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Abstract: In this chapter, Herrera-Mart́ınez’ 2-tuple linguistic
representation model is extended for combining imprecise qualita-
tive information using fusion rules drawn from Dezert-Smarandache
Theory (DSmT) or from Dempster-Shafer Theory (DST) frame-
works. The proposed approach preserves the precision and the ef-
ficiency of the combination of linguistic information. Some basic
operators on imprecise 2-tuple labels are presented. We also give
simple examples to show how precise and imprecise qualitative in-
formation can be combined for reasoning under uncertainty. It is
concluded that DSmT can deal efficiently with both precise and im-
precise quantitative and qualitative beliefs, which extends the scope
of this theory.
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8.1 Introduction

Qualitative methods for reasoning under uncertainty have gained more and more
attention by Information Fusion community, especially by the researchers and system
designers working in the development of modern multi-source systems for information
retrieval, fusion and management in defense, in robotics and so on. This is because
traditional methods based only on quantitative representation and analysis are not
able to adequately satisfy the need of the development of science and technology
that integrate at higher fusion levels human beliefs and reports in complex systems.
Therefore qualitative knowledge representation and analysis become more and more
important and necessary in next generations of decision-making support systems.

In 1954, Polya was one of the pioneers to characterize formally the qualitative
human reports [15]. Then Zadeh [26–30] made important contributions in this field
in proposing a fuzzy linguistic approach to model and to combine qualitative/vague
information expressed in natural language. However, since the combination process
highly depends on the fuzzy operators chosen, a possible issue has been pointed out
by Yager in [25]. In 1994, Wellman developed Qualitative Probabilistic Networks
(QPN) based on a Qualitative Probability Language, which relaxed precision in rep-
resentation and reasoning within the probabilistic framework [24]. Subrahmanian
introduced the annotated logics, which was a powerful formalism for classical (i.e.
consistent), as well as paraconsistent reasoning in artificial intelligence [11, 22]. QPN
and Annotated Logics belong actually to the family of imprecise probability [23] and
probability bounds analysis (PBA) approaches [6]. Parsons proposed a Qualitative
Evidence Theory (QET) with new interesting qualitative reasoning techniques but
his QET unfortunately cannot deal efficiently with complex problems of qualitative
information fusion encountered in real world [12–14]. Dubois and Prade proposed a
Qualitative Possibility Theory (QPT) in Decision Analysis (DA) for the representa-
tion and the aggregation of preferences. QPT was driven by the principle of minimal
specificity [4]. They use refined linguistic quantifiers to represent either the possibil-
ity distributions which encode a piece of imprecise knowledge about a situation, or to
represent the qualitative belief masses over the elements in 2Θ. However, the combi-
nation process might produce approximate results because of the finite probabilistic
scale of the label set [5]. Hájek et al. in [7] proposed a Qualitative Fuzzy Possibilistic
Logic (QFPL) which was used to deal with both uncertainty (possibility) and vague-
ness (fuzziness). QFPL is different from our qualitative reasoning in DSmT, though
the propositional variables were mapped to a set of values i.e. {0, 1/n, 2/n, · · · , 1}
similar to 1-tuple linguistic model, since it built modality-free formulas from propo-
sitional variables using connectives, i.e. ∧,∨,→,¬.

The purpose of this chapter is to propose a model of imprecise qualitative belief
structures for solving fusion problems for applications and not to compare all pre-
vious theoretical approaches. We adopt here a pragmatic point of view in order to
deal with poor and imprecise qualitative sources of information since in reality the
requirement that precise labels are assigned to every individual hypotheses is often
regarded as too restrictive.
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Some research works on quantitative imprecise belief structures have been done at
the end of nineties by Denœux who proposed a representation model in DST frame-
work for dealing with imprecise belief and plausibility functions, imprecise pignistic
probabilities together with the extension of Dempster’s rule [1] for combining impre-
cise belief masses. Within the DSmT framework, Dezert and Smarandache further
proposed new interval-valued beliefs operators and generalized DSm combination
rules from precise belief structures fusion to imprecise/sub-unitary intervals fusion,
and more generally, to any set of sub-unitary intervals fusion [17]. In [9], Li proposed
a revised version of imprecise division operator and the Min and Max operators for
imprecise belief structures, which can be applied to fuzzy-extended reasoning com-
bination rules. Since all the extensions of belief structures proposed so far in the
literature concern only imprecise quantitative belief structures, we introduce here for
the first time a representation for imprecise qualititative belief structures. The rep-
resentation model presented in this chapter is based on the 2-tuple linguistic labels
model developed earlier [8] which offers an acceptable computational complexity by
working with a finite reduced/coarse granularity set of linguistic labels [3, 19, 20]. The
approach adopted here must be viewed as a particular case of the more theoretical
approach based on DSm Field and Linear Algebra of Refined Labels (DSm-FLARL)
proposed in Chapter 2 in this volume.

The 2-tuple linguistic labels representation allows to take into account some avail-
able richer information content (if any), like less good, good enough, very good which
is not represented within the 1-tuple linguistic labels representation. It can be in-
terpreted somehow as a remainder technique for linguistic labels. Actually, Herrera
and Mart́ınez in [8] were the first to propose a 2-tuple fuzzy linguistic representation
model for computing with words (CW) for offering a tractable method for aggregat-
ing linguistic information (represented by linguistic variables with equidistant labels)
through counting indexes of the corresponding linguistic labels. The advantages of
the 2-tuple Linguistic representation of symbolic method over methods based on the
extension principle in CW in term of complexity and feasibility have been shown in [8].
In 2007, Li et al. [10] have extended the 1-tuple linguistic representation model to
Qualitative Enriched Labels (QEL), denoted Li(ci), in the DSmT framework. It must
be noted that QEL Li(ci) is different from Herrera-Mart́ınez’ 2-tuple labels denoted
(Li, σ

h
i ). The difference lies in the fact that σh

i expresses a kind of refinement correct-
ing term of the standard linguistic label Li, whereas ci of QEL expresses a possible
confidence factor one may have on the standard linguistic label Li. In this work,
we use Herrera-Mart́ınez’ 2-tuple linguistic representation model and introduce new
operators for combining imprecise qualitative belief masses based on it.

This chapter is organized as follows: In section 8.2, we remind briefly the basis
of DSmT. In section 8.3, we present some 2-tuple linguistic operators and in section
8.4 we present the fusion rules for precise and imprecise qualitative beliefs in DSmT
framework. In section 8.5, we provide examples to show how these operators work
for combining 2- Tuple qualitative beliefs. Concluding remarks are then given in 8.6.
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8.2 DSmT for the fusion of beliefs

8.2.1 Basic belief mass

In Dempster-Shafer Theory (DST) framework [16], one considers a frame of dis-
cernment Θ = {θ1, . . . , θn} as a finite set of n exclusive and exhaustive elements
(i.e. Shafer’s model denoted M0(Θ)). The power set of Θ is the set of all sub-
sets of Θ. The cardinality of a power set , if the frame of discernment cardinality
|Θ| = n is 2n. The power set of Θ is denoted 2Θ. For example, if Θ = {θ1, θ2}, then
2Θ = {∅, θ1, θ2, θ1∪ θ2}. In Dezert-Smarandache Theory (DSmT) framework [17, 19],
one considers Θ = {θ1, . . . , θn} as a finite set of n exhaustive elements only (i.e. free
DSm-model denoted Mf (Θ)). Eventually some integrity constraints can be intro-
duced in this free model depending on the nature of problem we have to cope with.
The hyper-power set of Θ (i.e. the free Dedekind’s lattice) denoted DΘ [17] is defined
as:

1. ∅, θ1, . . . , θn ∈ DΘ.

2. If A, B ∈ DΘ, then A ∩B and A ∪B belong to DΘ.

3. No other elements belong to DΘ, except those obtained by using rules 1 or 2.

If |Θ| = n, then |DΘ| ≤ 22n

. Since for any finite set Θ, |DΘ| ≥ |2Θ|, we call DΘ the
hyper-power set of Θ. For example, if Θ = {θ1, θ2}, then DΘ = {∅, θ1 ∩ θ2, θ1, θ2, θ1 ∪
θ2}. The free DSm model Mf (Θ) corresponding to DΘ allows to work with vague
concepts which exhibit a continuous and relative intrinsic nature. Such concepts
cannot be precisely refined in an absolute interpretation because of the unreachable
universal truth. The main differences between DST and DSmT frameworks are (i)
the model on which one works with, (ii) the choice of the combination rule and con-
ditioning rules [17, 19], and (iii) aside working with numerical/quantitative beliefs
DSmT allows to compute directly with words (more exactly to combine qualitative
belief masses as we will show in the sequel). Here we use the generic notation GΘ

for denoting either DΘ (when working in DSmT with free DSm model) or 2Θ (when
working in DST with Shafer’s model) or any other subset of DΘ (when working with
a DSm hybrid model).

From any finite discrete frame Θ, we define a quantitative basic belief assignment
(bba) as a mapping m(.) : GΘ → [0, 1] associated to a given body of evidence B which
satisfies

m(∅) = 0 and
X

A∈GΘ

m(A) = 1 (8.1)

8.2.2 Fusion of quantitative beliefs

When the free DSm model Mf (Θ) holds, the pure conjunctive consensus, called
DSm classic rule (DSmC), is performed on GΘ = DΘ. DSmC of two independent1

1While independence is a difficult concept to define in all theories managing epistemic
uncertainty, we consider that two sources of evidence are independent (i.e. distinct and
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sources associated with bba’s m1(.) and m2(.) is thus given by mDSmC(∅) = 0 and
∀X ∈ DΘ by [17]:

mDSmC(X) =
X

X1,X2∈DΘ

X1∩X2=X

m1(X1)m2(X2) (8.2)

DΘ being closed under ∪ and ∩ operators, DSmC guarantees that m(.) is a proper
bba.

When Shafer’s model holds, instead of distributing the total conflicting mass onto
elements of 2Θ proportionally with respect to their masses resulted after applying the
conjunctive rule as within Demspter’s rule (DS) through the normalization step [16],
or transferring the partial conflicts onto partial uncertainties as within DSmH rule
[17], we propose to use the Proportional Conflict Redistribution rule no.5 (PCR5)
[18, 19] which transfers the partial conflicting masses proportionally to non-empty
sets involved in the model according to all integrity constraints. PCR5 rule works for
any degree of conflict in [0, 1], for any models (Shafer’s model, free DSm model or any
hybrid DSm model) and both in DST and DSmT frameworks for static or dynamical
fusion problems. The PCR5 rule for two sources is defined by: mPCR5(∅) = 0 and
∀X ∈ GΘ \ {∅}

mPCR5(X) = m12(X)+

X

Y ∈GΘ\{X}
X∩Y =∅

[
m1(X)2m2(Y )

m1(X) + m2(Y )
+

m2(X)2m1(Y )

m2(X) + m1(Y )
] (8.3)

where each element X, and Y , is in the disjunctive normal form. m12(X) corresponds
to the conjunctive consensus on X between the two sources. All denominators are
different from zero. If a denominator is zero, that fraction is discarded. No matter
how big or small is the conflicting mass, PCR5 mathematically does a better redis-
tribution of the conflicting mass than Dempster’s rule and other rules since PCR5
goes backwards on the tracks of the conjunctive rule and redistributes the partial
conflicting masses only to the sets involved in the conflict and proportionally to their
masses put in the conflict, considering the conjunctive normal form of the partial con-
flict. PCR5 is quasi-associative and preserves the neutral impact of the vacuous belief
assignment. General PCR5 fusion formula and improvement for the combination of
k ≥ 2 sources of evidence can be found in [19] with many detailed examples.

noninteracting) if each leaves one totally ignorant about the particular value the other will
take.
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8.3 Linguistic models of qualitative beliefs

8.3.1 The 1-tuple linguistic model

In order to compute qualitative belief assignments expressed by pure linguistic labels
(i.e. 1-tuple linguistic representation model) over GΘ, Smarandache and Dezert have
defined in [19] a qualitative basic belief assignment q1m(.) as a mapping function from
GΘ into a set of linguistic labels L = {L0, L̃, Ln+1} where L̃ = {L1, · · · , Ln} is a finite
set of linguistic labels and where n ≥ 2 is an integer. For example, L1 can take the
linguistic value “poor”, L2 the linguistic value “good”, etc. L̃ is endowed with a total
order relationship ≺, so that L1 ≺ L2 ≺ · · · ≺ Ln,where ≺ means inferior to, or less (in
quality) than, or smaller than, etc. To work on a true closed linguistic set L under lin-
guistic addition and multiplication operators, Smarandache and Dezert extended nat-
urally L̃ with two extreme values L0 = Lmin and Ln+1 = Lmax, where L0 corresponds
to the minimal qualitative value and Ln+1 corresponds to the maximal qualitative
value, in such a way that L0 ≺ L1 ≺ L2 ≺ · · · ≺ Ln ≺ Ln+1. In the sequel Li ∈ L are
assumed linguistically equidistant labels such that we can make an isomorphism φL

between L = {L0, L1, L2, . . . , Ln, Ln+1} and {0, 1/(n+1), 2/(n+1), . . . , n/(n+1), 1},
defined as φL(Li) = i/(n + 1) for all i = 0, 1, 2, . . . , n, n + 1.

From the extension of the isomorphism between the set of linguistic equidistant
labels and a set of numbers in the interval [0, 1], one can built exact operators on
linguistic labels which makes possible the extension of all quantitative fusion rules
into their qualitative counterparts [10]. We briefly remind the basic (approximate)
qualitative operators2 (or q-operators for short) on (1-tuple) linguistic labels:

• q-addition:

Li + Lj =

(

Li+j if i + j < n + 1,

Ln+1 = Lmax if i + j ≥ n + 1.
(8.4)

The q-addition is an extension of the addition operator on equidistant labels
which is given by Li + Lj = i

n+1
+ j

n+1
= i+j

n+1
= Li+j .

• q-subtraction:

Li − Lj =

(

Li−j if i ≥ j,

−Lj−i if i < j.
(8.5)

where −L = {−L1,−L2, . . . ,−Ln,−Ln+1}. The q-subtraction is justified since
when i ≥ j, one has with equidistant labels Li − Lj = i

n+1
− j

n+1
= i−j

n+1
.

• q-multiplication3:
Li · Lj = L[(i·j)/(n+1)]. (8.6)

2more approximate q-operators can be found in [3] and new accurate operators are in-
troduced in Chapter 2 of this volume.

3The q-multiplication of two linguistic labels defined here can be extended directly to the
multiplication of n > 2 linguistic labels. For example the product of three linguistic label
will be defined as Li · Lj · Lk = L[(i·j·k)/(n+1)(n+1)], etc.
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where [x] means the closest integer4 to x (with [n + 0.5] = n + 1, ∀n ∈ N).
This operator is justified by the approximation of the product of equidistant
labels given by Li · Lj = i

n+1
· j

n+1
= (i·j)/(n+1)

n+1
. A simpler approximation of

the multiplication, but less accurate (as proposed in [19]) is thus

Li × Lj = Lmin{i,j} (8.7)

• Scalar multiplication of a linguistic label: Let a be a real number. The multi-
plication of a linguistic label by a scalar is defined by:

a · Li =
a · i

n + 1
≈
(

L[a·i] if [a · i] ≥ 0,

L−[a·i] otherwise.
(8.8)

• Division of linguistic labels:

a) q-division as an internal operator: Let j �= 0, then

Li/Lj =

(

L[(i/j)·(n+1)] if[(i/j) · (n + 1)] < n + 1,

Ln+1 otherwise.
(8.9)

The first equality in (8.9) is well justified because with equidistant labels,

one gets: Li/Lj = i/(n+1)
j/(n+1)

= (i/j)·(n+1)
n+1

≈ L[(i/j)·(n+1)].

b) Division as an external operator: �. Let j �= 0. We define:

Li � Lj = i/j. (8.10)

since for equidistant labels Li � Lj = (i/(n + 1))/(j/(n + 1)) = i/j.

From the q-operators we now can easily and directly extend all quantitative fusion
rules like DSmC or PCR5 (8.2) or (8.3) into their qualitative version by replacing
classical operators on numbers with linguistic labels defined above. Many detailed
examples can be found in [3, 10, 18, 19].

8.3.2 The 1-tuple linguistic enriched model

In order to keep working with a coarse/reduced set of linguistic labels for main-
taining a low computational complexity, but for taking into account the confidence
one may have on the label value declared by a source, we proposed in [10] a qual-
itative enriched linguistic representation model denoted by Li(ci), where the first
component Li is a classical linguistic label and the second component ci is an as-
sessment (confidence) value. ci can be either a numerical supporting degree5 in

4When working with labels, no matter how many operations we have, the best (most
accurate) result is obtained if we do only one approximation, and that one should be just at
the very end.

5In our previous publication [10], we considered ci ∈ [0,∞) but it seems more natural to
take it actually in [0, 1] as in statistics.
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[0, 1] or a qualitative supporting degree taken its value in a given (ordered) set X
of linguistic labels. When ci ∈ [0, 1], Li(ci) is called an enriched label of type 1,
whereas when αi ∈ X, Li(ci) is called an enriched label of type 2. The (quanti-
tative or qualitative) value ci characterizes the confidence weight one has when the
source declares label Li for committing its qualitative belief to a given proposition
A ∈ GΘ. For example with enriched labels of type 1, if the label L1 � L1(1) rep-
resents our full confidence in the linguistic variable Good declared by the source,
L1(0.7) means than we are a bit less confident (i.e. 70% confident only) in the dec-
laration Good provided by the source, etc. With enriched labels of type 2, if one
chooses by example X = {SC, MC, HC}, where elements of X have the following
meaning: SC � “Small Condidence”, MC � “Medium Confidence” and FC �“Full
Confidence”, then the enriched label L1 � L1(FC) represents linguistic variable Good
with the full confidence we grant in this declaration (similarly as L1(1) for type 1),
etc. In [10], we have shown how to work (i.e. how to define new qe-operators) and how
to combine qualitative beliefs based on this enriched linguistic representation model.
The computations are based on an independent derivation mechanism of the 1st and
2nd components of the enriched labels Li(ci) because the label Li and its confidence
factor ci, i = 1, . . . , n do not carry the same intrinsic nature of information.

Herrera-Mart́ınez’ approach (i.e. the 2-tuple linguistic model) presented in the
next section is totally different as it will be shown. In the 2-tuple linguistic model, one
tries to refine the value of the labels in order to deal with a richer/finer information
but without regards to the confidence one may have on the (refined/2-tuple) labels.
Of course, the enrichment of 2-tuple labels can be easily done following ideas presented
in [10].

8.3.3 The precise 2-tuple linguistic model

Herrera and Mart́ınez’ (precise) 2-tuple model has been introduced in detail in [8].
Here we denote this model (Li, σ

h
i ) where σh

i is chosen in Σ � [−0.5/(n+1), 0.5/(n+
1)), i ∈ {1, · · · ,∞}. The 2-tuple model can be justified since each distance be-
tween two equidistant labels is 1/(n + 1) because of the isomorphism between L
and {0, 1/(n+1), . . . , n/(n+1), 1}, so that Li = i/(n+1) for all i = 0, 1, 2, . . . , n, n+
1. Therefore, we take half to the left and half to the right of each label, i.e.
σh

i ∈ Σ. So a 2-tuple equidistant linguistic representation model is used to rep-
resent the linguistic information by means of 2-tuple item set �L(L, σh) with L =
{L0, L1, L2, . . . , Ln, Ln+1} isomorphic to {0, 1/(n + 1), 2/(n + 1), . . . , n/(n + 1), 1}
and the set of qualitative assessments isomorphic to Σ. This 2-tuple approach is
an intricate/hybrid mechanism of derivation using jointly Li and σh

i where σh
i is a

positive or negative numerical remainder with respect to the labels.
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8.3.3.1 Symbolic translation

Let’s define the normalized index6 i = round((n + 1) × β) = [(n + 1) × β], with i ∈
[0, (n+1)] and β ∈ [0, 1], and the Symbolic Translation σh � β−i/(n+1) ∈ [−0.5/(n+
1), 0.5/(n + 1)). Roughly speaking, the Herrera-Mart́ınez symbolic translation of an
assessment linguistic value (n+1)×σh

i is a numerical value that supports the difference
of information between the (normalized) index obtained from the fusion rule and its
closest value in {0, 1, . . . , n + 1}.

8.3.3.2 Herrera-Mart́ınez transformations

• �(.) : conversion of a numerical value into a 2-tuple

�(.) : [0, 1] → L×Σ is defined by [8]

�(β) = (Li, σ
h) �

(

Li, i = round((n + 1) · β)

σh = β − i/(n + 1), σh ∈ Σ
(8.11)

Thus Li has the closest index label to β and σh is the value of its symbolic translation.

• ∇(.) : conversion of a 2-tuple into a numerical value

The inverse/dual function of �(.) is denoted ∇(.) and ∇(.) : L×Σ → [0, 1] is defined
by

∇((Li, σ
h
i )) = i/(n + 1) + σh

i = βi (8.12)

8.3.3.3 Main operators on 2-tuples

Let’s consider two 2-tuples (Li, σ
h
i ) and (Lj , σ

h
j ), then the following operators are

defined as follows.

• Addition of 2-tuples

(Li, σ
h
i ) + (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i ) + (Lj , σ

h
j ))

= ∇((Li, σ
h
i )) + ∇((Lj , σ

h
j )) = βi + βj = βz

=

(

�(βz) if βz ∈ [0, 1]

Ln+1 otherwise
(8.13)

• Product of 2-tuples

(Li, σ
h
i ) × (Lj , σ

h
j ) ≡ ∇((Li, σ

h
i ) × (Lj , σ

h
j ))

= ∇((Li, σ
h
i ))×∇((Lj , σ

h
j )) = βi × βj = βp ≡ �(βp) (8.14)

with βp ∈ [0, 1]. It can be proved that 2-tuple addition and product operators are
commutative and associative.

6where round(.) is the rounding operation denoted [.] in our previous q-operators [10].
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• Scalar multiplication of a 2-tuple

α · (Li, σ
h
i ) ≡ ∇(α · (Li, σ

h
i )) = α · ∇((Li, σ

h
i ))

= α · βi = βγ ≡
(

�(βγ) βγ ∈ [0, 1]

Ln+1 otherwise
(8.15)

• Division of a 2-tuple by a 2-tuple

Let’s consider two 2-tuples (Li, σ
h
i ) and (Lj , σ

h
j ) with7 (Li, σ

h
i ) < (Lj , σ

h
j ), then the

division is defined as

(Li, σ
h
i )

(Lj , σh
j )

≡ ∇(
(Li, σ

h
i )

(Lj , σh
j )

) =
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
βi

βj
= βd ≡ �(βd) with βd ∈ [0, 1] (8.16)

If (Li, σ
h
i ) ≥ (Lj , σ

h
j ), then

(Li, σ
h
i )

(Lj , σh
j )

≡ ∇(
(Li, σ

h
i )

(Lj , σh
j )

) =
∇((Li, σ

h
i ))

∇((Lj , σh
j ))

=
βi

βj
≥ 1

and in such case
(Li,σh

i )

(Lj ,σh
j )

is set to the maximum label, i.e.
(Li,σh

i )

(Lj ,σh
j )

= (Ln+1, 0) ∼ Ln+1.

8.3.4 The imprecise 2-tuple linguistic model

Since qualitative belief assignment might be imprecise by expert on some occasions,
in order to further combine this imprecise qualitative information, we introduce op-
erators on imprecise 2-tuple labels (i.e. addition, subtraction, product and division,
etc.). The definition adopted here is the qualitative extension of the one proposed
by Denœux’ in [1] for reasoning with (quantitative) Interval-valued Belief Structures
(IBS).

Definition 1 (IQBS): Let �LGΘ denotes the set of all qualitative belief structures (i.e.
precise and imprecise) over GΘ. An imprecise qualitative belief structure (IQBS) is
defined as a non-empty subset m from �LGΘ , such that there exist n subsets F1, · · · , Fn

over GΘ and n qualitative intervals [ai, bi], 1 ≤ i ≤ n (with L0 ≤ ai ≤ bi ≤ Ln+1)
such that

m = {m ∈ �LGΘ | ai ≤ m(Fi) ≤ bi, 1 ≤ i ≤ n,

and m(A) = (L0, 0), ∀A /∈ {F1, . . . , Fn}}

7The comparison operator is defined in [8].
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Proposition 1: A necessary and sufficient condition for m to be non-empty is that
L0 ≤

Pn
i=1 ai ≤ Ln+1 ≤

Pn
i=1 bi because there should be at least a qualitative value

ci ∈ [ai, bi], for each i, such that
Pn

i=1 ci = Ln+1, i.e. the condition of qualitative
normalization of m(.). This is an extension of Denœux’ proposition [1].

In order to combine imprecise qualitative belief structures, we use the operations
on sets proposed by Dezert and Smarandache in [2].

8.3.4.1 Addition of imprecise 2-tuple labels

The addition operator is very important in most of combination rules for fusing infor-
mation in most of belief functions theories (in DST framework, in Smets’ Transferable
Belief Model (TBM) [21] as well as in DSmT framework). The addition operator for
imprecise 2-tuple labels (since every imprecise mass of belief is represented here qual-
itatively by a 2-tuple label) is defined by:

m1 � m2 = m2 � m1 � {x | x = s1 + s2, s1 ∈ m1, s2 ∈ m2} (8.17)

where the symbol + means the addition operator on labels and with
(

inf(m1 + m2) = inf(m1) + inf(m2)

sup(m1 + m2) = sup(m1) + sup(m2)

Special case: if a source of evidence supplies precise information, i.e. m is a precise
2-tuple, say (Lk, αh

k), then

(Lk, σh
k ) � m2 = m2 � (Lk, σh

k ) = {x | x = (Lk, σh
k ) + s2, s2 ∈ m2} (8.18)

with
(

inf((Lk, σh
k ) + m2) = (Lk, σh

k ) + inf(m2)

sup((Lk, σh
k ) + m2) = (Lk, σh

k ) + sup(m2)

Example: if 9 labels are used, i.e. n = 9,

[(L1, 0.01), (L3, 0.02)] � [(L2, 0.02), (L5, 0.03)] = [(L3, 0.03), (L9,−0.05)]

L3 � [(L2, 0.02), (L5, 0.03)] = [(L5, 0.02), (L8, 0.03))

8.3.4.2 Subtraction of imprecise 2-tuple labels

The subtraction operator is defined as follows:

m1 � m2 � {x | x = s1 − s2, s1 ∈ m1, s2 ∈ m2} (8.19)

where the symbol − represents the subtraction operator on labels and with
(

inf(m1 −m2) = inf(m1)− sup(m2)

sup(m1 −m2) = sup(m1) − inf(m2)
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When sup(m1 − m2) ≤ (L0, 0), one takes m1 � m2 = (L0, 0); If inf(m1 − m2) ≤
(L0, 0), sup(m1−m2) ≥ (L0, 0), then m1 �m2 = [(L0, 0), sup(m1−m2)]; Otherwise,
m1 � m2 = [inf(m1 −m2), sup(m1 −m2)].

Special case: if one of sources of evidence supplies precise information, i.e. m is a
precise 2-tuple, say (Lk, αh

k), then

(Lk, σh
k ) � m2 = {x | x = (Lk, σh

k ) − s2, s2 ∈ m2} (8.20)

with
(

inf((Lk, σh
k ) −m2) = (Lk, σh

k ) − sup(m2)

sup((Lk, σh
k ) −m2) = (Lk, σh

k ) − inf(m2)

Similarly,
m1 � (Lk, σh

k ) = {x | x = s1 − (Lk, σh
k ), s1 ∈ m1} (8.21)

with
(

inf(m1 − (Lk, σh
k )) = inf(m1) − (Lk, σh

k )

sup(m1 − (Lk, σh
k )) = sup(m1) − (Lk, σh

k )

Example: if 9 labels are used, i.e. n = 9,

[(L2, 0.02), (L5, 0.03)] � [(L1, 0.01), (L3, 0.02)] = [(L0, 0), (L4, 0.02)]

[(L1, 0.01), (L3, 0.02)] � (L5, 0.03) = (L0, 0)

L3 � [(L2, 0.02), (L5, 0.03)] = [(L0, 0), (L1,−0.02)]

8.3.4.3 Multiplication of imprecise 2-tuple labels

The multiplication operator plays also an important role in most of the rules of
combinations. The multiplication of imprecise 2-tuple labels is defined as follows:

m1 � m2 = m2 � m1 � {x | x = s1 × s2, s1 ∈ m1, s2 ∈ m2} (8.22)

where the symbol × represents the multiplication operator on labels and with
(

inf(m1 ×m2) = inf(m1) × inf(m2)

sup(m1 ×m2) = sup(m1) × sup(m2)

Special case: if one of sources of evidence supplies precise information, i.e. m is a
precise 2-tuple, say (Lk, αh

k), then

(Lk, σh
k ) � m2 = m2 � (Lk, σh

k ) = {x | x = (Lk, σh
k ) × s2, s2 ∈ m2}

with
(

inf((Lk, σh
k ) ×m2) = (Lk, σh

k ) × inf(m2)

sup((Lk, σh
k ) ×m2) = (Lk, σh

k ) × sup(m2)

Example: if 9 labels are used, i.e. n = 9,

[(L1, 0.01), (L3, 0.02)] � [(L2, 0.02), (L5, 0.03)] = [(L0, 0.0242), (L2,−0.0304)]

L3 � [(L2, 0.02), (L5, 0.03)] = [(L1,−0.034), (L2,−0.041)]
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8.3.4.4 Division of imprecise 2-tuple labels

The division operator is also necessary in some combinations rules (like in Demp-
ster’s rule or PCR5 by example). So we propose the following division operator for
imprecise 2-tuple labels based on division of sets introduced in [2]:

If m2 �= (L0, 0), then

m1 � m2 � {x | x = s1 ÷ s2, s1 ∈ m1, s2 ∈ m2} (8.23)

where the symbol ÷ represents the division operator on labels and with

(

inf(m1 ÷m2) = inf(m1)÷ sup(m2)

sup(m1 ÷m2) = sup(m1) ÷ inf(m2)

when sup(m1) ÷ inf(m2) ≤ Ln+1. Otherwise we take sup(m1 ÷m2) = Ln+1.

Special case: if one of sources of evidence supplies precise information, i.e. m is a
precise 2-tuple, say (Lk, αh

k) �= (L0, 0), then

(Lk, σh
k ) � m2 = {x | x = (Lk, σh

k ) ÷ s2, s2 ∈ m2} (8.24)

with
(

inf((Lk, σh
k ) ÷m2) = (Lk, σh

k ) ÷ sup(m2)

sup((Lk, σh
k ) ÷m2) = (Lk, σh

k ) ÷ inf(m2)

Similarly,
m1 � (Lk, σh

k ) = {x | x = s1 ÷ (Lk, σh
k ), s1 ∈ m1} (8.25)

with
(

inf(m1 ÷ (Lk, σh
k )) = inf(m2) ÷ (Lk, σh

k )

sup(m1 ÷ (Lk, σh
k )) = sup(m2) ÷ (Lk, σh

k )

Example: if 9 labels are used, i.e. n = 9,

[(L1, 0.01), (L3, 0.02)] � [(L2, 0.02), (L5, 0.03)] = [(L2, 0.0075), (L10, 0)]

L3 � [(L2, 0.02), (L5, 0.03)] = [(L6,−0.034), (L10, 0)]

[(L2, 0.02), (L5, 0.03)] � L3 = [(L7, 0.033), (L10, 0)]

8.4 Fusion of qualitative beliefs

8.4.1 Fusion of precise qualitative beliefs

From the 2-tuple linguistic representation model of qualitative beliefs and the previ-
ous operators on 2-tuple labels, we are now able to extend the DSmC, PCR5 and
even Dempster’s (DS) fusion rules into the qualitative domain following the track of
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our previous works [3, 10, 19]. We denote q2m(·) the qualitative belief mass/assign-
ment (qba) based on 2-tuple representation in order to make a difference with the qba
q1m(·) based on 1-tuple (classical/pure) linguistic labels and qem(·) based on qual-
itative enriched linguistic labels [10]. Mathematically, q2m(·) expressed by a given
source/body of evidence S is defined as a mapping function q2m(·): GΘ → L × α
such that:

q2m(∅) = (L0, 0) and
X

A∈GΘ

q2m(A) = (Ln+1, 0) (8.26)

From the expressions of quantitative DSmC (8.2), PCR5 (8.3) and Dempster’s
(DS) [16] fusion rules and from the operators on 2-tuple labels, we can define the
classical qualitative combination or proportional redistribution rules (q2DSmC and
q2PCR5) for dealing with 2-tuple linguistic labels (Li, αi). This is done as follows:

• when working with the free DSm model of the frame Θ: q2mDSmC(∅) = (L0, 0)
and ∀X ∈ DΘ \ {∅}

q2mDSmC(X) =
X

X1,X2∈DΘ

X1∩X2=X

q2m1(X1)q2m2(X2) (8.27)

• when working with Shafer’s or hybrid model of the frame Θ: q2mPCR5(∅) =
(L0, 0) and ∀X ∈ GΘ \ {∅}

q2mPCR5(X) = q2m12(X) +
X

Y ∈GΘ\{X}
X∩Y =∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )

+
q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )
] (8.28)

where q2m12(X) corresponds to the qualitative conjunctive consensus.

It is important to note that addition, product and division operators involved in
formulas (8.27) and (8.28) are 2-tuple operators defined in the previous section. These
rules can be easily extended for the qualitative fusion of k > 2 sources of evidence.
The formulas (8.27) and (8.28) are well justified since every 2-tuple (Li, αi) can be
mapped into a unique β numerical value corresponding to it which makes the quali-
tative fusion rules q2DSmC and q2PCR5 equivalent to the corresponding numerical
fusion rules DSmC and PCR5 because of the existence of Δ(.) transformation.

Theorem 1: (Normalization) If
P

A∈GΘ

q2m(A) = (Ln+1, 0),

then
P

A∈GΘ

q2mDSmC(A) = (Ln+1, 0), and
P

A∈GΘ

q2mPCR5(A) = (Ln+1, 0).

Proof : Let’s assume that there is a frame of discernment Θ which includes sev-
eral focal elements. According to DSm model, one defines its hyper-power set
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DΘ, Ai ∈ DΘ, i = {1, 2, · · · , n}. There exist k evidential sources with qualita-
tive belief mass aij , i ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , n}. According to the premise, i.e.
P

A∈GΘ

q2m(A) = (Ln+1, 0), that is,
P

j∈{1,2,...,n}
aij = (Ln+1, 0). According to (8.14)

and the characteristics of Product operator,

Y

i∈{1,2,...,k}

X

j∈{1,2,...,n}
aij =

Y

i∈{1,2,...,k}
(Ln+1, 0) = (Ln+1, 0)

because

q2mDSmC(X) =
X

X1,X2,···Xk∈DΘ

X1∩X2···Xk=X

q2m1(X1)q2m2(X2) · · · q2mk(Xk)

=
Y

i∈{1,2,...,k}

X

j∈{1,2,...,n}
aij = (Ln+1, 0).

Moreover, since qPCR5 redistributes proportionally the partial conflicting mass to
the elements involved in the partial conflict by considering the canonical form of the
partial conflict, the total sum of all qualitative belief mass after redistribution doesn’t
change and therefore it is equal to (Ln+1, 0). This completes the proof.

Similarly, Dempster’s rule (DS) can be extended for dealing with 2-tuple linguistic
labels by taking q2mDS(∅) = (L0, 0) and ∀A ∈ 2Θ \ {∅}

q2mDS(A) =

P

X,Y ∈2Θ

X∩Y =A

q2m1(X)q2m2(Y )

(Ln+1, 0) −
P

X,Y ∈2Θ

X∩Y =∅

q2m1(X)q2m2(Y )
(8.29)

8.4.2 Fusion of imprecise qualitative beliefs

Let’s consider k sources of evidences providing imprecise qualitative belief assign-
ments/masses mij defined on GΘ with |GΘ| = d. We denote by mij central value of
the label provided by the sourc no. i (1 ≤ i ≤ k) for the element Xj ∈ GΘ, 1 ≤ j ≤ d.
For example with qualitative interval-valued beliefs, mij = [mij − εij , mij + εij ] ∈
[(L0, 0), (Ln+1, 0)], where (L0, 0) ≤ εij ≤ Ln+1. More generally, mij can be either an
union of open intervals, or of closed intervals, or of semi-open intervals.

The set of imprecise qualitative belief masses provided by the sources of evidences
can be represented/characterized by the following belief mass matrices with

inf(M) =

2

6

6

4

m11 − ε11 m12 − ε12 · · · m1d − ε1d

m21 − ε21 m22 − ε22 · · · m2d − ε2d

· · · · · · · · · · · ·
mk1 − εk1 mk2 − εk2 · · · mkd − εkd

3

7

7

5
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sup(M) =

2

6

6

4

m11 + ε11 m12 + ε12 · · · m1d + ε1d

m21 + ε21 m22 + ε22 · · · m2d + ε2d

· · · · · · · · · · · ·
mk1 + εk1 mk2 + εk2 · · · mkd + εkd

3

7

7

5

All the previous qualitative fusion rules working with precise 2-tuple labels can
be extended directly for dealing with imprecise 2-tuple labels by replacing precise
operators on 2-tuple labels by their counterparts for imprecise 2-tuple labels as defined
in section 8.5. We just here present the extensions of DSmC, PCR5 and DS rules of
combinations. The extensions of other combination rules (DSmH, Dubois & Prade’s,
Yager’s, etc) can be done easily in a similar way and will not be reported here.

• The DSmC fusion of imprecise qualitative beliefs

The DSm classical rule of combination of k ≥ 2 imprecise qualitative beliefs
is defined for the free DSm model of the frame Θ, i.e. GΘ = DΘ as follows:
q2m

I
DSmC(∅) = (L0, 0) and ∀X ∈ DΘ \ {∅}

q2m
I
DSmC(X) =

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

q2mi(Xi) (8.30)

• The PCR5 fusion of imprecise qualitative beliefs

When working with Shafer’s or DSm hybrid models of the frame Θ, the PCR5
rule of combination of two imprecise qualitative beliefs is defined by: q2m

I
PCR5(∅) =

(L0, 0) and ∀X ∈ GΘ \ {∅}

q2m
I
PCR5(X) = q2m

I
12(X) +

X

Y ∈GΘ\{X}
X∩Y =∅

[
q2m1(X)2q2m2(Y )

q2m1(X) + q2m2(Y )

+
q2m2(X)2q2m1(Y )

q2m2(X) + q2m1(Y )
] (8.31)

where q2m
I
12(X) corresponds to the imprecise qualitative conjunctive consensus

defined by

q2m
I
12(X) =

X

X1,X2∈GΘ

X1∩X2=X

q2m1(X1)q2m2(X2) (8.32)

• Dempster’s fusion of imprecise qualitative beliefs

Dempster’s rule can also be directly extended for dealing with imprecise qual-
itative beliefs by taking q2mDS(∅) = (L0, 0) and ∀A ∈ 2Θ \ {∅}
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q2m
I
DS(A) =

P

X,Y ∈2Θ

X∩Y =A

q2m1(X)q2m2(Y )

(Ln+1, 0) −
P

X,Y ∈2Θ

X∩Y =∅

q2m1(X)q2m2(Y )
(8.33)

Theorem 2: The following equality holds

q2m
I
DSmC(X) = [inf(q2m

I
DSmC(X)), sup(q2m

I
DSmC(X))]

with

inf(q2m
I
DSmC(X)) =

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

inf(q2mi(Xi))

sup(q2m
I
DSmC(X)) =

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

sup(q2mi(Xi))

Proof : Let’s assume inf(q2mi(Xj)) and sup(q2mi(Xj)) (1 ≤ i ≤ k) be represented
by aij ∈ inf(M) and bij ∈ sup(M) with aij ≤ bij (≤ represents here a qualitative
order). For any label cmj ∈ [amj , bmj ], one has

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

aij ≤
X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1,i
=m

aijcmj

and also

X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1,i
=m

aijcmj ≤
X

X1,X2,··· ,Xk∈DΘ

X1∩X2,··· ,∩Xk=X

k
Y

i=1

bij

Therefore, q2m
I
DSmC(X) = [inf(q2m

I
DSmC(X)), sup(q2m

I
DSmC(X))] which com-

pletes the proof. Similarly, q2m
I
PCR5(X) = [inf(q2m

I
PCR5(X)), sup(q2m

I
PCR5(X))].

This theorem shows that we can compute the upper and lower bounds of imprecise
qualitative beliefs by applying the corresponding combination and redistribution rule
directly on the bounds.

8.5 Examples of fusion of qualitative beliefs

All examples from this article could easier be calculated using the DSm Field and
Algebra of Refined Labels.



292 Chapter 8: Fusion of qualitative information . . .

8.5.1 Example of fusion of precise qualitative beliefs

Let’s consider an investment corporation which has to choose one project among three
proposals Θ = {θ1, θ2, θ3} based on two consulting/expert reports. The linguistic
labels used by the experts are among the following ones: I �→ Impossible, EU �→
Extremely-Unlikely, VLC �→ Very-Low-Chance, LLC �→ Little-Low-Chance, SC �→
Small-Chance, IM �→ IT-May, MC �→ Meanful-Chance, LBC �→ Little-Big-Chance,
BC �→ Big-Chance, ML �→ Most-likely, C �→ Certain. So, we consider the following
ordered set L (with |L| = n = 9) of linguistic labels

L � {L0 ≡ I, L1 ≡ EU,L2 ≡ V LC, L3 ≡ LLC, L4 ≡ SC, L5 ≡ IM,

L6 ≡ MC, L7 ≡ LBC, L8 ≡ BC, L9 ≡ ML, L10 ≡ C}

The qualitative belief assignments/masses provided by the sources/experts are
assumed to be given according to Table 8.1.

Source 1 Source 2
θ1 m1(θ1) = (L4, 0.03) m2(θ1) = (L5, 0)
θ2 m1(θ2) = (L3,−0.03) m2(θ2) = (L2, 0.01)
θ3 m1(θ3) = (L3, 0) m2(θ3) = (L3,−0.01)

Table 8.1: Precise qualitative belief assignments given by the sources.

When working with the free DSm model and applying the qualitative DSmC rule
of combination (8.27), we obtain:

q2mDSmC(θ1) = Δ(0.43 × 0.50) = (L2, 0.015)

q2mDSmC(θ2) = Δ(0.27 × 0.21) = (L1,−0.0433)

q2mDSmC(θ3) = Δ(0.30 × 0.29) = (L1,−0.013)

q2mDSmC(θ1 ∩ θ2) = Δ(0.43 × 0.21 + 0.50 × 0.27) = (L2, 0.0253)

q2mDSmC(θ1 ∩ θ3) = Δ(0.43 × 0.29 + 0.50 × 0.30) = (L3,−0.0253)

q2mDSmC(θ2 ∩ θ3) = Δ(0.27 × 0.29 + 0.21 × 0.30) = (L1, 0.0413)

We can verify the validity of the Theorem 1, i.e.
P

A∈DΘ

q2m(A) = (L10, 0), which

proves that is q2mDSmC(.) is normalized.

Now, let’s assume that Shafer’s model holds for Θ. In this case the sets θ1∩θ2,θ1∩
θ3,θ2 ∩ θ3 must be empty and the qualitative conflicting masses q2mDSmC(θ1 ∩ θ2),
q2mDSmC(θ1∩θ3) and q2mDSmC(θ2∩θ3) need to be redistributed to the sets involved
in these conflicts according to (8.28) if the PCR5 fusion rule is used. So, with PCR5
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one gets:

q2mPCR5(θ1) = q2mDSmC(θ1) + q2mxA1(θ1) +

q2mxB1(θ1) + q2mxA2(θ1) + q2mxB2(θ1)

= (L5, 0.03155626126)

q2mPCR5(θ2) = q2mDSmC(θ2) + q2myA1(θ2) +

q2myB1(θ2) + q2mxA3(θ2) + q2mxB3(θ2)

= (L2,−0.00263968798)

q2mPCR5(θ3) = q2mDSmC(θ3) + q2myA2(θ3) +

q2myB2(θ3) + q2myA3(θ3) + q2myB3(θ3)

= (L3,−0.02891657328)

Because q2mPCR5(θ1) is larger than q2mPCR5(θ2) and q2mPCR5(θ3), the invest-
ment corporation will choose the first project to invest.

Now, if we prefer to use the extension of Dempter’s rule of combination given by
the formula (8.33), the total qualitative conflicting mass is qKtotal = q2mDSmC(θ1 ∩
θ2) + q2mDSmC(θ1 ∩ θ3) + q2mDSmC(θ3 ∩ θ2) = (L6, 0.0413), and so we obtain:

q2mDS(∅) � (L0, 0)

q2mDS(θ1) =
q2mDSmC(θ1)

L10 − qKtotal
=

(L2, 0.015)

L10 − (L6, 0.0413)
= (L6,−0.0006133)

q2mDS(θ2) =
q2mDSmC(θ2)

L10 − qKtotal
=

(L1,−0.0433)

L10 − (L6, 0.0413)
= (L2,−0.0419292)

q2mDS(θ3) =
q2mDSmC(θ3)

L10 − qKtotal
=

(L1,−0.013)

L10 − (L6, 0.0413)
= (L2, 0.0425425)

We see that q2mDS(θ1) is larger than q2mDS(θ2) and q2mDS(θ3), so the first
project is also chosen to invest. The final decision is same to the previous one ob-
tained by q2PCR5. However, when the total conflict becomes nearer and nearer to
L10, then q2DS formula will become invalid.

If we adopt the simple arithmetic mean method, the results of the fusion are:

θ1 :
(L4, 0.03) + (L5, 0)

2
= (L5,−0.035)

θ2 :
(L3,−0.03) + (L2, 0.01)

2
= (L2, 0.04)

θ3 :
(L3, 0) + (L3,−0.01)

2
= (L3,−0.005)
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According to the above results, we easily know which project will be chosen to
invest. Though the arithmetic mean is the simplest method among three methods, for
some complex problems, it will provide unsatisfactory results since it is not neutral
with respect to the introduction of a total ignorant source in the fusion process. This
method can also be ill adapted to some particular problems. For example, one also
investigates the possibility of investment in two projects together, i.e. θi ∩ θj �= ∅.
However, the corporation only choose one of them to invest. How to do it in this
case with simple arithmetic mean method? It is more easy to take decision from
q2PCR5(.).

If all qualitative masses involved in the fusion are normalized, no matter what
qualitative fusion rule we use the normalization is kept (i.e. the result will also be a
normalized mass).

8.5.2 Example of fusion of imprecise qualitative beliefs

Let’s consider again the previous example with imprecise qualitative beliefs providse
by the sources according to Table 8.2:

Source 1 Source 2
θ1 m1(θ1) = [(L4, 0.03), (L5, 0.03)] m2(θ1) = [(L5, 0), (L5, 0.04)]
θ2 m1(θ2) = [(L3,−0.03), (L4,−0.03)] m2(θ2) = [(L2, 0.01), (L3,−0.03)]
θ3 m1(θ3) = [(L3, 0), (L4, 0.03)] m2(θ3) = [(L3,−0.01), (L3, 0)]

Table 8.2: Imprecise qualitative belief assignments given by the sources.

If one works with the free DSm model for the frame Θ, one gets from (8.30) and
the theorem 2 the following results:

q2m
I
DSmC(θ1) = [(L2, 0.015), (L3,−0.0138)]

q2m
I
DSmC(θ2) = [(L1,−0.0433), (L1,−0.0001)]

q2m
I
DSmC(θ3) = [(L1,−0.013), (L1, 0.029)]

q2m
I
DSmC(θ1 ∩ θ2) = [(L2, 0.0253), (L3, 0.0429)]

q2m
I
DSmC(θ1 ∩ θ3) = [(L3,−0.0253), (L4,−0.0088)]

q2m
I
DSmC(θ2 ∩ θ3) = [(L1, 0.0413), (L2, 0.0271)]

If one works with Shafer’s model for the frame Θ (i.e. all elements of Θ are
assumed exclusive), then the imprecise qualitative conflicting masses q2m

I
DSmC(θ1 ∩

θ2), q2m
I
DSmC(θ1 ∩ θ3) and q2m

I
DSmC(θ2 ∩ θ3) need to be redistributed to elements

involved in these conflicts if PCR5 is used. In such case and from (8.31) and the
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Theorem 2, one gets:

q2m
I
PCR5(θ1) = [(L5,−0.02036), (L8, 0.01860)]

q2m
I
PCR5(θ2) = [(L2,−0.02909), (L4,−0.0089)]

q2m
I
PCR5(θ3) = [(L3,−0.03308), (L5, 0.01112)]

From the values of q2m
I
PCR5(.), one will choose the project θ1 as final decision. It

is interesting to note that q2DSmC and q2PCR5 can be interpreted as special case
(lower bounds) of qI

2DSmC and qI
2PCR5.

The approach proposed in this work for combining imprecise qualitative beliefs
presents the following properties:

1) If one utilizes the q2-operators on 2-tuples without doing any approximation
in the calculations one gets an exact qualitative result, while working on 1-
tuples we round the qualitative result so we get approximations. Thus addition
and multiplication operators on 2-tuple are truly commutative and associative
contraiwise to addition and multiplication operators on 1-tuples. Actually,
Herrera-Mart́ınez’ representation deals indirectly with exact qualitative (re-
fined) values of the labels. This can be done directly and easier (without
2-tuple representation) from the DSm Field and Linear Algebra of Refined La-
bels (DSm-FLARL) presented in Chapter 2 of this volume. In DSm-FLARL
we get the exact qualitative result.

2) Since the 2-tuples {(L0, σ
h
0 ), . . . , (Ln+1, σ

h
n+1)} express actually continuous qual-

itative beliefs, they are equivalent to real numbers. So all quantitative fusion
rules (and even the belief conditioning rules) can work directly using this quali-
tative framework. The imprecise qualitative DSmC and PCR5 fusion rules can
deal easily and efficiently with imprecise belief structures, which are usually
well adapted in real situations dealing with human reports.

3) The precise qualitative DSmC and PCR5 fusion rules can be seen as special
cases of Imprecise qualitative DSmC and PCR5 fusion rules as shown in our
examples.

8.6 Conclusion

In this chapter, we have proposed a new approach for combining imprecise qualitative
beliefs based on Herrera-Mart́ınez’ 2 -Tuple linguistic labels. This approach allows the
combination of information in the situations where no precise qualitative information
is available. The underlying idea is to work with refined labels expressed as 2-tuples
to keep working on the original set of linguistic labels. We have proposed precise and
imprecise qualitative operators for 2-tuple labels and we have shown through very
simple examples how we can combine precise and/or imprecise qualitative beliefs.
The results obtained by this approach are more precise than those based on 1-tuple
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representation since no rounding approximation is done in operations and all the
information is preserved in the fusion process. An enrichment of 2-tuples representa-
tion model can be done similarly to the enrichment done for 1-tuple representation in
order to take into account the confidence we may commit to each qualitative (precise
or imprecise) 2-tuple label given by the sources. The imprecise qualitative DSmC and
PCR5 fusion rules are the extensions of precise qualitative DSmC and PCR5 fusion
rules.
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