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Abstract: Both DSm and minC rules of combination endeavor to process conflicts

among combined beliefs better. The nature of conflicts as well as their processing

during the belief combination is sketched. An presentation of the minC combination,

an alternative to Dempster’s rule of combination, follows. Working domains, struc-

tures and mechanisms of the DSm and minC combination rules are compared in the

body of this chapter. Finally, some comparative examples are presented.

10.1 Introduction

T
he classical DSm rule of combination, originally presented in [5, 6], has served for combination of

two or several beliefs on the free DSm model. Later, a hybrid DSm combination rule has been

developed to be applicable also on the classical Shafer (or Dempster-Shafer, DS) and the hybrid DSm

model. The present state of the DSm rule is described in Chapter 4, see Equations (4.7)-(4.10).
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224 CHAPTER 10. COMPARISON BETWEEN DSM AND MINC COMBINATION RULES

MinC combination (minimal conflict/minimal contradiction) rule introduced in [2, 4] is an alternative

to the Dempter’s rule of combination on the classical DS model. This rule has been developed for better

handling of conflicting situations, which is a weak point of the classical Dempster rule. A brief description

of the idea of the minC combination is presented in Section 10.3.

Both arguments and results of the DSm rule are beliefs in a DSm model, which admits intersections

of elements of the frame of discernment in general. The minC combination serves for combination of clas-

sical belief functions (BFs) where all intersections of elements (of the frame of discernment) are empty

and their resulting basic belief masses should be 0.

For finer processing of conflicts than the classical normalization in Dempster rule, a system of different

types of conflict (or empty set) is introduced. For representation of intermediate results, generalized BFs

serve on generalized frames of discernment which contains elements of the classical DS frame of discern-

ment and correspondent types of conflict.

Even if the two developed approaches were originally different (disjoint), as well as the paradigms of

both approaches, the intermediate working generalized beliefs of the minC combination are similar to

those in the free DSm model, and the way of combination on the generalized level is analogous to that

in the free DSm model. This surprising fact is the main reason why we compare these two seemingly

incomparable, and originally quite disjoint approaches.

Now, after the development of the DSm combination for any hybrid DSm model, it is, moreover,

possible to compare behavior of both approaches on classical BFs, i.e. in the application domain of the

minC combination.

10.2 Conflict in belief combination

In the DSm combination, which is specially designed for conflicting situations, there are no problems

with conflicts.

The common similar principle for Dempster rule, the minC combination and the DSm combination

rule is that the basic belief assignment/mass (bbm) m1(X), assigned to set X by the first basic belief

assignment (bba) m1, multiplied by bbm m2(Y ), assigned to set Y by the second bba m2, is assigned to

the set X ∩ Y by the resulting bba m12, i.e. m1(X)m2(Y ) is a part of m12(X ∩ Y ).
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This principle works relatively nicely if sets X and Y are not disjoint. There is also no problem for

the DSm rule because X ∩ Y is always an element of DΘ and its positive value is accepted even in the

case of sets X and Y without any common element of Θ.

In Dempster’s rule, disjoint X and Y tend to a conflict situation. All the conflicts are summed up

together and reallocated onto 2Θ by normalization in the classical normalized Dempster’s rule, see [9],

or stored as m(∅) in the non-normalized Dempster’s rule in Transferable Belief Model (TBM) by Smets,

see [10, 11]. It is a fact that in Smets’ approach the normalization is only postponed from the combination

process phase to the decisional one, as the normalization is the first step of computation of the classical

pignistic transformation in TBM. The non-normalized Dempster rule commutes with the normalization,

hence the pignistic probability is always the same in both the cases of normalized and non-normalized

Dempster’s rule.

A weak point of Dempster’s rule — combination of conflicting beliefs is caused by normalization or by

grouping all the conflicts together by the non-normalized version of Dempster’s rule. Therefore, different

types of conflict were introduced and a minC combination rule has been developed for a better handling

of conflicting situations.

10.3 The minC combination

The minC combination (the minimal contradiction/conflict combination) of belief functions was developed

[2, 4] with an effort to find a new associative combination which processes conflicts better than Dempster’s

rule. The classical Shafer model from Dempster-Shafer theory is supposed for both input and resulting

belief functions. The minC combination is a generalization1 of the un-normalized Dempster’s rule. m(∅) is

not considered as an argument for new unknown elements of the frame of discernment, m(∅) is considered

as a conflict2 arising by conjunctive combination. To handle it, a system of different types of conflicts is

considered with respect to sets which produce the conflicts.

10.3.1 A system of different types of conflicts

We distinguish conflicts according to the sets to which the original bbms were assigned by mi. There is

only one type of conflict among the belief functions defined on a binary frame of discernment, hence the

minC combination coincides with the non-normalized conjunctive rule there.

1Note that, on the other hand, the minC combination approach is a special case of an even more general approach of

combination belief functions ’per elements’, see [3]
2The term “contradiction” is used in [2, 4], while we use “conflict” here in order to have a uniform terminology.
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In the case of an n-ary frame of discernment we distinguish different types of conflicts, e.g. {θ1}×{θ2},
{θ1}×{θ2, θ3}, {θ1}×{θ2}×{θ3}, {θi, θj , θk}×{θm, θn, θo} etc. The symbol × serves here for a denotation

of conflicts, it is not used as any new operation on sets. Thus e.g. {θ1}×{θ2, θ3} simply denotes the

conflict between sets {θ1} and {θ2, θ3}.

We assume that products of the conflicting bbms are temporarily assigned (we all the time keep in

mind that Shafer’s constraints should be satisfied) to the corresponding conflicts: e.g. m1({θ1})m2({θ2})
is assigned to the conflict {θ1}×{θ2}. In this way we obtain so called generalized bbas, and generalized

BFs on a generalized frame of discernment given by Θ.

When combining 2 BFs defined on 3D frame Θ = {θ1, θ2, θ3} we obtain the following conflicts as

intersections of disjoint subsets of Θ: {θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}, {θ1, θ2}×{θ3}, {θ1, θ3}×{θ2},
and {θ2, θ3}×{θ1}.

Because we need a classical BF as a result of the combination, we have to reallocate bbms assigned

to conflicts among subsets of Θ after the combination. These bbms are proportionalized, i.e. propor-

tionally distributed, among subsets of Θ corresponding to the conflicts. A few such proportionalizations

are presented in [4]. Unfortunately, all these proportionalizations break required associativity of the

conjunctive combination. To keep the associativity as long as possible we must be able to combine the

generalized belief functions with other BFs and generalized BFs. From this reason other conflicts arise:

e.g. {θ1}×{θ2}×{θ3}, ({θ1, θ2}×{θ1, θ3})× {θ2}×{θ3}, ({θ1, θ2}×{θ3})× ({θ2}×{θ3}), etc.

A very important role for keeping associativity is played by so called partial or potential conflicts 3,

e.g. a partial conflict {θ1, θ2} × {θ2, θ3} which is not a conflict in the case of combination of two beliefs

{θ1, θ2}∩ {θ2, θ3} = {θ2}, but it can cause a conflict in a later combination with another belief, e.g. pure

or real conflict 4 {θ1, θ2}×{θ2, θ3}×{θ1, θ3} because there is {θ1, θ2}∩{θ2, θ3}∩{θ1, θ3} = ∅, in Shafer’s

model.

In order not to have an infinite number of different conflicts, the conflicts are divided into classes of

equivalence ∼ which are called types of conflicts, e.g. {θ1}×{θ2} ∼ {θ2}×{θ1} ∼ {θ1}×{θ2}×{θ2}×{θ2}×
{θ1}×{θ1}×{θ1}, etc. The minC combination works with these classes of equality (types of conflict)

instead of the set of all different conflicts. For more details see [4].

3Potential contradictions in the original terminology of [2, 4]
4A real contradiction in [2, 4].
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The conflicts are considered ”per elements” in the following way: conflict {θ1, θ2}×{θ3} is considered

as a set of elementary conflicts {{θ1}×{θ3}, {θ2}×{θ3}}, i.e. set of conflicts between/among single-

tons. Analogically, potential conflict {θ1, θ2} × {θ2, θ3} is considered as a set of elementary conflicts

{{θ1}×{θ2}, {θ1}×{θ3}, {θ2}, {θ2}×{θ3}}, where {θ2} ∼ {θ2}×{θ2} is so called trivial conflict5, i.e. no

conflict in fact. Note that any partial conflict contains at least one trivial conflict. The set of elementary

conflicts is constructed similarly to the Cartesian product of conflicting sets, where {θ1}×{θ2}× ...×{θk}
is used instead on n-tuple [θ1, θ2, ..., θk]. As the above equivalence ∼ of elementary conflicts is used, we

have elementary conflicts of different n-arity in the same set, thus we do not use n-tuples as it is usual in

the Cartesian product. The idea of ”conflicts per elements” was generalized also for non-conflicting sets

in the ”combination per elements”, see [3].

For further decreasing of the number of types of conflicts we consider only minimal conflicts in the

following sense: {θ1}×{θ2}, {θ3}, are minimal conflicts of the set {{θ1}×{θ2}, {θ3}, {θ1}×{θ2}×{θ3},
{θ1}×{θ2}×{θ4}×{θ5}, {θ1}×{θ3}×{θ5}}; i.e. the set of singletons contained in a minimal conflict is mini-

mal from the point of view of inclusion among all sets of singletons corresponding to elementary conflicts.

Thus {{θ1}×{θ2}, {θ3}} ∼ {{θ1}×{θ2}, {θ3}, {θ1}×{θ2}×{θ3}, {θ1}×{θ2}×{θ4}×{θ5}, {θ1}×{θ3}×{θ5}}.
Our concentration only to minimal conflicts brings us a simplification, which is closer to Shafer’s model,

and it has no influence on associativity of combination.

In this way we obtain 8 types of conflicts ({θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}, {θ1}×{θ2}×{θ3}, {{θ1}×
{θ2}, {θ1}×{θ3}}, {{θ1}×{θ2}, {θ2}×{θ3}}, {{θ1}×{θ3}, {θ2}×{θ3}}, {{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}})
and 3 types of potential conflicts ({{θ1}, {θ2}×{θ3}}, {{θ2}, {θ1}×{θ3}}, {{θ3}, {θ1}×{θ2}}) in a

3D case Θ = {θ1, θ2, θ3}. Together with 7 non-conflicting subsets of Θ we have 18 sets of conflicts to

which nonnegative bbms can be assigned in the 3D case, or 18 elements of a generalized 3D frame of

discernment.

10.3.2 Combination on generalized frames of discernment

As minC combination has a nature of a conjunctive rule of combination, m1(X)m2(Y ) is assigned to

X ∩ Y , if it is non-empty, or to X×Y otherwise. More precisely the least representative of the type of

conflict of X×Y is considered instead of X×Y . It is unique but an order of elementary conflicts and

an order of elements inside elementary conflicts. A fixation of these orders enables a unique selection of

representatives of ∼ classes of conflicts. A complete 18x18 table of minC combination for 3D is presented

in [2, 4]. We include here only an illustrative part of it, see Table 10.1. The resulting value m0(Z) of the

generalized bba is computed as a sum of all m1(X)m2(Y ) for which the field of the complete table in the

5A trivial contradiction.
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row corresponding to X and column corresponding to Y contains Z. In other words, generalized m0(Z)

is computed as a sum of all m1(X)m2(Y ) for which Z = X ∩ Y if (X ⊆ Y ) ∨ (Y ⊆ X) or Z ∼ X×Y
otherwise, where ∼ is the equivalence of conflicts from the previous subsection (Z and X×Y are in the

same ∼ class of conflicts.); i.e.

m0(Z) =
∑

Z=X∩Y
X⊆Y ∨Y⊆X

m1(X)m2(Y ) +
∑

Z∼X×Y
X*Y&Y*X

m1(X)m2(Y ). (10.1)

In order to decrease the size of the table below, the following abbreviations are used in this table:

A stands for {A}, similarly AB stands for {A,B}, and ABC stands for {A,B,C}, A × B stands for

{A} × {B}, similarly A × BC stands for {A} × {B,C}, × stands for {A} × {B} × {C}, 2A stands for

2{A}, and 2 stands for {A,B} × {A,C} × {B,C}, and similarly.

A B AB ABC A×B A×BC × 2 2A

A A A×B A A A×B A×BC × A×BC A

B A×B B B B A×B A×B × B ×AC B ×AC

C A× C B × C C ×AB C × A× C × C ×AB C ×AB

BC A×BC B 2B BC A×B A×BC × 2 2

AC A B ×AC 2A AC A×B A×BC × 2 2A

AB A B AB AB A×B A×BC × 2 2A

ABC A B AB ABC A×B A×BC × 2 2A

A×B A×B A×B A×B A×B A×B A×B × A×B A×B

A× C A× C × A× C A× C × × × A× C A× C

B × C × B × C B × C B × C × A× C × B × C B × C

A×BC A×BC A×B A×BC A× BC A×B A×BC × A×BC A×BC

B ×AC A×B B ×AC B ×AC B ×AC A×B A×B × B ×AC B ×AC

C ×AB A× C B × C C ×AB C × AB × A× C × C ×AB C ×AB

× × × × × × × × × ×

2 A×BC B ×AC 2 2 A×B A×BC × 2 2

2A A B ×AC 2A 2A A×B A×BC × 2 2A

2B A×BC B 2B 2B A×B A×BC × 2 2

2C A×BC B ×AC 2 2C A×B A×BC × 2 2

Table 10.1: A partial table of combination of 2 generalized BFs on Θ = {A,B,C}.

The minC combination is commutative and associative on generalized BFs. It overcomes some dis-

advantages of both Dempster’s rules (normalized and un-normalized). This theoretically nice combining

rule has however a computational complexity rapidly increasing with the size of the frame of discernment.



10.3. THE MINC COMBINATION 229

10.3.3 Reallocation of belief masses of conflicts

Due to the belief masses being assigned also to types of conflicts and partial conflicts, the result of the

minC combination is a generalized belief function even if it is applied to classical BFs. To obtain a

classical belief function on Shafer’s model we have to do the following two steps: we first reassign the

bbms of partial conflicts to their non contradictive elements and then we proportionalize bbms of pure

(real) conflicts. Because of a different nature of pure and partial conflicts, also these two steps of bbms

reallocation are different.

10.3.3.1 Reallocation of gbbms of partial conflicts

Gbbms of partial conflicts (potential contradictions) are simply reassigned to the sets of their trivial

conflicts, i.e. to the sets of their non-contradictive elements (e.g. m0({θi, θj} × {θi, θk}) is reallocated to

{θi}). We denote resulting gbba of this step with m1 to distinguish it from gbba m0 on the completely

generalized level. Thus we obtain m1({θi, θj} × {θi, θk}) = 0 and m1({θi}) is a sum of all m0(X), where

{θi} is maximal nonconflicting part of X . Nothing is performed with gbbms of pure conflicts in this step,

hence m1(Y ) = m0(Y ) for any pure conflict Y .

10.3.3.2 Proportionalization of gbbms of pure conflicts

Let us present two ways how to accomplish a proportionalization of gbbms which has been assigned by

m0 to pure (real) conflicts . The basic belief mass of a conflict X × Y between two subsets of Θ can be

proportionalized, i.e. reallocated according to the proportions of the corresponding non-conflicting bbms:

a) among X,Y , and X∪Y as originally designed for so called proportionalized combination rule in [1].

b) among all nonempty subsets of X ∪ Y . This way combines the original idea of proportionalization

with the consideration of conflict ”per elements”.

For a conflict X of several subsets of a frame of discernment X1, X2, ..., Xk ⊂ Θ, e.g. for {θ1}×{θ2}×{θ3}
and 2 ∼ {{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}} ∼ {θ1, θ2}×{θ1, θ3}×{θ2, θ3} in 3D and further conflicts

from nD case, we have to generalize the above description of proportionalization in the following way.

The bbm of contradiction X = X1 ×X2 × ...×Xk can be proportionalized:

a) among all unions
⋃j
i=1Xi of j ≤ k sets Xi from {X1, X2, ..., Xk}.

b) among all nonempty subsets of X1 ∪X2 ∪ ... ∪Xk.

For an explicit expression, the conflicts of the subsets of 3D Θ = {θ1, θ2, θ3} should be proportionalized

among, see Table 10.2. The bbms of conflicts in the first column should be proportionalized by the

proportionalization ad a) among sets in the second column and by the proportionalization ad b) among

the sets in the third column.
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If gbbms m1(Xi) = 0 for all Xi then we divide the proportionalized gbbm m1(X1 × X2 × ... ×
Xk) by number of the sets among them the gbbm should be proportionalized, i.e. by 2k − 1 in the

proportionalization a) and by 2m − 1, where m = |X1 ∪X2 ∪ ... ∪Xk| in the case b).

Type of conflict Proportionalization ad a) Proportionalization ad b)

{θ1}×{θ2} {θ1}, {θ2}, {θ1, θ2} {θ1}, {θ2}, {θ1, θ2}

{θ1}×{θ2, θ3} {θ1}, {θ2, θ3}, {θ1, θ2, θ3} P({θ1, θ2, θ3})− ∅

{θ1, θ2}×{θ1, θ3}×{θ2, θ3} {θ1, θ2}, {θ1, θ3}, {θ2, θ3}, {θ1, θ2, θ3} P({θ1, θ2, θ3})− ∅

{θ1}×{θ2}×{θ3} P({θ1, θ2, θ3})− ∅ P({θ1, θ2, θ3})− ∅

Table 10.2: Proportionalizations on a 3D frame of discernment

A proportionalization of the types of the conflicts from the Table is the same even if {θ1, θ2, θ3} ( Θ.

Hence we can see from the Table that the proportionalization is something like ’local normalization’ on the

power set of Θ′ ( Θ in the case b) or on a subset of such power set. E. g. m1({θ1}×{θ2,θ3}) is proportional-

ized with proportionalization a) among {θ1}, {θ2, θ3}, {θ1, θ2, θ3} so that m1({θ1})
m1({θ1})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned to {θ1}, m1({θ2,θ3})
m1({θ1})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned to

{θ2, θ3}, and m1({θ1,θ2,θ3})
m1({θ1})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned to {θ1, θ2, θ3}. Analogically

m1({θ2,θ3})
m1({θ1})+m1({θ2})+m1({θ3})+m1({θ1,θ2})+m1({θ1,θ3})+m1({θ2,θ3})+m1({θ1,θ2,θ3})

m1({θ1}×{θ2,θ3}) is assigned

to {θ2, θ3} with proportionalization b), and similarly for other subsets of {θ1, θ2, θ3}. For single elemen-

tary conflicts both the proportionalizations coincide, see e.g. the 1st and the 4th rows of the Table 10.2.

Specially there is the only proportionalization in the 2D case because, there is the only conflict and it

is an elementary one. This proportionalization actually coincides with the classical normalization, see

examples in Section 10.5.

Let us remember that neither the reallocation of gbbms of partial conflicts nor the proportionalization

does not keep associativity of minC combination of the generalized level. Hence we have always to keep in

the consideration and to save the generalized version of the result to be prepared for a later combination

with another belief.

10.3.4 Summary of the idea of the minC combination

We can summarize the process of the minC combination of n ≥ beliefs as follows:

1. we apply (n− 1) times the generalized version of minC, to compute gbba m0, see formula (10.1);

2. after we once apply a reallocation of gbbms of the partial conflicts to produce gbba m1 and finally

we once apply the proportionalization a) or b) to obtain the final bbm m. If we want to keep as
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much as possible of associativity for future combining, we have to remember also the gbbm m0 and

continue further combination (if there is any) from it.

10.4 Comparison

10.4.1 Comparison of generalized frames of discernment

As has been already mentioned in the introduction of this chapter, DSm and minC rules of combination

arise from completely different assumptions and ideas. On the other hand, 18 different subsets of a frame

of discernment and types of conflicts and potential conflicts (7+8+3) in 3D case or 18 elements of a

generalized 3D frame of discernment correspond to 18 non empty elements of hyper-power set DΘ in the

free DSm model. Moreover, if we rewrite subsets of the frame of discernment, e.g. {θi, θj , θk}, and sets of

elementary conflicts as unions of their elements, e.g. {θi, θj , θk} ∼ θi∪θj∪θk, and conflicts as intersections,

e.g. {θi}×{θj} ∼ θi∩θj , {θi, θj}×{θi, θk} ∼ (θi∪θj)∩(θi∪θk), {{θi}×{θj}, {θj}×{θk}, {θi}×{θj}×{θk}} ∼
(θi ∩ θj) ∪ (θj ∩ θk) ∪ (θi ∩ θj ∩ θk), then we obtain the following:

{θ1} ∼ θ1 = α9

{θ2} ∼ θ2 = α10

{θ3} ∼ θ3 = α11

{θ1, θ2} ∼ θ1 ∪ θ2 = α15

{θ1, θ3} ∼ θ1 ∪ θ3 = α16

{θ2, θ3} ∼ θ2 ∪ θ3 = α17

{θ1, θ2, θ3} ∼ θ1 ∪ θ2 ∪ θ3 = α18

{θ1}×{θ2} ∼ θ1 ∩ θ2 = α2

{θ1}×{θ3} ∼ θ1 ∩ θ3 = α3

{θ2}×{θ3} ∼ θ2 ∩ θ3 = α4

{θ1}×{θ2, θ3} = {{θ1}×{θ2}, {θ1}×{θ3}} ∼ θ1 ∩ (θ2 ∪ θ3) = α7

{θ2}×{θ1, θ3} = {{θ1}×{θ2}, {θ2}×{θ3}} ∼ θ2 ∩ (θ1 ∪ θ3) = α6

{θ3}×{θ1, θ2} = {{θ3}×{θ1}, {θ3}×{θ2}} ∼ θ3 ∩ (θ1 ∪ θ2) = α5

{θ1}×{θ2}×{θ3} ∼ θ1 ∩ θ2 ∩ θ3 = α1

{{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}} ∼ (θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ1 ∩ θ3) = α8

2θ1 = {{θ1}, {θ2}×{θ3}} ∼ θ1 ∪ (θ2 ∩ θ3) = α14

2θ2 = {{θ2}, {θ1}×{θ3}} ∼ θ2 ∪ (θ1 ∩ θ3) = α13

2θ3 = {{θ3}, {θ1}×{θ2}} ∼ θ3 ∪ (θ1 ∩ θ2) = α12.

Thus a generalized frame of discernment from the minC approach uniquely corresponds to DΘ − ∅.
Hence the minC approach is an alternative way how to generate Dedekind’s lattice.
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10.4.2 Comparison of principles of combination

For bbms of two non-conflicting sets X,Y ⊂ Θ both the minC and the DSm rules assign the product of

the belief masses to the intersection of the sets6. If one of the sets (or both of them) is (are) conflicting,

then the minC combination assigns the product of their bbms to the conflict X × Y . Similarly as above,

we can consider this conflict as an intersection X∩Y . We should verify whether X∩Y really corresponds

to the corresponding field of the minC combination table.

As first example, let’s denote by definition A1 , {θ1, θ3} × ({θ3} × {θ1, θ2}), then one has

A1 ∼ (θ1 ∪ θ3) ∩ (θ3 ∩ (θ1 ∪ θ2)) = (θ1 ∩ (θ3 ∩ (θ1 ∪ θ2))) ∪ (θ3 ∩ (θ3 ∩ (θ1 ∪ θ2)))

= (θ3 ∩ (θ1 ∩ (θ1 ∪ θ2))) ∪ (θ3 ∩ (θ1 ∪ θ2)) = (θ3 ∩ θ1) ∪ (θ3 ∩ (θ1 ∪ θ2)) = (θ3 ∩ (θ1 ∪ θ2))

∼ {θ3} × {θ1, θ2}

As second example, let’s denote A2 , ({θ1}×{θ2}×{θ3})×{{θ1}×{θ2}, {θ1}×{θ3}, {θ2}×{θ3}}, then

one has

A2 ∼ (θ1 ∩ θ2 ∩ θ3)× ((θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3))

∼ (θ1 ∩ θ2 ∩ θ3) ∩ ((θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3))

= θ1 ∩ θ2 ∩ θ3 ∩ ((θ1 ∩ θ2) ∪ (θ1 ∩ θ3) ∪ (θ2 ∩ θ3)) = (θ1 ∩ θ2 ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3)

= θ1 ∩ θ2 ∩ θ3 ∼ {θ1} × {θ2} × {θ3}

As third example, let’s denote A3 , 2{θ1} × (θ1 × {θ2, θ3}), then one has

A3 = {{θ1}, {θ2 × θ3}} × (θ1 × {θ2, θ3})

∼ (θ1 ∪ (θ2 ∩ θ3)) ∩ (θ1 ∩ (θ2 ∪ θ3)) = (θ1 ∪ (θ2 ∩ θ3)) ∩ (θ1 ∩ (θ2 ∪ θ3))

= (θ1 ∩ (θ1 ∩ (θ2 ∪ θ3))) ∪ ((θ2 ∩ θ3)) ∩ (θ1 ∩ (θ2 ∪ θ3))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ ((θ2 ∩ θ3) ∩ (θ1 ∩ (θ2 ∪ θ3)))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ ((θ2 ∩ θ3 ∩ θ1 ∩ θ2) ∪ (θ2 ∩ θ3 ∩ θ1 ∩ θ3))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ ((θ1 ∩ θ2 ∩ θ3) ∪ (θ1 ∩ θ2 ∩ θ3))

= (θ1 ∩ (θ2 ∪ θ3)) ∪ (θ1 ∩ θ2 ∩ θ3) = (θ1 ∩ (θ2 ∪ θ3)) ∼ (θ1 × {θ2, θ3})

6We have to mention here that the minC combination rule has never been formulated as a k-ary operator for combination

of k ≥ 2 belief sources, analogically to the DSm combination rule, see Equations (4.2) and (4.5). Nevertheless, it is

theoretically very easy to explicitly formulate it similarly to the DSm rule for k sources. Moreover, because of its associativity

on the generalized level we can obtain the same result by step-wise ((k−1)-times) application of the binary form, and continue

with reallocation of bbms of conflicts as is usual.
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In the case of {θ1, θ3}×{θ1, θ2} ∼ (θ1∪θ3)×(θ1∪θ2) ∼ (θ1∪θ3)∩(θ1∪θ2) = (θ1∩(θ1∪θ2)∪(θ3∩(θ1∪θ2) =

(θ1∩θ1∪θ1∩θ2)∪(θ3∩θ1∪θ3∩θ2) = (θ1)∪(θ3∩θ1)∪(θ3∩θ2) = (θ1)∪(θ3∩θ2) ∼ {{θ1}, {θ2×θ3}} ∼ 2{θ1}
we can show again that minC combination of bbms of sets {θ1, θ3}, {θ1, θ2} corresponds to the intersec-

tion of the corresponding elements of DΘ: (θ1 ∪ θ3) and (θ1 ∪ θ2), i.e. to θ1 ∪ (θ3 ∩ θ2). Moreover,

this shows a rise and the importance of a partial conflict (or potential contradiction) between two

sets with non-empty intersection {θ1, θ3} ∩ {θ1, θ2} = {θ1} in Shafer’s model. This intersection {θ1}
which is used in Dempster’s rule, is different from the generalized minC and the free DSm intersection

{θ1, θ3} ∩ {θ1, θ2} ∼ (θ1 ∪ θ3) ∩ (θ1 ∪ θ2) = (θ1) ∪ (θ3 ∩ θ2) ∼ 2{θ1} on the generalized level.

Analogically we can verify that all the fields in the complete minC combination table uniquely cor-

respond to intersections of corresponding sets. For a general nD case it is possible to verify that the

similarity relation ∼ on conflicts corresponds with properties of the lattice {Θ,∩,∪}. Thus the minC

combination equation (10.1) corresponds with the classical DSm combination equation (4.1).

Hence the minC combination7 on a generalized level fully corresponds to the DSm combination rule

on a free DSm model.

10.4.3 Two steps of combination

Because minC is not designed for the DSm model but for the classical Shafer’s model, we have to compare

it in the context of the special Shaferian case of the hybrid DSm rule. According to the present develop-

ment state of the hybrid DSm rule, see Chapter 4, in the first step all the combination is done on the free

DSm model — it is fully equivalent to the generalized minC combination — and in the second step con-

straints are introduced. The second step is analogous to the reallocation in the minC approach. It does

not explicitly distinguish anything like partial conflicts and pure conflicts, but analogically to the minC

combination, bbms are reallocated in two different ways. An introduction of constraints can joint two or

more elements of DΘ, e.g. see Example 4 in Chapter 4, where the element α9 is joined with the element

α14, and the elements α10, and α11 are joined with α13 and α12 respectively. Gbbms of such elements

are actually reallocated within this process. Really, the gbbms mMf (α9), mMf (α10), and mMf (α11)

are reallocated to mM0(α14), mM0(α13) and mM0(α12) respectively, as an analogy of the reallocation of

partial conflicts in the minC approach. We can verify that the elements α9, α10, α11 really correspond

to the partial conflicts of the minC approach. The step 2 consists further in grouping of all empty sets

together and in the reallocation of their bbms. This action fully corresponds to a proportionalization of

pure conflicts in the minC approach.

7For a comparison of the minC combination with other approaches for combination of conflicting beliefs, see [8].
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Hence, the only principal difference between the minC and the DSm combination rules consists in

reallocation of the bbms of conflicting (or empty) sets to non-conflicting (non-empty) ones, i.e. to the

subsets of the frame of discernment, because the reallocation performed in the 2nd step of the hybrid

DSm combination does not correspond to any of the above proportionalizations used in minC either.

10.4.4 On the associativity of the combination rules

As it was already mentioned both the DSm rule and the minC combination rule are fully associative on

the generalized level, i.e. on the free DSm model in DSm terminology. Steps 2 in both the combina-

tions, i.e. the introduction of constraints in DSm combination and the reallocation of conflicts including

both the proportionalizations, do not keep associativity. If we use results of combination with all the con-

straints as an input for another combination, we obtain suboptimal results, see Section 4.5.5 in Chapter 4.

In order to keep as much associativity of the combination on the generalized level as possible, we have

to use n-ary version of DSm rule. In the case where k input beliefs have been already combined, we have

to save all the k input belief functions. If we want to combine the previous result with the new (k+ 1)th

input mk+1, then we have either to repeat all the n-ary combination for k + 1 inputs this time, or we

can use the free DSm result of the previous combination (the result of the last application of the Step 1)

and apply the binary Step 1 to combine the new input (we obtain the same result as with an application

of n-ary version for k + 1 inputs). Nevertheless, after it we have to apply n-ary version of the Step 2 for

introduction of all constraints at the end.

There is another situation in the case of the minC combination. Because we consider only minimal

conflicts, the result of the Step 2 depends only on the generalized result m0 of the Step 1 and we need

not the input belief functions for the reallocation of partial conflicts and for the proportionalization. The

non-normalized combination rule including the generalized one, provides the same result either if n-ary

version is used for k inputs or if step-wise k− 1 times the binary version is applied. Hence binary version

of the generalized minC combination and unary reallocation satisfy for the optimal results in the sense

of Chapter 4. If we already have k inputs combined, it is enough to save and store only the generalized

result instead of all inputs. We perform the generalized combination with the input mk+1 after. And in

the end we perform Step 2 for obtaining classical Shaferian result. Of course it is also possible to store

all the inputs and to make a new combination, analogically, to the DSm approach.

10.4.5 The special cases

Specially in the 2D case minC corresponds to Dempster’s rule — there is only one type of conflict and

both the presented proportionalizations a) and b) coincide with normalization there. While the 2D DSm
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corresponds to Yager’s rule, see [12], where m1(X)m2(Y ) is assigned to X ∩ Y if it is non-empty or to Θ

for X ∩ Y = ∅, and it also coincides with Dubois-Prade’s rule, see [7], where m1(X)m2(Y ) is assigned to

X ∩ Y if it is non-empty or to X ∪ Y otherwise. To complete the 2D comparison, it is necessary to add

that the classical DSm combination rule for the 2D free DSm model corresponds to the non-normalized

Dempster’s rule used in TBM. For examples see Table 10.3 in Section10.5.

In an nD case for n > 2 neither the minC nor DSm rule correspond to any version of Dempster’s or

Yager’s rules. On the other hand the binary version of the hybrid DSm rule coincides with Dubois-Prade’s

rule on Shafer’s model, for an example see Table 10.6 in Section10.5.

10.4.6 Comparison of expressivity of DSm and minC approaches

As the minC combination is designed for combination of classical belief functions on frames of discern-

ment with exclusive elements, we cannot explicitly express that 2 elements of frame have a non-empty

intersection. The only way for it is a generalized result of combination of 2 classical BFs. On the other

hand, even if the hyper-power set DΘ has more elements than the number of parts in the corresponding

Venn’s diagram, we cannot assign belief mass to θ1 but not to θ2 in DSm approach. I. e. we cannot

assign bbms in such a way that for generalized pignistic probability, see Chapter 7, the following holds:

P (θ1) > 0 and P (θ2) = 0. The intersection θ1 ∩ θ2 is always a subset both of θ1 and θ2. Hence from

m(θ1) > 0 we always obtain P (θ1 ∩ θ2) > 0 and P (θ2) > 0. We cannot assign any gbbm to θ1 − θ2. The

only way how to do it is to add an additional constraint θ1 ∩ θ2 = ∅, but such a constraint should be

applied to all beliefs in the model and not only to one or several specific ones. As Shafer’s model has

already all the exclusivity constraints, the above described property is not related to it. Hence both the

DSm approach and the minC combination have the comparable expressivity on Shafer’s model. The DSm

approach utilizes, in addition to it, its capability to express positive belief masses of the intersections.

10.5 Examples

In this section we present a comparison on examples of combination. The first 2D example simply

compares not only the DSm and minC combination rules but also both the normalized and non-normalized

Dempster’s rule, Yager’s rule, and Dubois-Prade’s rule of belief combination, see Table 10.3. Because the

proportionalizations a) and b) coincide in the 2D case, and subsequently the corresponding bbas m
a)
12 and

m
b)
12 also coincide, we use mminC for m

a)
12 ≡ m

b)
12. This example enables us to make a wide comparison,

but it does not really discover a nature of the presented approaches to the belief combination. For

this reason we present also a more complicated 3D example, see Tables 10.4 and 10.5, which show us



236 CHAPTER 10. COMPARISON BETWEEN DSM AND MINC COMBINATION RULES

how conflicts and partial conflicts arise during combination, how constraints are introduced, and how

proportionalizations are performed.

m1 m2 mMf

12 mM0

12 m0
12 mminC

12 mTBM
12 mY

12 mDP
12 m⊕

12

θ1 ∼ {θ1} 0.6 0.2 0.48 0.48 0.48 0.6000 0.48 0.48 0.48 0.6000

θ2 ∼ {θ2} 0.1 0.3 0.17 0.17 0.17 0.2125 0.17 0.17 0.17 0.2125

θ1 ∪ θ2 ∼ {θ1, θ2} 0.3 0.5 0.15 0.35 0.15 0.1875 0.15 0.35 0.35 0.1875

θ1 ∩ θ2 ∼ {θ1}×{θ2} ∼ ∅ 0.20 0.20 0.20

Table 10.3: Comparison of combination of 2D belief functions

Table 10.4 provides a comparison of combination of 3D belief functions based on the free DSm model

with the classic DSm rule and on Shafer’s model with the hybrid DSm rule. The 5th column (mMf

12 )

gives the result of the combination of the sources 1 and 2 obtained with the classic DSm rule based on

the free DSm model. The 7th column (mMf

123 ) gives the result of the combination of the sources 1, 2 and

3 obtained with the classic DSm rule based also on the free DSm model. Column 6 (mM0

12 ) presents the

result of the hybrid DSm combination of sources 1 and 2 based on Shafer’s modelM0. Column 8 (mM0

123 )

presents the result of the hybrid DSm combination of sources 1, 2 and 3 based on Shafer’s model M0.

Column 9 and 10 shows the results obtained when performing suboptimal fusion. D© stands for the DSm

rule on the free DSm model and blank fields stand for 0.

Table 10.5 presents the results drawn from the minC combination rule. m0 corresponds to the gbba on

the generalized frame of discernment, m1 to the gbba after reallocation of bbms of partial conflicts, ma)

to the bba after proportionalization a) and mb) to the bba after proportionalization b). m0
12b3 denotes

(m
b)
12

m©m3)0, and m12b3 denotes (m
b)
12

m©m3)b), where m© stands for the generalized minC combination,

blank fields stand for 0.

Table 10.6 presents the results of several rules of combination for 3D belief functions for sources 1 and 2

on Shafer’s model, i.e. on the hybrid DSm modelM0 (for the source bbas m1,m2, and m3 see Table 10.4).

ma) corresponds to the bba of the minC combination (the minC combination of m1 and m2 or m1,m2

and m3 respectively) with proportionalization a); mb) corresponds to the bba of the minC combination

with proportionalization b); mM0

corresponds to the bba of the DSm combination. mTBM corresponds

to the bba of the combination with the TBM’s non-normalized Demspter’s rule; mY corresponds to the

bba of the Yager’s combination; mDB corresponds to the bba of Dubois-Prade’s combination and m⊕

corresponds to the bba of the normalized Dempster’s combination.
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m1 m2 m3 mMf

12 mM0

12 mMf

123 mM0

123 (mM0

12 D©m3)
Mf

(mM0

12 D©m3)
M0

α9 ∼ {θ1} 0.3 0.1 0.2 0.19 0.20 0.165 0.188 0.216 0.258

α10 ∼ {θ2} 0.2 0.1 0.1 0.15 0.17 0.090 0.109 0.119 0.145

α11 ∼ {θ3} 0.1 0.2 0.1 0.14 0.16 0.088 0.110 0.119 0.150

α15 ∼ {θ1, θ2} 0.1 0.0 0.2 0.03 0.08 0.021 0.056 0.058 0.112

α16 ∼ {θ1, θ3} 0.1 0.1 0.2 0.06 0.13 0.030 0.082 0.073 0.125

α17 ∼ {θ2, θ3} 0.0 0.2 0.1 0.04 0.09 0.014 0.039 0.035 0.068

α18 ∼ {θ1, θ2, θ3} 0.2 0.3 0.1 0.06 0.17 0.006 0.416 0.017 0.142

α2 ∼ {θ1}×{θ2} 0.05 0.106 0.054

α3 ∼ {θ1}×{θ3} 0.07 0.120 0.052

α4 ∼ {θ2}×{θ3} 0.05 0.074 0.033

α7 ∼{θ1}×{θ2, θ3} 0.06 0.083 0.038

α6 ∼{θ2}×{θ1, θ3} 0.03 0.060 0.047

α5 ∼{θ3}×{θ1, θ2} 0.02 0.048 0.040

α1 ∼ × 0.022

α8 ∼ 2 0.009

α14 ∼ 2θ1 0.01 0.023 0.042

α13 ∼ 2θ2 0.02 0.019 0.026

α12 ∼ 2θ3 0.02 0.022 0.031

Table 10.4: Comparison of combination of 3D belief functions based on DSm rules of combination.

We can see that during the combination of 2 belief functions a lot of types of conflict arise, but some

of them still remain with 0 bbm (α1 ∼ × and α8 ∼ 2). We can see how these conflicts arise when the

3rd BF is combined. We can see the difference between the combination of 3 BFs on the generalized

level (see m0
123) and the suboptimal combination of the 3rd belief with an intermediate result to which

constraints have already been introduced (see (mDSm
12 D©m3)0 and (m

b)
12

m©m3)0). We can see how the

gbbms are reallocated among the subsets of Θ during the second step of minC combination and finally

how the gbbms of all pure conflicts are reallocated in both ways a) and b).

The final results of DSm and minC combinations are compared in Table 10.6. We can note that

the small subsets of Θ (singletons in our 3D example) have greater bbms after the minC combination

while the great sets (2-element sets and namely whole {θ1, θ2, θ3} in our case) have greater bbms after

application of the DSm combination rule. I. e. the DSm combining rule is more cautious than the minC

combination within the reallocation of the conflicting gbbms. Thus we see that the minC combination
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m0
12 m1

12 m
a)
12 m

b)
12 m0

123 m1
123 m

a)
123 m

b)
123 m0

12b3 m12b3

α9 ∼ {θ1} 0.19 0.20 0.2983 0.2889 0.165 0.165 0.4031 0.4068 0.2396 0.4113

α10 ∼ {θ2} 0.15 0.17 0.2318 0.2402 0.090 0.090 0.2301 0.2306 0.1360 0.2319

α11 ∼ {θ3} 0.14 0.16 0.2311 0.2327 0.088 0.088 0.2288 0.2363 0.1364 0.2372

α15 ∼ {θ1, θ2} 0.03 0.03 0.0362 0.0383 0.021 0.021 0.0390 0.0377 0.0253 0.0354

α16 ∼ {θ1, θ3} 0.06 0.06 0.0762 0.0792 0.030 0.030 0.0586 0.0549 0.0376 0.0522

α17 ∼ {θ2, θ3} 0.04 0.04 0.0534 0.0515 0.014 0.014 0.0264 0.0249 0.0172 0.0236

α18 ∼ {θ1, θ2, θ3} 0.06 0.06 0.0830 0.0692 0.006 0.006 0.0140 0.0088 0.0069 0.0084

α2 ∼ {θ1}×{θ2} 0.05 0.05 0.106 0.106 0.0769

α3 ∼ {θ1}×{θ3} 0.07 0.07 0.120 0.120 0.0754

α4 ∼ {θ2}×{θ3} 0.05 0.05 0.074 0.074 0.0473

α7 ∼{θ1}×{θ2, θ3} 0.06 0.06 0.083 0.083 0.0392

α6 ∼{θ2}×{θ1, θ3} 0.03 0.03 0.060 0.060 0.0560

α5 ∼{θ3}×{θ1, θ2} 0.02 0.02 0.048 0.048 0.0504

α1 ∼ × 0.022 0.022

α8 ∼ 2 0.009 0.009

α14 ∼ 2θ1 0.01 0.023 0.0235

α13 ∼ 2θ2 0.02 0.019 0.0141

α12 ∼ 2θ3 0.02 0.022 0.0182

Table 10.5: Comparison of combination of 3D belief functions with the minC rule.

rule produces more specified results than the DSm rule does. The last three columns of the table show

us that the DSm and the minC with both the proportionalizations produce results different from those

of Yager’s rule and of both the versions of Dempster’s rule (see mY , mTMB , and m⊕ respectively).

While binary DSm result on Shafer’s model (M0) coincides with the results of Dubois-Prade’s rule of

combination.

Let us present numeric examples of parts of computation m0, m1, ma), and mb) for readers which

are interested in detail. We begin with a non-conflicting set {θ1, θ2}, i.e. with α15 = θ1 ∪ θ2 in the DSm

notation. It is an intersection with itself or with the whole Θ = {θ1, θ2, θ3} (i.e. θ1∪θ2∪θ3 in DSm), and

it is not ∼ equivalent to any other element of DΘ. Thus m0
12(θ1 ∪θ2) = m1(θ1 ∪θ2)m2(θ1 ∪θ2) +m1(θ1 ∪

θ2)m2(θ1∪θ2∪θ3)+m1(θ1∪θ2∪θ3)m2(θ1∪θ2) = 0.1·0.0+0.1·0.3+0.0·0.2 = 0.00+0.03+0.00 = 0.03. α15

is a non-conflicting element of DΘ, hence it is not further reassigned or proportionalized, i. e. its bbm will

not be decreased. α15 is not a non-conflicting part of any other element of DΘ, thus m1
12(α15) = m0

12(α15).



10.5. EXAMPLES 239

mM0

12 m
a)
12 m

b)
12 mM0

123 m
a)
123 m

b)
123 mTBM

12 mY
12 mDP

12 m⊕
12

α9 ∼ {θ1} 0.20 0.2983 0.2889 0.188 0.4031 0.4068 0.20 0.20 0.20 0.2778

α10 ∼ {θ2} 0.17 0.2318 0.2402 0.109 0.2301 0.2306 0.17 0.17 0.17 0.2361

α11 ∼ {θ3} 0.16 0.2311 0.2327 0.110 0.2288 0.2363 0.16 0.16 0.16 0.2222

α15 ∼ {θ1, θ2} 0.08 0.0362 0.0383 0.056 0.0390 0.0377 0.04 0.04 0.08 0.0556

α16 ∼ {θ1, θ3} 0.13 0.0762 0.0792 0.082 0.0586 0.0549 0.06 0.06 0.13 0.0833

α17 ∼ {θ2, θ3} 0.09 0.0534 0.0515 0.039 0.0264 0.0249 0.03 0.03 0.09 0.0417

α18 ∼{θ1, θ2, θ3} 0.17 0.0830 0.6992 0.416 0.0140 0.0088 0.06 0.34 0.17 0.0833

∅ 0.28

Table 10.6: Comparison of combinations of sources 1 and 2 on Shafer’s model (i.e. on the hybrid DSm

model M0).

m
a)
12(α15) > m1

12(α15) because gbbms of some other elements are proportionalized, among others, also to

α15. For the same reason it holds also m
b)
12(α15) > m1

12(α15).

A potential conflict 2{θ1} ∼ (θ1 ∪ θ2)∩ (θ1 ∪ θ3) = α14 is equivalent to 2{θ1}×2{θ1}, to 2{θ1}×X ,

and to X × 2{θ1}, where {θ1} ⊂ X in Shafer’s model, see Table 10.1; or α14 = (θ1 ∪ θ2) ∩ (θ1 ∪ θ3)

is an intersection of itself with X , where α14 ⊆ X ⊆ θ1 ∪ θ2 ∪ θ3 in the DSm terminology. I.e.

m0
12(α14) = m0(θ1 ∩ (θ2 ∪ θ3)) = m1(α14)m2(α14) + m1(θ1 ∪ θ2)m2(θ1 ∪ θ3) +m1(θ1 ∪ θ3)m2(θ1 ∪ θ2) +

m1(α14)(m2(θ1∪θ2)+m2(θ1∪θ3)+m2(θ1∪θ2∪θ3))+(m1(θ1∪θ2)+m1(θ1∪θ3)+m1(θ1∪θ2∪θ3))m2(α14) =

0.0·0.0+0.1·0.1+0.1·0.0+0.0·(0.1+0.1+0.2)+(0.0+0.1+0.3)·0.0 = 0+0.01+0+0+0 = 0.01. α9 = {θ1}
is a non-conflicting part of θ1∩(θ2∪θ3), thus m0(α14) is reallocated to θ1. On the other hand {θ1} is not a

non-conflicting part of any other element of DΘ, hence m1(α9) = m0(α9)+m0(α14) = 0.19+0.01 = 0.20.

After this reallocation, the bbm of α14 equals 0, hence m1(α14) = ma)(α14) = mb)(α14) = 0.

A pure conflict {θ1}×{θ2, θ3} ∼ θ1∩ (θ2 ∪θ3) = α7 is contained in 24 fields of the full minC combina-

tion table (for its part see Table 10.1), e. g. in the fields corresponding to {A}× ({A}× {B,C}), {A}×
{B,C}, {A,B} × ({A} × {B,C}), but only some of them correspond to the Shaferian input beliefs (i.

e. only some of them are positive). Thus m1(α7) = m0(α7) = m1(θ1)m2(θ2 ∪ θ3) +m1(θ2 ∪ θ3)m2(θ1) =

0.3 · 0.2 + 0.1 · 0.0 = 0.06 + 0.00 = 0.06. As α7 is a pure conflict, thus its bbm is not changing dur-

ing the reallocation substep, and it is proportionalized among {θ1}, {θ2, θ3}, {θ1, θ2, θ3} with the pro-

portionalization a), and among all the subsets of Θ = {θ1, θ2, θ3} with the proportionalization b).

Thus m1(α7) · m1(θ1)
m1(θ1)+m1(θ2∪θ3)+m1(θ1∪θ2∪θ3)

= 0.06 0.20
0.20+0.04+0.06 = 0.06 0.20

0.30 = 0.040 is reassigned to

θ1 = α9; m1(α7) · m1(θ2∪θ3)
m1(θ1)+m1(θ2∪θ3)+m1(θ1∪θ2∪θ3)

= 0.06 0.04
0.20+0.04+0.06 = 0.06 0.04

0.30 = 0.008 is reassigned
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to θ2 ∪ θ3 = α17; and m1(α7) · m1(θ1∪θ2∪θ3)
m1(θ1)+m1(θ2∪θ3)+m1(θ1∪θ2∪θ3)

= 0.06 0.06
0.20+0.04+0.06 = 0.06 0.06

0.30 = 0.012 is

reassigned to θ1 ∪ θ2 ∪ θ3 = α18 with the proportionalization a). As belief masses 0.05 0.20
0.20+0.17+0.03 =

0.05 · 0.5 = 0.0250 and 0.07 0.20
0.20+0.16+0.06 = 0.07 · 0.4762 = 0.0333 are analogically proportionalized with

the proportionalization a) also to θ1, so we obtain m
a)
12(θ1) = m1(θ1) + 0.040 + 0.0250 + 0.0333 =

0.2000 + 0.040 + 0.0250 + 0.0333 = 0.2983. A value m
b)
12(θ1) is computed analogically; where e.g.

0.06 0.20
0.20+0.17+0.16+0.03+0.06+0.04+0.06 = 0.06 0.20

0.72 = 0.06 ·0.2777 = 0.0166 is proportionalized from m1(α7).

10.6 Conclusion

In this chapter we have compared two independently developed approaches to combination of conflicting

beliefs. Motivations and the starting points of the approaches are significantly different. The classical

frame of discernment with mutually exclusive elements is the starting point for the minC combination,

whereas the free DSm model is the starting point for the classical DSm approach. The approaches were

originally rather complementary than comparable.

Surprisingly, the internal combining structures and mechanisms of both these combination rules are

the same and the results of the classical DSm rule for the free DSm model are the same as the intermediate

results of the minC combination on a generalized frame of discernment. Nevertheless, this common step

is followed by reallocation of the belief masses temporarily assigned to conflicts to obtain classical belief

functions as results in the case of the minC combination.

After the recent development of versions of the DSm rule for Shafer’s model and for general hybrid

DSm models, which consider 2 steps of combination, the minC combination becomes an alternative to

the special case of the DSm combination rule for Shafer’s model.

The first step — a combination on a generalized frame — is the same again. Also a reallocation of

the generalized basic belief masses of potential conflicts is analogous. The main difference consists in

different reallocations of the generalized basic belief masses (gbbm) of pure conflicts: it is a reassigning

of the gbbms to the union of the corresponding sets in the DSm rule, whereas a proportionalization in

the minC approach.

In spite of this difference, we can also consider the DSm introduction of constraints as an alternative

to a reallocation of the belief masses of conflicts in the minC approach.
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