm rules of combinations.
First note that, based on the free DSm model, one would get by applying the
classic DSm rule (denoted here by index DSmC) the following fusion result

mDSmC(θ1) = 0.21 mDSmC(θ2) = 0.11

mDSmC(θ3) = 0.06 mDSmC(θ1 ∪ θ2) = 0.03

mDSmC(θ1 ∩ θ2) = 0.21 mDSmC(θ1 ∩ θ3) = 0.13

mDSmC(θ2 ∩ θ3) = 0.14 mDSmC(θ3 ∩ (θ1 ∪ θ2)) = 0.11
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But because of the exclusivity constraints (imposed here by the use of

Shafer’s model and by the non-existential constraint θ3
M
= ∅), the total con-

flicting mass is actually given by k12 = 0.06+ 0.21+ 0.13+ 0.14+ 0.11 = 0.65.

• If one applies Dempster’s rule [25] (denoted here by index DS), one
gets:

mDS(∅) = 0

mDS(θ1) = 0.21/[1− k12] = 0.21/[1− 0.65] = 0.21/0.35 = 0.600000

mDS(θ2) = 0.11/[1− k12] = 0.11/[1− 0.65] = 0.11/0.35 = 0.314286

mDS(θ1 ∪ θ2) = 0.03/[1− k12] = 0.03/[1− 0.65] = 0.03/0.35 = 0.085714

• If one applies Smets’ rule [41, 42] (i.e. the non normalized version of
Dempster’s rule with the conflicting mass transferred onto the empty set),
one gets:

mS(∅) = m(∅) = 0.65 (conflicting mass)

mS(θ1) = 0.21

mS(θ2) = 0.11

mS(θ1 ∪ θ2) = 0.03

• If one applies Yager’s rule [50–52], one gets:

mY (∅) = 0

mY (θ1) = 0.21

mY (θ2) = 0.11

mY (θ1 ∪ θ2) = 0.03 + k12 = 0.03 + 0.65 = 0.68
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• If one applies Dubois & Prade’s rule [13], one gets because θ3
M
= ∅ :

mDP (∅) = 0 (by definition of Dubois & Prade’s rule)

mDP (θ1) = [m1(θ1)m2(θ1) +m1(θ1)m2(θ1 ∪ θ2)

+m2(θ1)m1(θ1 ∪ θ2)]

+ [m1(θ1)m2(θ3) +m2(θ1)m1(θ3)]

= [0.1 · 0.5 + 0.1 · 0.1 + 0.5 · 0.3] + [0.1 · 0.3 + 0.5 · 0.2]
= 0.21 + 0.13 = 0.34

mDP (θ2) = [0.4 · 0.1 + 0.4 · 0.1 + 0.1 · 0.3] + [0.4 · 0.3 + 0.1 · 0.2]
= 0.11 + 0.14 = 0.25

mDP (θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)]

+ [m1(θ1 ∪ θ2)m2(θ3) +m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)]

= [0.30.1] + [0.3 · 0.3 + 0.1 · 0.2] + [0.1 · 0.1 + 0.5 · 0.4]
= [0.03] + [0.09 + 0.02] + [0.01 + 0.20]

= 0.03 + 0.11 + 0.21 = 0.35

Now if one adds up the masses, one gets 0+0.34+0.25+0.35 = 0.94 which
is less than 1. Therefore Dubois & Prade’s rule of combination does not
work when a singleton, or an union of singletons, becomes empty (in a
dynamic fusion problem). The products of such empty-element columns
of the mass matrix M are lost; this problem is fixed in DSmT by the
sum S2(.) in (1.5) which transfers these products to the total or partial
ignorances.

• Finally, if one applies DSmH rule, one gets because θ3
M
= ∅ :

mDSmH(∅) = 0 (by definition of DSmH)

mDSmH(θ1) = 0.34 (same as mDP (θ1))

mDSmH(θ2) = 0.25 (same as mDP (θ2))

mDSmH(θ1 ∪ θ2) = [m1(θ1 ∪ θ2)m2(θ1 ∪ θ2)]

+ [m1(θ1 ∪ θ2)m2(θ3) +m2(θ1 ∪ θ2)m1(θ3)]

+ [m1(θ1)m2(θ2) +m2(θ1)m1(θ2)] + [m1(θ3)m2(θ3)]

= 0.03 + 0.11 + 0.21 + 0.06 = 0.35 + 0.06 = 0.41


= mDP (θ1 ∪ θ2)

We can easily verify that mDSmH(θ1)+mDSmH(θ2)+mDSmH(θ1∪θ2) =
1. In this example, using the hybrid DSm rule, one transfers the product
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of the empty-element θ3 column, m1(θ3)m2(θ3) = 0.2 · 0.3 = 0.06, to
mDSmH(θ1 ∪ θ2), which becomes equal to 0.35 + 0.06 = 0.41. Clearly,
DSmH rule doesn’t provide the same result as Dubois and Prade’s rule,
but only when working on static frames of discernment (restricted cases).

1.2.7 Fusion of imprecise beliefs

In many fusion problems, it seems very difficult (if not impossible) to have pre-
cise sources of evidence generating precise basic belief assignments (especially
when belief functions are provided by human experts), and a more flexible
plausible and paradoxical theory supporting imprecise information becomes
necessary. In the previous sections, we presented the fusion of precise uncer-
tain and conflicting/paradoxical generalized basic belief assignments (gbba)
in DSmT framework. We mean here by precise gbba, basic belief function-
s/masses m(.) defined precisely on the hyper-power set DΘ where each mass
m(X), where X belongs to DΘ, is represented by only one real number be-
longing to [0, 1] such that

∑
X∈DΘ m(X) = 1. In this section, we present the

DSm fusion rule for dealing with admissible imprecise generalized basic belief
assignments mI(.) defined as real subunitary intervals of [0, 1], or even more
general as real subunitary sets [i.e. sets, not necessarily intervals].

An imprecise belief assignment mI(.) over DΘ is said admissible if and only
if there exists for every X ∈ DΘ at least one real number m(X) ∈ mI(X) such
that

∑
X∈DΘ m(X) = 1. The idea to work with imprecise belief structures

represented by real subset intervals of [0, 1] is not new and has been inves-
tigated in [6, 7, 17] and references therein. The proposed works available in
the literature, upon our knowledge were limited only to sub-unitary interval
combination in the framework of Transferable Belief Model (TBM) developed
by Smets [41, 42]. We extend the approach of Lamata & Moral and Denœux
based on subunitary interval-valued masses to subunitary set-valued masses;
therefore the closed intervals used by Denœux to denote imprecise masses are
generalized to any sets included in [0,1], i.e. in our case these sets can be unions
of (closed, open, or half-open/half-closed) intervals and/or scalars all in [0, 1].
Here, the proposed extension is done in the context of DSmT framework, al-
though it can also apply directly to fusion of imprecise belief structures within
TBM as well if the user prefers to adopt TBM rather than DSmT.

Before presenting the general formula for the combination of generalized
imprecise belief structures, we remind the following set operators involved in
the DSm fusion formulas. Several numerical examples are given in the chapter
6 of [32].



30 Chapter 1: An introduction to DSmT

• Addition of sets

S1 � S2 = S2 � S1 � {x | x = s1 + s2, s1 ∈ S1, s2 ∈ S2}

• Subtraction of sets

S1 � S2 � {x | x = s1 − s2, s1 ∈ S1, s2 ∈ S2}

• Multiplication of sets

S1 � S2 � {x | x = s1 · s2, s1 ∈ S1, s2 ∈ S2}

• Division of sets: If 0 doesn’t belong to S2,

S1 � S2 � {x | x = s1/s2, s1 ∈ S1, s2 ∈ S2}

1.2.7.1 DSm rule of combination for imprecise beliefs

We present the generalization of the DSm rules to combine any type of imprecise
belief assignment which may be represented by the union of several sub-unitary
(half-) open intervals, (half-)closed intervals and/or sets of points belonging to
[0,1]. Several numerical examples are also given. In the sequel, one uses the
notation (a, b) for an open interval, [a, b] for a closed interval, and (a, b] or [a, b)
for a half open and half closed interval. From the previous operators on sets,
one can generalize the DSm rules (classic and hybrid) from scalars to sets in
the following way [32] (chap. 6): ∀A 
= ∅ ∈ DΘ,

mI(A) =
∑

X1,X2,...,Xk∈DΘ

(X1∩X2∩...∩Xk)=A

∏
i=1,...,k

mI
i (Xi) (1.10)

where
∑

and
∏

represent the summation, and respectively product, of

sets.

Similarly, one can generalize the hybrid DSm rule from scalars to sets in
the following way:

mI
DSmH(A) = mI

M(Θ)(A) � φ(A) �

[
SI

1(A) � SI
2(A) � SI

3 (A)
]

(1.11)

where all sets involved in formulas are in the canonical form and φ(A) is the
characteristic non emptiness function of the set A and SI

1(A), SI
2 (A) and SI

3 (A)
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are defined by

SI
1 (A) �

∑
X1,X2,...,Xk∈DΘ

X1∩X2∩...∩Xk=A

∏
i=1,...,k

mI
i (Xi) (1.12)

SI
2 (A) �

∑
X1,X2,...,Xk∈∅

[U=A]∨[(U∈∅)∧(A=It)]

∏
i=1,...,k

mI
i (Xi) (1.13)

SI
3 (A) �

∑
X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xk=A

X1∩X2∩...∩Xk∈∅

∏
i=1,...,k

mI
i (Xi) (1.14)

In the case when all sets are reduced to points (numbers), the set operations be-
come normal operations with numbers; the sets operations are generalizations
of numerical operations. When imprecise belief structures reduce to precise
belief structure, DSm rules (1.10) and (1.11) reduce to their precise version
(1.4) and (1.5) respectively.

1.2.7.2 Example

Here is a simple example of fusion with multiple-interval masses. For simplicity,
this example is a particular case when the theorem of admissibility (see [32]
p. 138 for details) is verified by a few points, which happen to be just on the
bounders. It is an extreme example, because we tried to comprise all kinds
of possibilities which may occur in the imprecise or very imprecise fusion. So,
let’s consider a fusion problem over Θ = {θ1, θ2}, two independent sources of
information with the following imprecise admissible belief assignments

A ∈ DΘ mI
1(A) mI

2(A)
θ1 [0.1, 0.2] ∪ {0.3} [0.4, 0.5]
θ2 (0.4, 0.6) ∪ [0.7, 0.8] [0, 0.4] ∪ {0.5, 0.6}

Table 1.3: Inputs of the fusion with imprecise bba’s.

Using the DSm classic (DSmC) rule for sets, one gets

mI(θ1) = ([0.1, 0.2] ∪ {0.3})� [0.4, 0.5]

= ([0.1, 0.2]� [0.4, 0.5]) ∪ ({0.3}� [0.4, 0.5])

= [0.04, 0.10]∪ [0.12, 0.15]
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mI(θ2) = ((0.4, 0.6) ∪ [0.7, 0.8])� ([0, 0.4] ∪ {0.5, 0.6})
= ((0.4, 0.6)� [0, 0.4]) ∪ ((0.4, 0.6) � {0.5, 0.6})

∪ ([0.7, 0.8]� [0, 0.4]) ∪ ([0.7, 0.8]� {0.5, 0.6})
= (0, 0.24) ∪ (0.20, 0.30)∪ (0.24, 0.36) ∪ [0, 0.32]

∪ [0.35, 0.40]∪ [0.42, 0.48] = [0, 0.40]∪ [0.42, 0.48]

mI(θ1 ∩ θ2) = [([0.1, 0.2] ∪ {0.3})� ([0, 0.4] ∪ {0.5, 0.6})]� [[0.4, 0.5]

� ((0.4, 0.6) ∪ [0.7, 0.8])]

= [([0.1, 0.2]� [0, 0.4]) ∪ ([0.1, 0.2]� {0.5, 0.6})
∪ ({0.3} � [0, 0.4]) ∪ ({0.3} � {0.5, 0.6})]
� [([0.4, 0.5]� (0.4, 0.6)) ∪ ([0.4, 0.5]� [0.7, 0.8])]

= [[0, 0.08]∪ [0.05, 0.10]∪ [0.06, 0.12]∪ [0, 0.12]

∪ {0.15, 0.18}]� [(0.16, 0.30)∪ [0.28, 0.40]]

= [[0, 0.12]∪ {0.15, 0.18}]� (0.16, 0.40]

= (0.16, 0.52]∪ (0.31, 0.55]∪ (0.34, 0.58] = (0.16, 0.58]

Hence finally the fusion admissible result with DSmC rule is given by:

A ∈ DΘ mI(A) = [mI
1 ⊕mI

2](A)
θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2 (0.16, 0.58]
θ1 ∪ θ2 0

Table 1.4: Fusion result with the DSmC rule.

If one finds out6 that θ1 ∩ θ2
M≡ ∅ (this is our hybrid model M one wants to

deal with), then one uses the hybrid DSm rule (1.11) for sets: mI
M(θ1∩θ2) = 0

and mI
M(θ1 ∪ θ2) = (0.16, 0.58], the others imprecise masses are not changed.

With the hybrid DSm rule (DSmH) applied to imprecise beliefs, one gets
now the results given in Table 1.5.

6We consider now a dynamic fusion problem.
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A ∈ DΘ mI
M(A) = [mI

1 ⊕mI
2](A)

θ1 [0.04, 0.10]∪ [0.12, 0.15]
θ2 [0, 0.40] ∪ [0.42, 0.48]

θ1 ∩ θ2
M≡ ∅ 0

θ1 ∪ θ2 (0.16, 0.58]

Table 1.5: Fusion result with DSmH rule for M.

Let’s check now the admissibility condition. For the source 1, there exist
the precise masses (m1(θ1) = 0.3) ∈ ([0.1, 0.2] ∪ {0.3}) and (m1(θ2) = 0.7) ∈
((0.4, 0.6) ∪ [0.7, 0.8]) such that 0.3 + 0.7 = 1. For the source 2, there exist
the precise masses (m1(θ1) = 0.4) ∈ ([0.4, 0.5]) and (m2(θ2) = 0.6) ∈ ([0, 0.4]∪
{0.5, 0.6}) such that 0.4+0.6 = 1. Therefore both sources associated with mI

1(.)
and mI

2(.) are admissible imprecise sources of information. It can be verified
that DSmC fusion of m1(.) and m2(.) yields the paradoxical bba m(θ1) =
[m1 ⊕ m2](θ1) = 0.12, m(θ2) = [m1 ⊕ m2](θ2) = 0.42 and m(θ1 ∩ θ2) = [m1 ⊕
m2](θ1 ∩ θ2) = 0.46. One sees that the admissibility condition is satisfied
since (m(θ1) = 0.12) ∈ (mI(θ1) = [0.04, 0.10] ∪ [0.12, 0.15]), (m(θ2) = 0.42) ∈
(mI(θ2) = [0, 0.40] ∪ [0.42, 0.48]) and (m(θ1 ∩ θ2) = 0.46) ∈ (mI(θ1 ∩ θ2) =
(0.16, 0.58]) such that 0.12 + 0.42 + 0.46 = 1. Similarly if one finds out that
θ1 ∩ θ2 = ∅, then one uses DSmH rule and one gets: m(θ1 ∩ θ2) = 0 and
m(θ1 ∪ θ2) = 0.46; the others remain unchanged. The admissibility condition
still holds, because one can pick at least one number in each subset mI(.) such
that the sum of these numbers is 1.

1.3 Proportional Conflict Redistribution rule

Instead of applying a direct transfer of partial conflicts onto partial uncertain-
ties as with DSmH, the idea behind the Proportional Conflict Redistribution
(PCR) rule [34, 36] is to transfer (total or partial) conflicting masses to non-
empty sets involved in the conflicts proportionally with respect to the masses
assigned to them by sources as follows:

1. calculation the conjunctive rule of the belief masses of sources;

2. calculation the total or partial conflicting masses;

3. redistribution of the (total or partial) conflicting masses to the non-empty
sets involved in the conflicts proportionally with respect to their masses
assigned by the sources.
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The way the conflicting mass is redistributed yields actually several versions
of PCR rules. These PCR fusion rules work for any degree of conflict, for any
DSm models (Shafer’s model, free DSm model or any hybrid DSm model) and
both in DST and DSmT frameworks for static or dynamical fusion situations.
We present below only the most sophisticated proportional conflict redistri-
bution rule denoted PCR5 in [34, 36]. PCR5 rule is what we feel the most
efficient PCR fusion rule developed so far. This rule redistributes the partial
conflicting mass to the elements involved in the partial conflict, considering
the conjunctive normal form of the partial conflict. PCR5 is what we think
the most mathematically exact redistribution of conflicting mass to non-empty
sets following the logic of the conjunctive rule. It does a better redistribution
of the conflicting mass than Dempster’s rule since PCR5 goes backwards on
the tracks of the conjunctive rule and redistributes the conflicting mass only
to the sets involved in the conflict and proportionally to their masses put in
the conflict. PCR5 rule is quasi-associative and preserves the neutral impact
of the vacuous belief assignment because in any partial conflict, as well in the
total conflict (which is a sum of all partial conflicts), the conjunctive normal
form of each partial conflict does not include Θ since Θ is a neutral element for
intersection (conflict), therefore Θ gets no mass after the redistribution of the
conflicting mass. We have proved in [36] the continuity property of the fusion
result with continuous variations of bba’s to combine.

1.3.1 PCR formulas

The PCR5 formula for the combination of two sources (s = 2) is given by:
mPCR5(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X) +
∑

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) +m2(Y )
+

m2(X)2m1(Y )

m2(X) +m1(Y )
]

(1.15)

where all sets involved in formulas are in canonical form and where GΘ cor-
responds to classical power set 2Θ if Shafer’s model is used, or to a con-
strained hyper-power set DΘ if any other hybrid DSm model is used instead,
or to the super-power set SΘ if the minimal refinement Θref of Θ is used;
m12(X) ≡ m∩(X) corresponds to the conjunctive consensus on X between the
s = 2 sources and where all denominators are different from zero. If a denom-
inator is zero, that fraction is discarded.

A general formula of PCR5 for the fusion of s > 2 sources has been proposed
in [36], but a more intuitive PCR formula (denoted PCR6) which provides good
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results in practice has been proposed by Martin and Osswald in [36] (pages 69-
88) and is given by: mPCR6(∅) = 0 and ∀X ∈ GΘ \ {∅}

mPCR6(X) = m12...s(X)+

s∑
i=1

mi(X)2
∑

s−1∩
k=1

Yσi(k)∩X≡∅

(Yσi(1)
,...,Yσi(s−1))∈(GΘ)s−1

⎛
⎜⎜⎜⎜⎜⎝

s−1∏
j=1

mσi(j)(Yσi(j))

mi(X)+

s−1∑
j=1

mσi(j)(Yσi(j))

⎞
⎟⎟⎟⎟⎟⎠ (1.16)

where σi counts from 1 to s avoiding i:{
σi(j) = j if j < i,
σi(j) = j + 1 if j ≥ i,

(1.17)

Since Yi is a focal element of expert/source i, mi(X)+

s−1∑
j=1

mσi(j)(Yσi(j)) 
= 0;

the belief mass assignment m12...s(X) ≡ m∩(X) corresponds to the conjunctive
consensus on X between the s > 2 sources. For two sources (s = 2), PCR5
and PCR6 formulas coincide.

1.3.2 Examples

• Example 1: Let’s take Θ = {A,B} of exclusive elements (Shafer’s
model), and the following bba:

A B A ∪B
m1(.) 0.6 0 0.4
m2(.) 0 0.3 0.7

m∩(.) 0.42 0.12 0.28

The conflicting mass is k12 = m∩(A ∩ B) and equals m1(A)m2(B) +
m1(B)m2(A) = 0.18. Therefore A and B are the only focal elements
involved in the conflict. Hence according to the PCR5 hypothesis only A
and B deserve a part of the conflicting mass and A ∪ B do not deserve.
With PCR5, one redistributes the conflicting mass k12 = 0.18 to A and
B proportionally with the masses m1(A) and m2(B) assigned to A and
B respectively.
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Here are the results obtained from Dempster’s rule, DSmH and PCR5:

A B A ∪B
mDS 0.512 0.146 0.342
mDSmH 0.420 0.120 0.460
mPCR5 0.540 0.180 0.280

• Example 2: Let’s modify example 1 and consider

A B A ∪B
m1(.) 0.6 0 0.4
m2(.) 0.2 0.3 0.5

m∩(.) 0.50 0.12 0.20

The conflicting mass k12 = m∩(A ∩ B) as well as the distribution coef-
ficients for the PCR5 remains the same as in the previous example but
one gets now

A B A ∪B
mDS 0.609 0.146 0.231
mDSmH 0.500 0.120 0.380
mPCR5 0.620 0.180 0.200

• Example 3: Let’s modify example 2 and consider

A B A ∪B
m1(.) 0.6 0.3 0.1
m2(.) 0.2 0.3 0.5

m∩(.) 0.44 0.27 0.05

The conflicting mass k12 = 0.24 = m1(A)m2(B) + m1(B)m2(A) = 0.24
is now different from previous examples, which means that m2(A) = 0.2
and m1(B) = 0.3 did make an impact on the conflict. Therefore A and
B are the only focal elements involved in the conflict and thus only A
and B deserve a part of the conflicting mass. PCR5 redistributes the
partial conflicting mass 0.18 to A and B proportionally with the masses
m1(A) and m2(B) and also the partial conflicting mass 0.06 to A and B
proportionally with the masses m2(A) and m1(B). After all derivations
(see [14] for details), one finally gets:
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A B A ∪B
mDS 0.579 0.355 0.066
mDSmH 0.440 0.270 0.290
mPCR5 0.584 0.366 0.050

One clearly sees that mDS(A ∪ B) gets some mass from the conflicting
mass although A ∪ B does not deserve any part of the conflicting mass
(according to PCR5 hypothesis) since A∪B is not involved in the conflict
(only A and B are involved in the conflicting mass). Dempster’s rule
appears to us less exact than PCR5 and Inagaki’s rules [16]. It can be
showed [14] that Inagaki’s fusion rule (with an optimal choice of tuning
parameters) can become in some cases very close to PCR5 but upon our
opinion PCR5 result is more exact (at least less ad-hoc than Inagaki’s
one).

• Example 4 (A more concrete example): Three people, John (J),
George (G), and David (D) are suspects to a murder. So the frame of
discernment is Θ � {J,G,D}. Two sources m1(.) and m2(.) (witnesses)
provide the following information:

J G D
m1 0.9 0 0.1
m2 0 0.8 0.2

We know that John and George are friends, but John and David hate
each other, and similarly George and David.

a) Free model, i. e. all intersections are nonempty: J ∩G 
= ∅, J ∩D 
=
∅, G ∩D 
= ∅, J ∩G ∩D 
= ∅. Using the DSm classic rule one gets:

J G D J ∩G J ∩D G ∩D J ∩G ∩D
mDSmC 0 0 0.02 0.72 0.18 0.08 0

So we can see that John and George together (J ∩G) are most likely
to have committed the crime, since the mass mDSmC(J ∩G) = 0.72
is the biggest resulting mass after the fusion of the two sources. In
Shafer’s model, only one suspect could commit the crime, but the
free and hybrid models allow two or more people to have committed
the same crime - which happens in reality.
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b) Let’s consider the hybrid model, i. e. some intersections are empty,
and others are not. According to the above statement about the
relationships between the three suspects, we can deduce that J∩G 
=
∅, while J ∩ D = G ∩D = J ∩ G ∩ D = ∅. Then we first apply the
DSm Classic rule, and then the transfer of the conflicting masses is
done with PCR5:

J G D J ∩G J ∩D G ∩D J ∩ G ∩D

m1 0.9 0 0.1
m2 0 0.8 0.2

mDSmC 0 0 0.02 0.72 0.18 0.08 0

Using PCR5 now we transfer m(J ∩D) = 0.18, since J ∩D = ∅, to
J and D proportionally with 0.9 and 0.2 respectively, so J gets 0.15
and D gets 0.03 since:

xJ/0.9 = z1D/0.2 = 0.18/(0.9 + 0.2) = 0.18/1.1

whence xJ = 0.9(0.18/1.1) = 0.15 and z1D = 0.2(0.18/1.1) = 0.03.

Again using PCR5, we transfer m(G ∩D) = 0.08, since G ∩D = ∅,
to G and D proportionally with 0.8 and 0.1 respectively, so G gets
0.07 and D gets 0.01 since:

yG/0.8 = z2D/0.1 = 0.08/(0.8 + 0.1) = 0.08/0.9

whence yG = 0.8(0.08/0.9) = 0.07 and zD = 0.1(0.08/0.9) = 0.01.
Adding we get finally:

J G D J ∩G J ∩D G ∩D J ∩ G ∩D

mPCR5 0.15 0.07 0.06 0.72 0 0 0

So one has a high belief that the criminals are John and George
(both of them committed the crime) since m(J ∩ D) = 0.72 and it
is by far the greatest fusion mass.

In Shafer’s model, if we try to refine we get the disjoint parts: D, J ∩G,
J \ (J ∩G), and G \ (J ∩G), but the last two are ridiculous (what is the
real/physical nature of J \ (J ∩ G) or G \ (J ∩ G) ? Half of a person(!)
?), so the refining does not work here in reality. That’s why the hybrid
and free models are needed.

• Example 5 (Imprecise PCR5): The PCR5 formula can naturally
work also for the combination of imprecise bba’s. This has been already
presented in section 1.11.8 page 49 of [36] with a numerical example to
show how to apply it. This example will therefore not be reincluded here.
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1.3.3 Zadeh’s example

We compare here the solutions for well-known Zadeh’s example [55, 58] pro-
vided by several fusion rules. A detailed presentation with more comparisons
can be found in [32, 36]. Let’s consider Θ = {M,C, T} as the frame of three po-
tential origins about possible diseases of a patient (M standing for meningitis,
C for concussion and T for tumor), the Shafer’s model and the two following
belief assignments provided by two independent doctors after examination of
the same patient.

m1(M) = 0.9 m1(C) = 0 m1(T ) = 0.1

m2(M) = 0 m2(C) = 0.9 m2(T ) = 0.1

The total conflicting mass is high since it is

m1(M)m2(C) +m1(M)m2(T ) +m2(C)m1(T ) = 0.99

• with Dempster’s rule and Shafer’s model (DS), one gets the counter-
intuitive result (see justifications in [12, 32, 48, 52, 55]): mDS(T ) = 1

• with Yager’s rule [52] and Shafer’s model: mY (M ∪ C ∪ T ) = 0.99 and
mY (T ) = 0.01

• with DSmH and Shafer’s model:

mDSmH(M ∪ C) = 0.81 mDSmH(T ) = 0.01

mDSmH(M ∪ T ) = mDSmH(C ∪ T ) = 0.09

• The Dubois & Prade’s rule (DP) [12] based on Shafer’s model provides
in Zadeh’s example the same result as DSmH, because DP and DSmH
coincide in all static fusion problems7.

• with PCR5 and Shafer’s model: mPCR5(M) = mPCR5(C) = 0.486 and
mPCR5(T ) = 0.028.

One sees that when the total conflict between sources becomes high, DSmT
is able (upon authors opinion) to manage more adequately through DSmH or
PCR5 rules the combination of information than Dempster’s rule, even when
working with Shafer’s model - which is only a specific hybrid model. DSmH rule
is in agreement with DP rule for the static fusion, but DSmH and DP rules

7Indeed DP rule has been developed for static fusion only while DSmH has been developed
to take into account the possible dynamicity of the frame itself and also its associated model.
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differ in general (for non degenerate cases) for dynamic fusion while PCR5
rule is the most exact proportional conflict redistribution rule. Besides this
particular example, we showed in [32] that there exist several infinite classes of
counter-examples to Dempster’s rule which can be solved by DSmT.

In summary, DST based on Dempster’s rule provides counter-intuitive re-
sults in Zadeh’s example, or in non-Bayesian examples similar to Zadeh’s and
no result when the conflict is 1. Only ad-hoc discounting techniques allow to
circumvent troubles of Dempster’s rule or we need to switch to another model
of representation/frame; in the later case the solution obtained doesn’t fit with
the Shafer’s model one originally wanted to work with. We want also to em-
phasize that in dynamic fusion when the conflict becomes high, both DST [25]
and Smets’ Transferable Belief Model (TBM) [41] approaches fail to respond
to new information provided by new sources. This can be easily showed by the
very simple following example.

Example (where TBM doesn’t respond to new information):

Let Θ = {A,B,C} with the (precise) bba’s m1(A) = 0.4, m1(C) = 0.6 and
m2(A) = 0.7, m2(B) = 0.3. Then one gets8 with Dempster’s rule, Smets’
TBM (i.e. the non-normalized version of Dempster’s combination), DSmH and
PCR5: m12

DS(A) = 1, m12
TBM (A) = 0.28, m12

TBM (∅) = 0.72,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m12
DSmH(A) = 0.28

m12
DSmH(A ∪B) = 0.12

m12
DSmH(A ∪ C) = 0.42

m12
DSmH(B ∪ C) = 0.18

⎧⎪⎨
⎪⎩

m12
PCR5(A) = 0.574725

m12
PCR5(B) = 0.111429

m12
PCR5(C) = 0.313846

Now let’s consider a temporal fusion problem and introduce a third source
m3(.) with m3(B) = 0.8 and m3(C) = 0.2. Then one sequentially combines
the results obtained by m12

TBM (.), m12
DS(.), m12

DSmH(.) and m12
PCR(.) with the

new evidence m3(.) and one sees that m
(12)3
DS becomes not defined (division by

8We introduce here explicitly the indexes of sources in the fusion result since more than
two sources are considered in this example.
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zero) and m
(12)3
TBM (∅) = 1 while (DSmH) and (PCR5) provide⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

m
(12)3
DSmH(B) = 0.240

m
(12)3
DSmH(C) = 0.120

m
(12)3
DSmH(A ∪B) = 0.224

m
(12)3
DSmH(A ∪ C) = 0.056

m
(12)3
DSmH(A ∪B ∪C) = 0.360

⎧⎪⎨
⎪⎩

m
(12)3
PCR5(A) = 0.277490

m
(12)3
PCR5(B) = 0.545010

m
(12)3
PCR5(C) = 0.177500

When the mass committed to empty set becomes one at a previous temporal
fusion step, then both DST and TBM do not respond to new information9.
Let’s continue the example and consider a fourth source m4(.) with m4(A) =

0.5, m4(B) = 0.3 and m4(C) = 0.2. Then it is easy to see that m
((12)3)4
DS (.)

is not defined since at previous step m
(12)3
DS (.) was already not defined, and

that m
((12)3)4
TBM (∅) = 1 whatever m4(.) is because at the previous fusion step

one had m
(12)3
TBM (∅) = 1. Therefore for a number of sources n ≥ 2, DST and

TBM approaches do not respond to new information incoming in the fusion
process while both (DSmH) and (PCR5) rules respond to new information.
To make DST and/or TBM working properly in such cases, it is necessary to
introduce ad-hoc temporal discounting techniques which are not necessary to
introduce if DSmT is adopted. If there are good reasons to introduce temporal
discounting, there is obviously no difficulty to apply the DSm fusion of these
discounted sources. An analysis of this behavior for target type tracking is
presented in [10, 36].

1.4 Uniform and partially uniform redistribution rules

The principles of Uniform Redistribution Rule (URR) and Partially Uniform
Redistribution Rule (PURR) have been proposed in 2006 with examples in [35].

9Actually Dempster’s rule doesn’t respond also to new compatible information/bba as
soon as a total mass of belief is already committed by a source to only one focal element. For
example, if one considers Θ = {A, B} with Shafer’s model (A∩B = ∅) and with m1(A) = 1,
m2(A) = 0.2 and m2(B) = 0.8, then Dempster’s rule always provides mDS(A) = 1 whatever
are the values taken by m2(A) > 0 and m2(B) > 0.
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The Uniform Redistribution Rule consists in redistributing the total con-
flicting mass k12 to all focal elements of GΘ generated by the consensus op-
erator. This way of redistributing mass is very simple and URR is different
from Dempster’s rule of combination, because Dempster’s rule redistributes
the total conflict proportionally with respect to the masses resulted from the
conjunctive rule of non-empty sets. PCR5 rule presented in section 1.3 does
proportional redistributions of partial conflicting masses to the sets involved in
the conflict. The URR formula for two sources is given by: ∀A 
= ∅

m12URR(A) = m12(A) +
1

n12

∑
X1,X2∈GΘ

X1∩X2=∅

m1(X1)m2(X2) (1.18)

where m12(A) is the result of the conjunctive rule applied to belief assignments
m1(.) and m2(.), and n12 = Card{Z ∈ GΘ,m1(Z) 
= 0 or m2(Z) 
= 0}.

For s ≥ 2 sources to combine: ∀A 
= ∅, one has

m12...sURR(A) = m12...s(A) +
1

n12...s

∑
X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=∅

s∏
i=1

m1(Xi) (1.19)

where m12...s(A) is the result of the conjunctive rule applied to mi(.), for all
i ∈ {1, 2, . . . , s} and

n12...s = Card{Z ∈ GΘ,m1(Z) 
= 0 or m2(Z) 
= 0 or . . . or ms(Z) 
= 0}

As alternative (modified version of URR), we can also consider the cardinal
of the ensemble of sets whose masses resulted from the conjunctive rule are
non-null, i.e. the cardinality of the core of conjunctive consensus:

nc
12...s = Card{Z ∈ GΘ,m12...s(Z) 
= 0}

It is also possible to do a uniformly partial redistribution, i.e. to uniformly
redistribute the conflicting mass only to the sets involved in the conflict. For
example, if m12(A∩B) = 0.08 and A∩B = ∅, then 0.08 is equally redistributed
to A and B only, supposing A and B are both non-empty, so 0.04 assigned to
A and 0.04 to B.

The Partially Uniform Redistribution Rule (PURR) for two sources is defined
as follows: ∀A 
= ∅
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m12PURR(A) = m12(A) +
1

2

∑
X1,X2∈GΘ

X1∩X2=∅
X1=A or X2=A

m1(X1)m2(X2) (1.20)

where m12(A) is the result of the conjunctive rule applied to belief assignments
m1(.) and m2(.).

For s ≥ 2 sources to combine: ∀A 
= ∅, one has

m12...sPURR(A) = m12...s(A)

+
1

s

∑
X1,X2,...,Xs∈GΘ

X1∩X2∩...∩Xs=∅
at leat one Xj=A,j∈{1,...,s}

CardA({X1, . . . , Xs})
s∏

i=1

m1(Xi) (1.21)

where CardA({X1, . . . , Xs}) is the number ofA’s occurring in {X1, X2, . . . , Xs}.

If A = ∅, m12PURR(A) = 0 and m12...sPURR(A) = 0.

These rules have a low computation cost with respect to Proportional
Conflict Redistribution (PCR) rules developed in the DSmT framework and
they preserve the neutrality of the vacuous belief assignment (VBA) since any
bba m1(.) combined with VBA defined on any frame Θ = {θ1, . . . , θn} by
mV BA(θ1∪ . . .∪θn) = 1, using the conjunctive rule, gives m1(.), so no conflict-
ing mass is needed to transfer. Of course these rules are very easy to implement
but from a theoretical point of view they remain less precise in their transfer of
conflicting beliefs since they do not take into account the proportional redistri-
bution with respect to the mass of each set involved in the conflict. Reasonably,
URR or PURR cannot outperform PCR5 but they may hopefully could appear
as good enough in some specific fusion problems when the level of total conflict
is not important. PURR does a more refined redistribution that URR and
MURR but it requires a little more calculation.

1.5 RSC Fusion rules

In this section, we briefly10 recall a new class of fusion rules based on the
belief redistribution to subsets or complements and denoted CRSC (standing
for Class of Redistribution rules to Subsets or Complements) for short.

10This class is presented in details in chapter 5 of this volume with several examples.
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Let m1(.) and m2(.) be two normalized basic belief assignments (bba’s)
defined11 from SΘ to [0, 1]. We use the conjunctive rule to first combine m1(.)
with m2(.) to get m∩(.) and then the mass of conflict say m∩(X∩Y ) = 0, when
X ∩ Y = ∅ or even when X ∩ Y is different from the empty set is redistributed
to subsets or complements in many ways (see chapter 5 for details). The new
class of fusion rule (denoted CRSCc) for transferring the conflicting masses
only is defined for A ∈ SΘ \ {∅, It} by:

mCRSCc(A) = m∩(A) + [α · m∩(A) + β · Card(A) + γ · f(A)]·
·
∑

X, Y ∈ SΘ

X ∩ Y = ∅
A ⊆ M

m1(X)m2(Y )∑
Z∈SΘ,Z⊆M

[α · m∩(Z) + β · Card(Z) + γ · f(Z)]
(1.22)

where It = θ1∪θ2∪. . .∪θn represents the total ignorance when Θ = {θ1, . . . , θn}.
M can be c(X ∪ Y ) (the complement of X ∪ Y ), or a subset of c(X ∪ Y ), or
X ∪ Y , or a subset of X ∪ Y ; α, β, γ ∈ {0, 1} but α+ β + γ 
= 0; in a weighted
way we can take α, β, γ ∈ [0, 1] also with α+ β + γ 
= 0; f(X) is a function of
X , i.e. another parameter that the mass of X is directly proportionally with
respect to; Card(X) is the cardinal of X .

The mass of belief mCRSCc(It) committed to the total ignorance is given by:

mCRSCc(It) = m∩(It) +
∑

X, Y ∈ SΘ

{X ∩ Y = ∅ and M = ∅}
or{X ∩ Y = ∅ and Den(Z) = 0}

m1(X)m2(Y ) (1.23)

where Den(Z) �
∑

Z∈SΘ,Z⊆M [α · m∩(Z) + β · Card(Z) + γ · f(Z)].

A more general formula for the redistribution of conflict and non-conflict
to subsets or complements class of rules for the fusion of masses of belief for
two sources of evidence is defined A ∈ (SΘ � Snon∅

∩ ) � {∅,Θ} by:

mCRSC(A) = m∩(A) +
∑

X, Y ∈ SΘ

{X ∩ Y = ∅, A ∈ T (X, Y )}

or {X ∩ Y ∈ Snon∅
∩,r , A ∈ T ′(X, Y )}

f(A)
m1(X)m2(Y )∑
Z∈T (X,Y )

f(Z)
(1.24)

11Since these rules use explicitely the complementation operator c(.), they apply only with
the super-power set SΘ or on 2Θ depending on the underlying model chosen for the frame
Θ.
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and for A = It:

mCRSC(It) = m∩(It) +
∑

X, Y ∈ SΘ

X ∩ Y = ∅,

{T (X, Y ) = ∅ or
X

Z∈T (X,Y )

f(Z) = 0}

m1(X)m2(Y ) (1.25)

where S∩ = {X ∈ SΘ|X = Y ∩Z, where Y, Z ∈ SΘ �{∅}}, all propositions are
expressed in their canonical form and where Xcontains at least an ∩ symbol in
its expression; S∅∩ be the set of all empty intersections from S∩ (i.e. the set of
exclusivity constraints), and Snon∅

∩ the set of all non-empty intersections from
S∩. Snon∅

∩,r is the set of all non-empty intersections from Snon∅
∩ whose masses are

redistributed to other sets/propositions. The set Snon∅
∩,r highly depends on the

model for the frame of the application under consideration. f(.) is a mapping
from SΘ to R+. For example, we can choose f(X) = m∩(X), f(X) = |X |,
fT (X) = |X|

|T (X,Y )| , or f(x) = m∩(X) + |X |, etc. The function T specifies a

subset of SΘ, for example T (X,Y ) = {c(X ∪ Y )}, or T (X,Y ) = {X ∪ Y } or
can specify a set of subsets of SΘ. For example, T (X,Y ) = {A ⊂ c(X ∪ Y )},
or T (X,Y ) = {A ⊂ X ∪ Y }. The function T ′ is a subset of SΘ, for example
T ′(X,Y ) = {X ∪ Y }, or T ′ is a subset of X ∪ Y , etc.

It is important to highlight that in formulas (1.22)-(1.23) one transfers only
the conflicting masses, whereas the formulas (1.24)-(1.25) are more general
since one transfers the conflicting masses or the non-conflicting masses as well
depending on the preferences of the fusion system designer. The previous
formulas have been directly extended for any s ≥ 2 sources of evidence in
chapter 5. All denominators in these CRSC formulas are naturally supposed
different from zero. It is worth to note also that the extensions of these rules
for including the reliabilities of the sources are also presented in chapter 5 of
this volume.

1.6 The generalized pignistic transformation (GPT)

1.6.1 The classical pignistic transformation

We follow here Philippe Smets’ vision which considers the management of infor-
mation as a two 2-levels process: credal (for combination of evidences) and pig-
nistic12 (for decision-making) , i.e ”when someone must take a decision, he/she

12Pignistic terminology has been coined by Philippe Smets and comes from pignus, a bet
in Latin.
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must then construct a probability function derived from the belief function that
describes his/her credal state. This probability function is then used to make
decisions” [40] (p. 284). One obvious way to build this probability function
corresponds to the so-called Classical Pignistic Transformation (CPT) defined
in DST framework (i.e. based on the Shafer’s model assumption) as [42]:

BetP{A} =
∑

X∈2Θ

|X ∩A|
|X | m(X) (1.26)

where |A| denotes the cardinality of the set A (with convention |∅|/|∅| = 1, to
define BetP{∅}). Decisions are achieved by computing the expected utilities
of the acts using the subjective/pignistic BetP{.} as the probability function
needed to compute expectations. Usually, one uses the maximum of the pignis-
tic probability as decision criterion. The maximum of BetP{.} is often consid-
ered as a prudent betting decision criterion between the two other alternatives
(max of plausibility or max. of credibility which appears to be respectively
too optimistic or too pessimistic). It is easy to show that BetP{.} is indeed a
probability function (see [41]).

1.6.2 Notion of DSm cardinality

One important notion involved in the definition of the Generalized Pignistic
Transformation (GPT) is the DSm cardinality. The DSm cardinality of any
element A of hyper-power set DΘ, denoted CM(A), corresponds to the number
of parts of A in the corresponding fuzzy/vague Venn diagram of the problem
(model M) taking into account the set of integrity constraints (if any), i.e. all
the possible intersections due to the nature of the elements θi. This intrinsic
cardinality depends on the model M (free, hybrid or Shafer’s model). M is
the model that contains A, which depends both on the dimension n = |Θ| and
on the number of non-empty intersections present in its associated Venn dia-
gram (see [32] for details ). The DSm cardinality depends on the cardinal of
Θ = {θ1, θ2, . . . , θn} and on the model of DΘ (i.e., the number of intersections
and between what elements of Θ - in a word the structure) at the same time;
it is not necessarily that every singleton, say θi, has the same DSm cardinal,
because each singleton has a different structure; if its structure is the sim-
plest (no intersection of this elements with other elements) then CM(θi) = 1, if
the structure is more complicated (many intersections) then CM(θi) > 1; let’s
consider a singleton θi: if it has 1 intersection only then CM(θi) = 2, for 2
intersections only CM(θi) is 3 or 4 depending on the model M, for m inter-
sections it is between m + 1 and 2m depending on the model; the maximum
DSm cardinality is 2n−1 and occurs for θ1 ∪ θ2 ∪ . . . ∪ θn in the free model
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Mf ; similarly for any set from DΘ: the more complicated structure it has, the
bigger is the DSm cardinal; thus the DSm cardinality measures the complexity
of an element from DΘ, which is a nice characterization in our opinion; we may
say that for the singleton θi not even |Θ| counts, but only its structure (= how
many other singletons intersect θi). Simple illustrative examples are given in
Chapter 3 and 7 of [32]. One has 1 ≤ CM(A) ≤ 2n − 1. CM(A) must not be
confused with the classical cardinality |A| of a given set A (i.e. the number of
its distinct elements) - that’s why a new notation is necessary here. CM(A) is
very easy to compute by programming from the algorithm of generation of DΘ

given explicated in [32].

Example: let’s take back the example of the simple hybrid DSm model de-
scribed in section 1.2.2, then one gets the following list of elements (with their
DSm cardinal) for the restricted DΘ taking into account the integrity con-
straints of this hybrid model:

A ∈ DΘ CM(A)

α0 � ∅ 0

α1 � θ1 ∩ θ2 1

α2 � θ3 1

α3 � θ1 2

α4 � θ2 2

α5 � θ1 ∪ θ2 3

α6 � θ1 ∪ θ3 3

α7 � θ2 ∪ θ3 3

α8 � θ1 ∪ θ2 ∪ θ3 4

Example of DSm cardinals: CM(A) for hybrid model M.

1.6.3 The Generalized Pignistic Transformation

To take a rational decision within DSmT framework, it is necessary to gener-
alize the Classical Pignistic Transformation in order to construct a pignistic
probability function from any generalized basic belief assignment m(.) drawn
from the DSm rules of combination. Here is the simplest and direct extension
of the CPT to define the Generalized Pignistic Transformation:

∀A ∈ DΘ, BetP{A} =
∑

X∈DΘ

CM(X ∩A)

CM(X)
m(X) (1.27)
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where CM(X) denotes the DSm cardinal of proposition X for the DSm model
M of the problem under consideration.

The decision about the solution of the problem is usually taken by the
maximum of pignistic probability function BetP{.}. Let’s remark the close
ressemblance of the two pignistic transformations (1.26) and (1.27). It can be
shown that (1.27) reduces to (1.26) when the hyper-power set DΘ reduces to
classical power set 2Θ if we adopt Shafer’s model. But (1.27) is a generalization
of (1.26) since it can be used for computing pignistic probabilities for any
models (including Shafer’s model). It has been proved in [32] (Chap. 7) that
BetP{.} defined in (1.27) is indeed a probability distribution. In the following
section, we introduce a new alternative to BetP which is presented in details
in the chapter 3 of this volume.

1.7 The DSmP transformation

In the theories of belief functions, the mapping from the belief to the proba-
bility domain is a controversial issue. The original purpose of such mappings
was to make (hard) decision, but contrariwise to erroneous widespread idea/-
claim, this is not the only interest for using such mappings nowadays. Actually
the probabilistic transformations of belief mass assignments (as the pignistic
transformation mentioned previously) are for example very useful in modern
multitarget multisensor tracking systems (or in any other systems) where one
deals with soft decisions (i.e. where all possible solutions are kept for state esti-
mation with their likelihoods). For example, in a Multiple Hypotheses Tracker
using both kinematical and attribute data, one needs to compute all probabili-
ties values for deriving the likelihoods of data association hypotheses and then
mixing them altogether to estimate states of targets. Therefore, it is very rele-
vant to use a mapping which provides a high probabilistic information content
(PIC) for expecting better performances.

In this section, we briefly recall a new probabilistic transformation, denoted
DSmP and introduced in [11] which will be explained in details in Chapter 3
of this volume. DSmP is straight and different from other transformations.
The basic idea of DSmP consists in a new way of proportionalizations of
the mass of each partial ignorance such as A1 ∪ A2 or A1 ∪ (A2 ∩ A3) or
(A1∩A2)∪(A3∩A4), etc. and the mass of the total ignoranceA1∪A2∪. . .∪An,
to the elements involved in the ignorances. This new transformation takes into
account both the values of the masses and the cardinality of elements in the
proportional redistribution process. We first remind what PIC criteria is and
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then shortly present the general formula for DSmP transformation with few
numerical examples. More examples and comparisons with respect to other
transformations are given in the chapter 3.

1.7.1 The Probabilistic Information Content (PIC)

Following Sudano’s approach [43, 44, 46], we adopt the Probabilistic Informa-
tion Content (PIC) criterion as a metric depicting the strength of a critical
decision by a specific probability distribution. It is an essential measure in
any threshold-driven automated decision system. The PIC is the dual of the
normalized Shannon entropy. A PIC value of one indicates the total knowledge
to make a correct decision (one hypothesis has a probability value of one and
the rest of zero). A PIC value of zero indicates that the knowledge to make
a correct decision does not exist (all the hypotheses have an equal probability
value), i.e. one has the maximal entropy. The PIC is used in our analysis to
sort the performances of the different pignistic transformations through several
numerical examples. We first recall what Shannon entropy and PIC measure
are and their tight relationship.

• Shannon entropy

Shannon entropy, usually expressed in bits (binary digits), of a probability
measure P{.} over a discrete finite set Θ = {θ1, . . . , θn} is defined by13 [26]:

H(P ) � −
n∑

i=1

P{θi} log2(P{θi}) (1.28)

H(P ) is maximal for the uniform probability distribution over Θ, i.e. when
P{θi} = 1/n for i = 1, 2, . . . , n. In that case, one gets H(P ) = Hmax =
−∑n

i=1
1
n log2(

1
n ) = log2(n). H(P ) is minimal for a totally deterministic pro-

bability, i.e. for any P{.} such that P{θi} = 1 for some i ∈ {1, 2, . . . , n} and
P{θj} = 0 for j 
= i. H(P ) measures the randomness carried by any discrete
probability P{.}.

• The PIC metric

The Probabilistic Information Content (PIC) of a probability measure P{.}
associated with a probabilistic source over a discrete finite set Θ = {θ1, . . . , θn}
is defined by [44]:

PIC(P ) = 1 +
1

Hmax
·

n∑
i=1

P{θi} log2(P{θi}) (1.29)

13with common convention 0 log2 0 = 0.
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The PIC is nothing but the dual of the normalized Shannon entropy and thus
is actually unit less. PIC(P ) takes its values in [0, 1]. PIC(P ) is maximum,
i.e. PICmax = 1 with any deterministic probability and it is minimum, i.e.
PICmin = 0, with the uniform probability over the frame Θ. The simple
relationships between H(P ) and PIC(P ) are PIC(P ) = 1 − (H(P )/Hmax)
and H(P ) = Hmax · (1− PIC(P )).

1.7.2 The DSmP formula

Let’s consider a discrete frame Θ with a given model (free DSm model, hybrid
DSm model or Shafer’s model), the DSmP mapping is defined by DSmPε(∅) =
0 and ∀X ∈ GΘ \ {∅} by

DSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

m(Z) + ε · C(Y )
m(Y ) (1.30)

where ε ≥ 0 is a tuning parameter and GΘ corresponds to the generic set (2Θ,
SΘ or DΘ including eventually all the integrity constraints (if any) of the model
M); C(X ∩ Y ) and C(Y ) denote the DSm cardinals14 of the sets X ∩ Y and Y
respectively. ε allows to reach the maximum PIC value of the approximation
of m(.) into a subjective probability measure. The smaller ε, the better/bigger
PIC value. In some particular degenerate cases however, the DSmPε=0 values
cannot be derived, but the DSmPε>0 values can however always be derived by
choosing ε as a very small positive number, say ε = 1/1000 for example in order
to be as close as we want to the maximum of the PIC. When ε = 1 and when the
masses of all elements Z having C(Z) = 1 are zero, (1.30) reduces to (1.27), i.e.
DSmPε=1 = BetP . The passage from a free DSm model to a Shafer’s model
involves the passage from a structure to another one, and the cardinals change
as well in the formula (1.30). DSmP works for all models (free, hybrid and
Shafer’s). In order to apply classical transformation (Pignistic, Cuzzolin’s one,
Sudano’s ones, etc - see Chapter 3 in this volume), we need at first to refine the
frame (on the cases when it is possible!) in order to work with Shafer’s model,
and then apply their formulas. In the case where refinement makes sense, then
one can apply the other subjective probabilities on the refined frame. DSmP
works on the refined frame as well and gives the same result as it does on the
non-refined frame. Thus DSmP with ε > 0 works on any models and so is very

14We have omitted the index of the model M for the notation convenience.
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general and appealing. DSmP does a redistribution of the ignorance mass with
respect to both the singleton masses and the singletons’ cardinals in the same
time. Now, if all masses of singletons involved in all ignorances are different
from zero, then we can take ε = 0, and DSmP gives the best result, i.e. the
best PIC value. In summary, DSmP does an ’improvement’ over previous
known probabilistic transformations in the sense that DSmP mathematically
makes a more accurate redistribution of the ignorance masses to the singletons
involved in ignorances. DSmP and BetP work in both theories: DST (=
Shafer’s model) and DSmT (= free or hybrid models) as well.

1.7.3 Examples for DSmP and BetP

The examples briefly presented here are detailed in Chapter 3 including addi-
tional results based on Cuzzolin’s and Sudano’s transformations.

• With Shafer’s model and a non-Bayesian mass

Let’s consider the frame Θ = {A,B} and let’s assume Shafer’s model and
the non-Bayesian mass (more precisely the simple support mass) given in Table
1.6. We summarize in Table 1.7, the results obtained with DSmP and BetP.
One sees that PIC(DSmPε→0) is maximum among all PIC values.

A B A ∪B
m(.) 0.4 0 0.6

Table 1.6: Quantitative inputs for example 4 in Chapter 3.

A B PIC(.)
BetP (.) 0.7000 0.3000 0.1187
DSmPε=0.001(.) 0.9985 0.0015 0.9838
DSmPε=0(.) 1 0 1

Table 1.7: Results for example 4 in Chapter 3.

The best result is an adequate probability, not the biggest PIC in this case.
This is because P (B) deserves to receive some mass from m(A∪B), so the most
correct result is done by DSmPε=0.001 in Table 1.7 (of course we can choose
any other very small positive value for ε if we want). Always when a singleton
whose mass is zero, but it is involved in an ignorance whose mass is not zero,
then ε (in DSmP formula (1.30)) should be taken different from zero.
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• With a hybrid DSm model

Let’s consider the frame Θ = {A,B,C} and let’s consider the hybrid DSm
model in which all intersections of elements of Θ are empty, but A ∩ B cor-
responding to figure 1.4. In this case, GΘ reduces to 9 elements {∅, A ∩
B,A,B,C,A∪B,A∪C,B ∪C,A∪B ∪C}. The input masses of focal elements
are given by m(A ∩ B) = 0.20, m(A) = 0.10, m(C) = 0.20, m(A ∪B) = 0.30,
m(A ∪C) = 0.10, and m(A ∪B ∪ C) = 0.10 and given in the Table 1.8.

D′ A′ ∪D′ C′

m(.) 0.2 0.1 0.2

A′ ∪B′ ∪D′ A′ ∪ C′ ∪D′ A′ ∪B′ ∪C′ ∪D′

m(.) 0.3 0.1 0.1

Table 1.8: Quantitative inputs for example 8 in Chapter 3.
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Figure 1.4: Hybrid model for Θ = {A,B,C}.

Applying BetP and DSmP transformations, one gets:

A′ B′ C′ D′ PIC(.)
BetP (.) 0.2084 0.1250 0.2583 0.4083 0.0607
DSmPε=0.001(.) 0.0025 0.0017 0.2996 0.6962 0.5390

Table 1.9: Results for example 8 in Chapter 3.
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• With a free DSm model

Let’s consider the frame Θ = {A,B,C} and let’s consider the free DSm
model depicted on Figure 1.5 with the input masses given in Table 1.10.
To apply Sudano’s and Cuzzolin’s mappings, one works on the refined frame
Θref = {A′, B′, C′, D′, E′, F ′, G′} where the elements of Θref are exclusive (as-
suming such refinement has a physical meaning) according to Figure 1.5. This
refinement step is not necessary when using DSmP since it works directly on
DSm free model. The PIC values obtained with DSmP and BetP are given in
Table 1.11. One sees that DSmPε→0 provides here again the best results in
term of PIC.

��

��

��

��

��

��
��

A
��

B

��C

D′

G′

C′
E′ F ′

B′A′

Figure 1.5: Free DSm model for a 3D frame for example 9 in Chapter 3.

A ∩B ∩ C A ∩B A A ∪B A ∪B ∪C
m(.) 0.1 0.2 0.3 0.1 0.3

Table 1.10: Quantitative inputs for example 9 in Chapter 3.

Transformations PIC(.)
BetP (.) 0.1176
DSmPε=0.001(.) 0.8986

Table 1.11: Results for example 9 in Chapter 3.

An extension of DSmP (denoted qDSmP) for working with qualitative labels
instead of numbers is possible and has been proposed and presented in 2008
in [11] using approximate operators on labels. A simple example for qDSmP
based on precise operators on refined labels is presented in the next section.
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1.8 Fusion of qualitative beliefs

We recall here the notion of qualitative belief assignment to model beliefs of
human experts expressed in natural language (with linguistic labels). We show
how qualitative beliefs can be efficiently combined using an extension of DSmT
to qualitative reasoning. A more detailed presentation can be found in [36]. The
derivations are based on a new arithmetic on linguistic labels which allows a
direct extension of all quantitative rules of combination and conditioning. The
qualitative version of PCR5 rule and DSmP is also presented in the sequel.

1.8.1 Qualitative Operators

Computing with words (CW) and qualitative information is more vague, less
precise than computing with numbers, but it offers the advantage of robustness
if done correctly. Here is a general arithmetic we propose for computing with
words (i.e. with linguistic labels). Let’s consider a finite frame Θ = {θ1, . . . , θn}
of n (exhaustive) elements θi, i = 1, 2, . . . , n, with an associated model M(Θ)
on Θ (either Shafer’s model M0(Θ), free-DSm model Mf (Θ), or more gen-
eral any Hybrid-DSm model [32]). A model M(Θ) is defined by the set of
integrity constraints on elements of Θ (if any); Shafer’s model M0(Θ) assumes
all elements of Θ truly exclusive, while free-DSm model Mf (Θ) assumes no
exclusivity constraints between elements of the frame Θ. Let’s define a finite
set of linguistic labels L̃ = {L1, L2, . . . , Lm} where m ≥ 2 is an integer. L̃
is endowed with a total order relationship ≺, so that L1 ≺ L2 ≺ . . . ≺ Lm.
To work on a close linguistic set under linguistic addition and multiplication
operators, we extends L̃ with two extreme values L0 and Lm+1 where L0 corre-
sponds to the minimal qualitative value and Lm+1 corresponds to the maximal
qualitative value, in such a way that

L0 ≺ L1 ≺ L2 ≺ . . . ≺ Lm ≺ Lm+1

where ≺ means inferior to, or less (in quality) than, or smaller (in quality)
than, etc. hence a relation of order from a qualitative point of view. But if
we make a correspondence between qualitative labels and quantitative values
on the scale [0, 1], then Lmin = L0 would correspond to the numerical value 0,
while Lmax = Lm+1 would correspond to the numerical value 1, and each Li

would belong to [0, 1], i. e.

Lmin = L0 < L1 < L2 < . . . < Lm < Lm+1 = Lmax

From now on, we work on extended ordered set L of qualitative values

L = {L0, L̃, Lm+1} = {L0, L1, L2, . . . , Lm, Lm+1}
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In our previous works, we did propose approximate qualitative operators,
but in this book we propose to use better and accurate operators for quali-
tative labels. Since these new operators are defined in details in Chapter 2
devoted on the DSm Field and Linear Algebra of Refined Labels (FLARL), we
just briefly introduce here only the the main ones (i.e. the accurate label addi-
tion, multiplication and division). In FLARL, we can replace the ”qualitative
quasi-normalization” of qualitative operators we used in our previous papers
by ”qualitative normalization” since in FLARL we have exact qualitative cal-
culations and exact normalization.

• Label addition :
La + Lb = La+b (1.31)

since a
m+1 + b

m+1 = a+b
m+1 .

• Label multiplication :

La × Lb = L(ab)/(m+1) (1.32)

since a
m+1 · b

m+1 = (ab)/(m+1)
m+1 .

• Label division (when Lb 
= L0):

La ÷ Lb = L(a/b)(m+1) (1.33)

since a
m+1 ÷ b

m+1 = a
b = (a/b)(m+1)

m+1 .

More accurate qualitative operations (substraction, scalar multiplication,
scalar root, scalar power, etc) can be found in Chapter 2. Of course, if one
really needs to stay within the original set of labels, an approximation will be
necessary at the very end of the calculations.

1.8.2 Qualitative Belief Assignment

A qualitative belief assignment15 (qba) is a mapping function qm(.) : GΘ �→ L
where GΘ corresponds either to 2Θ, to DΘ or even to SΘ depending on the
model of the frame Θ we choose to work with. In the case when the labels are
equidistant, i.e. the qualitative distance between any two consecutive labels is
the same, we get an exact qualitative result, and a qualitative basic belief as-
signment (bba) is considered normalized if the sum of all its qualitative masses
is equal to Lmax = Lm+1. If the labels are not equidistant, we still can use

15We call it also qualitative belief mass or q-mass for short.
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all qualitative operators defined in the FLARL, but the qualitative result is
approximate, and a qualitative bba is considered quasi-normalized if the sum
of all its masses is equal to Lmax. Using the qualitative operator of FLARL, we
can easily extend all the combination and conditioning rules from quantitative
to qualitative. In the sequel we will consider s ≥ 2 qualitative belief assign-
ments qm1(.), . . . , qms(.) defined over the same space GΘ and provided by s
independent sources S1, . . . , Ss of evidence.

Note: The addition and multiplication operators used in all qualitative fusion
formulas in next sections correspond to qualitative addition and qualitative
multiplication operators and must not be confused with classical addition and
multiplication operators for numbers.

1.8.3 Qualitative Conjunctive Rule

The qualitative Conjunctive Rule (qCR) of s ≥ 2 sources is defined similarly
to the quantitative conjunctive consensus rule, i.e.

qmqCR(X) =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=X

s∏
i=1

qmi(Xi) (1.34)

The total qualitative conflicting mass is given by

K1...s =
∑

X1,...,Xs∈GΘ

X1∩...∩Xs=∅

s∏
i=1

qmi(Xi)

1.8.4 Qualitative DSm Classic rule

The qualitative DSm Classic rule (q-DSmC) for s ≥ 2 is defined similarly to
DSm Classic fusion rule (DSmC) as follows : qmqDSmC(∅) = L0 and for all
X ∈ DΘ \ {∅},

qmqDSmC(X) =
∑

X1,,...,Xs∈DΘ

X1∩...∩Xs=X

s∏
i=1

qmi(Xi) (1.35)
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1.8.5 Qualitative hybrid DSm rule

The qualitative hybrid DSm rule (q-DSmH) is defined similarly to quantitative
hybrid DSm rule [32] as follows:

qmqDSmH(∅) = L0 (1.36)

and for all X ∈ GΘ \ {∅}

qmqDSmH(X) � φ(X) ·
[
qS1(X) + qS2(X) + qS3(X)

]
(1.37)

where all sets involved in formulas are in the canonical form and φ(X) is the
characteristic non-emptiness function of a set X , i.e. φ(X) = Lm+1 if X /∈ ∅

and φ(X) = L0 otherwise, where ∅ � {∅M, ∅}. ∅M is the set of all elements
of DΘ which have been forced to be empty through the constraints of the
model M and ∅ is the classical/universal empty set. qS1(X) ≡ qmqDSmC(X),
qS2(X), qS3(X) are defined by

qS1(X) �
∑

X1,X2,...,Xs∈DΘ

X1∩X2∩...∩Xs=X

s∏
i=1

qmi(Xi) (1.38)

qS2(X) �
∑

X1,X2,...,Xs∈∅

[U=X]∨[(U∈∅)∧(X=It)]

s∏
i=1

qmi(Xi) (1.39)

qS3(X) �
∑

X1,X2,...,Xk∈DΘ

X1∪X2∪...∪Xs=X
X1∩X2∩...∩Xs∈∅

s∏
i=1

qmi(Xi) (1.40)

with U � u(X1) ∪ . . . ∪ u(Xs) where u(X) is the union of all θi that compose
X , It � θ1 ∪ . . .∪ θn is the total ignorance. qS1(X) is nothing but the qDSmC
rule for s independent sources based on Mf (Θ); qS2(X) is the qualitative
mass of all relatively and absolutely empty sets which is transferred to the
total or relative ignorances associated with non existential constraints (if any,
like in some dynamic problems); qS3(X) transfers the sum of relatively empty
sets directly onto the canonical disjunctive form of non-empty sets. qDSmH
generalizes qDSmC works for any models (free DSm model, Shafer’s model or
any hybrid models) when manipulating qualitative belief assignments.
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1.8.6 Qualitative PCR5 rule (qPCR5)

In classical (i.e. quantitative) DSmT framework, the Proportional Conflict
Redistribution rule no. 5 (PCR5) defined in [36] has been proven to pro-
vide very good and coherent results for combining (quantitative) belief masses,
see [10, 34]. When dealing with qualitative beliefs within the DSm Field and
Linear Algebra of Refined Labels (see Chapter 2 in this book) we get an ex-
act qualitative result no matter what fusion rule is used (DSm fusion rules,
Dempster’s rule, Smets’s rule, Dubois-Prade’s rule, etc.). The exact qualita-
tive result will be a refined label (but the user can round it up or down to the
closest integer index label).

1.8.7 A simple example of qualitative fusion of qba’s

Let’s consider the following set of ordered linguistic labels

L = {L0, L1, L2, L3, L4, L5}

(for example, L1, L2, L3 and L4 may represent the values: L1 � very poor,
L2 � poor, L3 � good and L4 � very good, where � symbol means by defini-
tion).

Let’s consider now a simple two-source case with a 2D frame Θ = {θ1, θ2},
Shafer’s model for Θ, and qba’s expressed as follows:

qm1(θ1) = L1, qm1(θ2) = L3, qm1(θ1 ∪ θ2) = L1

qm2(θ1) = L2, qm2(θ2) = L1, qm2(θ1 ∪ θ2) = L2

The two qualitative masses qm1(.) and qm2(.) are normalized since:

qm1(θ1) + qm1(θ2) + qm1(θ1 ∪ θ2) = L1 + L3 + L1 = L1+3+1 = L5

and

qm2(θ1) + qm2(θ2) + qm2(θ1 ∪ θ2) = L2 + L1 + L2 = L2+1+2 = L5

We first derive the result of the conjunctive consensus. This yields:

qm12(θ1) = qm1(θ1)qm2(θ1) + qm1(θ1)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ1)

= L1 × L2 + L1 × L2 + L1 × L2

= L 1·2
5

+ L 1·2
5

+ L 1·2
5

= L 2
5+ 2

5 + 2
5
= L 6

5
= L1.2
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qm12(θ2) = qm1(θ2)qm2(θ2) + qm1(θ2)qm2(θ1 ∪ θ2) + qm1(θ1 ∪ θ2)qm2(θ2)

= L3 × L1 + L3 × L2 + L1 × L1

= L 3·1
5

+ L 3·2
5

+ L 1·1
5

= L 3
5+ 6

5+ 1
5
= L 10

5
= L2

qm12(θ1 ∪ θ2) = qm1(θ1 ∪ θ2)qm2(θ1 ∪ θ2) = L1 × L2 = L 1·2
5

= L 2
5
= L0.4

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm1(θ2)qm2(θ1)

= L1 × L1 + L2 × L3 = L 1·1
5

+ L 2·3
5

= L 1
5+ 6

5
= L 7

5
= L1.4

Therefore we get:

• for the fusion with qDSmC, when assuming θ1 ∩ θ2 
= ∅,

qmqDSmC(θ1) = L1.2 qmqDSmC(θ2) = L2

qmqDSmC(θ1 ∪ θ2) = L0.4 qmqDSmC(θ1 ∩ θ2) = L1.4

• for the fusion with qDSmH, when assuming θ1 ∩ θ2 = ∅. The mass of
θ1 ∩ θ2 is transferred to θ1 ∪ θ2. Hence:

qmqDSmH(θ1) = L1.2 qmqDSmH(θ2) = L2

qmqDSmH(θ1 ∩ θ2) = L0 qmqDSmH(θ1 ∪ θ2) = L0.4 + L1.4 = L1.8

• for the fusion with qPCR5, when assuming θ1 ∩ θ2 = ∅. The mass
qm12(θ1 ∩ θ2) = L1.4 is transferred to θ1 and to θ2 in the following way:

qm12(θ1 ∩ θ2) = qm1(θ1)qm2(θ2) + qm2(θ1)qm1(θ2)

Then, qm1(θ1)qm2(θ2) = L1×L1 = L 1·1
5

= L 1
5
= L0.2 is redistributed to

θ1 and θ2 proportionally with respect to their qualitative masses put in
the conflict L1 and respectively L1:

xθ1

L1
=

yθ2

L1
=

L0.2

L1 + L1
=

L0.2

L1+1
=

L0.2

L2
= L 0.2

2 ·5
= L 1

2
= L0.5

whence xθ1 = yθ2 = L1 × L0.5 = L 1·0.5
5

= L 0.5
5

= L0.1.

Actually, we could easier see that qm1(θ1)qm2(θ2) = L0.2 had in this
case to be equally split between θ1 and θ2 since the mass put in the
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conflict by θ1 and θ2 was the same for each of them: L1. Therefore
L0.2

2 = L 0.2
2

= L0.1.

Similarly, qm2(θ1)qm1(θ2) = L2 × L3 = L 2·3
5

= L 6
5
= L1.2 has to be

redistributed to θ1 and θ2 proportionally with L2 and L3 respectively :

x′θ1

L2
=

y′θ2

L3
=

L1.2

L2 + L3
=

L1.2

L2+3
=

L1.2

L5
= L 1.2

5 ·5
= L1.2

whence

{
x′θ1

= L2 × L1.2 = L 2·1.2
5

= L 2.4
5

= L0.48

y′θ2
= L3 × L1.2 = L 3·1.2

5
= L 3.6

5
= L0.72

Now, add all these

to the qualitative masses of θ1 and θ2 respectively:

qmqPCR5(θ1) = qm12(θ1)+xθ1+x′θ1
= L1.2+L0.1+L0.48 = L1.2+0.1+0.48 = L1.78

qmqPCR5(θ2) = qm12(θ2)+ yθ2 + y′θ2
= L2 +L0.1 +L0.72 = L2+0.1+0.72 = L2.82

qmqPCR5(θ1 ∪ θ2) = qm12(θ1 ∪ θ2) = L0.4

qmqPCR5(θ1 ∩ θ2) = L0

The qualitative mass results using all fusion rules (qDSmC,qDSmH,qPCR5)
remain normalized in FLARL.

Naturally, if one prefers to express the final results with qualitative labels
belonging in the original discrete set of labels L = {L0, L1, L2, L3, L4, L5}, some
approximations will be necessary to round continuous indexed labels to their
closest integer/discrete index value; by example, qmqPCR5(θ1) = L1.78 ≈ L2,
qmqPCR5(θ2) = L2.82 ≈ L3 and qmqPCR5(θ1 ∪ θ2) = L0.4 ≈ L0.

1.8.8 A simple example for the qDSmP transformation

We first recall that the qualitative extension of (1.30), denoted qDSmPε(.) is
given by qDSmPε(∅) = L0 and ∀X ∈ GΘ \ {∅} by

qDSmPε(X) =
∑

Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

qm(Z) + ε · C(X ∩ Y )

∑
Z⊆Y
C(Z)=1

qm(Z) + ε · C(Y )
qm(Y ) (1.41)

where all operations in (1.41) are referred to labels, that is q-operators on lin-
guistic labels and not classical operators on numbers.
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Let’s consider the simple frame Θ = {θ1, θ2} (here n = |Θ| = 2) with
Shafer’s model (i.e. θ1 ∩ θ2 = ∅) and the following set of linguistic labels L =
{L0, L1, L2, L3, L4, L5}, with L0 = Lmin and L5 = Lmax = Lm+1 (here m = 4)
and the following qualitative belief assignment: qm(θ1) = L1, qm(θ2) = L3

and qm(θ1 ∪ θ2) = L1. qm(.) is quasi-normalized since
∑

X∈2Θ qm(X) = L5 =
Lmax. In this example and with DSmP transformation, qm(θ1 ∪ θ2) = L1

is redistributed to θ1 and θ2 proportionally with respect to their qualitative
masses L1 and L3 respectively. Since both L1 and L3 are different from L0, we
can take the tuning parameter ε = 0 for the best transfer. ε is taken different
from zero when a mass of a set involved in a partial or total ignorance is zero
(for qualitative masses, it means L0).
Therefore using (1.33), one has

xθ1

L1
=

xθ2

L3
=

L1

L1 + L3
=

L1

L4
= L 1

4 ·5
= L 5

4
= L1.25

and thus using (1.32), one gets

xθ1 = L1 × L1.25 = L 1·(1.25)
5

= L 1.25
5

= L0.25

xθ2 = L3 × L1.25 = L 3·(1.25)
5

= L 3.75
5

= L0.75

Therefore,

qDSmPε=0(θ1 ∩ θ2) = qDSmPε=0(∅) = L0

qDSmPε=0(θ1) = L1 + xθ1 = L1 + L0.25 = L1.25

qDSmPε=0(θ2) = L3 + xθ2 = L3 + L0.75 = L3.75

Naturally in our example, one has also

qDSmPε=0(θ1 ∪ θ2) = qDSmPε=0(θ1) + qDSmPε=0(θ2)− qDSmPε=0(θ1 ∩ θ2)

= L1.25 + L3.75 − L0 = L5 = Lmax

Since Hmax = log2 n = log2 2 = 1, using the qualitative extension of PIC
formula (1.29), one obtains the following qualitative PIC value:

PIC = 1 +
1

1
· [qDSmPε=0(θ1) log2(qDSmPε=0(θ1))

+ qDSmPε=0(θ2) log2(qDSmPε=0(θ2))]

= 1 + L1.25 log2(L1.25) + L3.75 log2(L3.75) ≈ L0.94

since we considered the isomorphic transformation Li = i/(m + 1) (in our
particular example m = 4 interior labels).
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1.9 Belief Conditioning Rules

1.9.1 Shafer’s Conditioning Rule (SCR)

Until very recently, the most commonly used conditioning rule for belief revision
was the one proposed by Shafer [25] and referred here as Shafer’s Conditioning
Rule (SCR). The SCR consists in combining the prior bba m(.) with a specific
bba focused on A with Dempster’s rule of combination for transferring the
conflicting mass to non-empty sets in order to provide the revised bba. In other
words, the conditioning by a proposition A, is obtained by SCR as follows :

mSCR(.|A) = [m⊕mS ](.) (1.42)

where m(.) is the prior bba to update, A is the conditioning event, mS(.) is the
bba focused on A defined by mS(A) = 1 and mS(X) = 0 for all X 
= A and ⊕
denotes Dempster’s rule of combination [25].

The SCR approach based on Dempster’s rule of combination of the prior
bba with the bba focused on the conditioning event remains subjective since
actually in such belief revision process both sources are subjective and in our
opinions SCR doesn’t manage satisfactorily the objective nature/absolute truth
carried by the conditioning term. Indeed, when conditioning a prior mass
m(.), knowing (or assuming) that the truth is in A, means that we have in
hands an absolute (not subjective) knowledge, i.e. the truth in A has occurred
(or is assumed to have occurred), thus A is realized (or is assumed to be
realized) and this is (or at least must be interpreted as) an absolute truth.
The conditioning term ”Given A” must therefore be considered as an absolute
truth, while mS(A) = 1 introduced in SCR cannot refer to an absolute truth
actually, but only to a subjective certainty on the possible occurrence of A
from a virtual second source of evidence. The advantage of SCR remains
undoubtedly in its simplicity and the main argument in its favor is its coherence
with conditional probability when manipulating Bayesian belief assignment.
But in our opinion, SCR should better be interpreted as the fusion of m(.)
with a particular subjective bba mS(A) = 1 rather than an objective belief
conditioning rule. This fundamental remark motivated us to develop a new
family of BCR [36] based on hyper-power set decomposition (HPSD) explained
briefly in the next section. It turns out that many BCR are possible because
the redistribution of masses of elements outside of A (the conditioning event)
to those inside A can be done in n-ways. This will be briefly presented right
after the next section.
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1.9.2 Hyper-Power Set Decomposition (HPSD)

Let Θ = {θ1, θ2, . . . , θn}, n ≥ 2, a model M(Θ) associated for Θ (free DSm
model, hybrid or Shafer’s model) and its corresponding hyper-power set DΘ.
Let’s consider a (quantitative) basic belief assignment (bba) m(.) : DΘ �→ [0, 1]
such that

∑
X∈DΘ m(X) = 1. Suppose one finds out that the truth is in the set

A ∈ DΘ \ {∅}. Let PD(A) = 2A ∩DΘ \ {∅}, i.e. all non-empty parts (subsets)
of A which are included in DΘ. Let’s consider the normal cases when A 
= ∅
and
∑

Y ∈PD(A) m(Y ) > 0. For the degenerate case when the truth is in A = ∅,
we consider Smets’ open-world, which means that there are other hypotheses
Θ′ = {θn+1, θn+2, . . . θn+m}, m ≥ 1, and the truth is in A ∈ DΘ′ \{∅}. If A = ∅
and we consider a close-world, then it means that the problem is impossible. For
another degenerate case, when

∑
Y ∈PD(A) m(Y ) = 0, i.e. when the source gave

us a totally (100%) wrong information m(.), then, we define: m(A|A) � 1 and,
as a consequence, m(X |A) = 0 for any X 
= A. Let s(A) = {θi1 , θi2 , . . . , θip},
1 ≤ p ≤ n, be the singletons/atoms that compose A (for example, if A =
θ1 ∪ (θ3 ∩ θ4) then s(A) = {θ1, θ3, θ4}). The Hyper-Power Set Decomposition
(HPSD) of DΘ \∅ consists in its decomposition into the three following subsets
generated by A:

• D1 = PD(A), the parts of A which are included in the hyper-power set,
except the empty set;

• D2 = {(Θ \ s(A)),∪,∩} \ {∅}, i.e. the sub-hyper-power set generated by
Θ \ s(A) under ∪ and ∩, without the empty set.

• D3 = (DΘ\{∅})\(D1∪D2); each set from D3 has in its formula singletons
from both s(A) and Θ \ s(A) in the case when Θ \ s(A) is different from
empty set.

D1, D2 and D3 have no element in common two by two and their union is
DΘ \ {∅}.

Simple example of HPSD: Let’s consider Θ = {θ1, θ2, θ3} with Shafer’s model
(i.e. all elements of Θ are exclusive) and let’s assume that the truth is in
θ2∪θ3, i.e. the conditioning term is θ2∪θ3. Then one has the following HPSD:
D1 = {θ2, θ3, θ2∪θ3}, D2 = {θ1} and D3 = {θ1∪θ2, θ1∪θ3, θ1∪θ2∪θ3}. More
complex and detailed examples can be found in [36].

1.9.3 Quantitative belief conditioning rules (BCR)

Since there exists actually many ways for redistributing the masses of elements
outside of A (the conditioning event) to those inside A, several BCR’s have
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been proposed in [36]. In this introduction, we will not browse all the possi-
bilities for doing these redistributions and all BCR’s formulas but only one,
the BCR number 17 (i.e. BCR17) which does in our opinion the most refined
redistribution since:
- the mass m(W ) of each element W in D2∪D3 is transferred to those X ∈ D1

elements which are included in W if any proportionally with respect to their
non-empty masses;
- if no such X exists, the mass m(W ) is transferred in a pessimistic/prudent
way to the k-largest element from D1 which are included in W (in equal parts)
if any;
- if neither this way is possible, then m(W ) is indiscriminately distributed to
all X ∈ D1 proportionally with respect to their nonzero masses.

BCR17 is defined by the following formula (see [36], Chap. 9 for detailed
explanations and examples):

mBCR17(X |A) = m(X) ·
[
SD1 +

∑
W∈D2∪D3

X⊂W

S(W ) �=0

m(W )

S(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
S(W )=0

m(W )/k (1.43)

where ”X is k-largest” means that X is the k-largest (with respect to inclusion)
set included in W and

S(W ) �
∑

Y ∈D1,Y⊂W

m(Y )

SD1 �

∑
Z∈D1,

or Z∈D2 |�Y ∈D1 with Y⊂Z

m(Z)

∑
Y ∈D1

m(Y )

Note: The authors mentioned in an Erratum to the printed version of the sec-
ond volume of DSmT book series (http://fs.gallup.unm.edu//Erratum.pdf)
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and they also corrected the online version of the aforementioned book (see page
240 in http://fs.gallup.unm.edu//DSmT-book2.pdf that all denominators
of the BCR’s formulas are naturally supposed to be different from zero. Of
course, Shafer’s conditioning rule as stated in Theorem 3.6, page 67 of [25]
does not work when the denominator is zero and that’s why Shafer has intro-
duced the condition Bel(B̄) < 1 (or equivalently Pl(B) > 0) in his theorem
when the conditioning term is B.

A simple example for BCR17: Let’s consider Θ = {θ1, θ2, θ3} with Shafer’s
model (i.e. all elements of Θ are exclusive) and let’s assume that the truth is
in θ2∪θ3, i.e. the conditioning term is A � θ2∪θ3. Then one has the following
HPSD:

D1 = {θ2, θ3, θ2 ∪ θ3}, D2 = {θ1}
D3 = {θ1 ∪ θ2, θ1 ∪ θ3, θ1 ∪ θ2 ∪ θ3}.

Let’s consider the following prior bba: m(θ1) = 0.2, m(θ2) = 0.1, m(θ3) = 0.2,
m(θ1 ∪ θ2) = 0.1, m(θ2 ∪ θ3) = 0.1 and m(θ1 ∪ θ2 ∪ θ3) = 0.3.

With BCR17, for D2, m(θ1) = 0.2 is transferred proportionally to all ele-
ments of D1, i.e.

xθ2

0.1 =
yθ3

0.2 =
zθ2∪θ3

0.1 = 0.2
0.4 = 0.5 whence the parts of m(θ1)

redistributed to θ2, θ3 and θ2 ∪ θ3 are respectively xθ2 = 0.05, yθ3 = 0.10, and
zθ2∪θ3 = 0.05. For D3, there is actually no need to transfer m(θ1 ∪ θ3) because
m(θ1 ∪ θ3) = 0 in this example; whereas m(θ1 ∪ θ2) = 0.1 is transferred to θ2

(no case of k-elements herein); m(θ1 ∪ θ2 ∪ θ3) = 0.3 is transferred to θ2, θ3

and θ2 ∪ θ3 proportionally to their corresponding masses:

xθ2/0.1 = yθ3/0.2 = zθ2∪θ3/0.1 = 0.3/0.4 = 0.75

whence xθ2 = 0.075, yθ3 = 0.15, and zθ2∪θ3 = 0.075. Finally, one gets

mBCR17(θ2|θ2 ∪ θ3) = 0.10 + 0.05 + 0.10 + 0.075 = 0.325

mBCR17(θ3|θ2 ∪ θ3) = 0.20 + 0.10 + 0.15 = 0.450

mBCR17(θ2 ∪ θ3|θ2 ∪ θ3) = 0.10 + 0.05 + 0.075 = 0.225

which is different from the result obtained with SCR, since one gets in this
example:

mSCR(θ2|θ2 ∪ θ3) = mSCR(θ3|θ2 ∪ θ3) = 0.25

mSCR(θ2 ∪ θ3|θ2 ∪ θ3) = 0.50

More complex and detailed examples can be found in [36].
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1.9.4 Qualitative belief conditioning rules

In this section we present only the qualitative belief conditioning rule no 17
which extends the principles of the previous quantitative rule BCR17 in the
qualitative domain using the operators on linguistic labels defined previously.
We consider from now on a general frame Θ = {θ1, θ2, . . . , θn}, a given model
M(Θ) with its hyper-power set DΘ and a given extended ordered set L of
qualitative values L = {L0, L1, L2, . . . , Lm, Lm+1}. The prior qualitative basic
belief assignment (qbba) taking its values in L is denoted qm(.). We assume in
the sequel that the conditioning event is A 
= ∅, A ∈ DΘ, i.e. the absolute truth
is in A. The approach we present here is a direct extension of BCR17 using
FLARL operators. Such extension can be done with all quantitative BCR’s
rules proposed in [36], but only qBCR17 is presented here for the sake of space
limitations.

1.9.4.1 Qualitative Belief Conditioning Rule no 17 (qBCR17)

Similarly to BCR17, qBCR17 is defined by the following formula:

qmqBCR17(X |A) = qm(X) ·
[
qSD1 +

∑
W∈D2∪D3

X⊂W

qS(W ) �=0

qm(W )

qS(W )

]

+
∑

W∈D2∪D3

X⊂W,X is k-largest
qS(W )=0

qm(W )/k (1.44)

where ”X is k-largest” means that X is the k-largest (with respect to inclusion)
set included in W and

qS(W ) �
∑

Y ∈D1,Y⊂W

qm(Y )

SD1 �

∑
Z∈D1,

or Z∈D2 |�Y ∈D1 with Y⊂Z

qm(Z)

∑
Y ∈D1

qm(Y )

Naturally, all operators (summation, product, division, etc) involved in the
formula (1.44) are the operators defined in FLARL working on linguistic labels.
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It is worth to note that the formula (1.44) requires also the division of the label
qm(W ) by a scalar k. This division is defined as follows:

Let r ∈ R, r 
= 0. Then the label division by a scalar is defined by

La

r
= La/r (1.45)

1.9.4.2 A simple example for qBCR17

Let’s consider L = {L0, L1, L2, L3, L4, L5, L6} a set of ordered linguistic labels.
For example, L1, L2, L3, L4 and L5 may represent the values: L1 � very poor,
L2 � poor, L3 � medium, L4 � good and L5 � very good. Let’s consider also
the frame Θ = {A,B,C,D} with the hybrid model corresponding to the Venn
diagram on Figure 1.6.

��

��

��

��

��

��
��

��
��

A
��

B

� C

� D

Figure 1.6: Venn Diagram for the hybrid model for this example.

We assume that the prior qualitative bba qm(.) is given by:

qm(A) = L1, qm(C) = L1, qm(D) = L4

and the qualitative masses of all other elements of GΘ take the minimal/zero
value L0. This mass is normalized since L1 +L1 +L4 = L1+1+4 = L6 = Lmax.

If we assume that the conditioning event is the proposition A ∪ B, i.e. the
absolute truth is in A ∪B, the hyper-power set decomposition (HPSD) is ob-
tained as follows: D1 is formed by all parts of A ∪B, D2 is the set generated
by {(C,D),∪,∩} \ ∅ = {C,D,C ∪ D,C ∩ D}, and D3 = {A ∪ C,A ∪ D,B ∪
C,B ∪D,A ∪B ∪C,A ∪ (C ∩D), . . .}.
Because the truth is in A ∪B, qm(D) = L4 is transferred in a prudent way to
(A ∪ B) ∩ D = B ∩ D according to our hybrid model, because B ∩ D is the
1-largest element from A ∪ B which is included in D. While qm(C) = L1 is
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transferred to A only, since it is the only element in A ∪ B whose qualitative
mass qm(A) is different from L0 (zero); hence:

qmqBCR17(A|A ∪B) = qm(A) + qm(C) = L1 + L1 = L1+1 = L2.

Therefore, one finally gets:

qmqBCR17(A|A ∪B) = L2, qmqBCR17(C|A ∪B) = L0

qmqBCR17(D|A ∪B) = L0, qmqBCR17(B ∩D|A ∪B) = L4

which is a normalized qualitative bba.

More complicated examples based on other qBCR’s can be found in [37].

1.10 Conclusion

A general presentation of the foundations of DSmT has been proposed in this
introduction. DSmT proposes new quantitative and qualitative rules of com-
bination for uncertain, imprecise and highly conflicting sources of information.
Several applications of DSmT have been proposed recently in the literature and
show the potential and the efficiency of this new theory. DSmT offers the possi-
bility to work in different fusion spaces depending on the nature of problem un-
der consideration. Thus, one can work either in 2Θ = (Θ,∪) (i.e. in the classical
power set as in DST framework), in DΘ = (Θ,∪,∩) (the hyper-power set —
also known as Dedekind’s lattice) or in the super-power set SΘ = (Θ,∪,∩, c(.)),
which includes 2Θ and DΘ and which represents the power set of the minimal
refinement of the frame Θ when the refinement is possible (because for vague
elements whose frontiers are not well known the refinement is not possible).
We have enriched the DSmT with a subjective probability (DSmPε) that gets
the best Probabilistic Information Content (PIC) in comparison with other ex-
isting subjective probabilities. Also, we have defined and developed the DSm
Field and Linear Algebra of Refined Labels that permit the transformation of
any fusion rule to a corresponding qualitative fusion rule which gives an exact
qualitative result (i.e. a refined label), so far the best in literature.
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