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Abstract: This chapter presents an approach for target behavior tendency es-

timation (Receding, Approaching). It is developed on the principles of Dezert-

Smarandache theory (DSmT) of plausible and paradoxical reasoning applied to con-

ventional sonar amplitude measurements, which serve as an evidence for correspond-

ing decision-making procedures. In some real world situations it is difficult to finalize

these procedures, because of discrepancies in measurements interpretation. In these

cases the decision-making process leads to conflicts, which cannot be resolved using

the well-known methods. The aim of the performed study is to present and to ap-

prove the ability of DSmT to finalize successfully the decision-making process and to

assure awareness about the tendencies of target behavior in case of discrepancies in

measurements interpretation. An example is provided to illustrate the benefit of the

proposed approach application in comparison of fuzzy logic approach, and its ability

to improve the overall tracking performance.

This chapter is based on a paper [7] presented during the International Conference on Information Fusion, Fusion 2003,

Cairns, Australia, in July 2003 and is reproduced here with permission of the International Society of Information Fusion.
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13.1 Introduction

A
ngle-only tracking systems based on sonars are poorly developed topic due to a number of complica-

tions. These systems tend to be less precise than those based on active sensors, but one important

advantage is their vitality of being stealth. In a single sensor case only direction of the target as an

axis is known, but the true target position and behavior (approaching or descending) remain unknown.

Recently, the advances of computer technology lead to sophisticated data processing methods, which

improve sonars capability. A number of developed tracking techniques operating on angle-only measure-

ment data use additional information. In our case we utilize the measured emitter’s amplitude values in

consecutive time moments. This information can be used to assess tendencies in target’s behavior and,

consequently, to improve the overall angle-only tracking performance. The aim of the performed study

is to present and to approve the ability of DSmT to finalize successfully the decision-making process

and to assure awareness about the tendencies of target behavior in case of discrepancies of angle-only

measurements interpretation. Results are presented and compared with the respective results, but drawn

from the fuzzy logic approach.

13.2 Statement of the Problem

In order to track targets using angle-only measurements it is necessary to compensate the unknown ranges

by using additional information received from the emitter. In our case we suppose that in parallel with

measured local angle the observed target emits constant signal, which is perceived by the sensor with

a non-constant, but a varying strength (referred as amplitude). The augmented measurement vector at

the end of each time interval k = 1, 2, . . . is Z = {Zθ, ZA}, where: Zθ = θ + νθ denotes the measured

local angle with zero-mean Gaussian noise νθ = N (0, σνθ
) and covariance σνθ

; ZA = A + νA denotes

corresponding signal’s amplitude value with zero-mean Gaussian noise νA = N (0, σνA
) and covariance

σνA
. The variance of amplitude value is because of the cluttered environment and the varying unknown

distance to the object, which is conditioned by possible different modes of target behavior (approaching

or descending). Our goal is, utilizing received amplitude feature measurement, to predict and to estimate

the possible target behavior tendencies.

Figure 13.1 represents a block diagram of the target’s behavior tracking system. Regarding to the

formulated problem, we maintain two single-model-based Kalman-like filters running in parallel using two

models of possible target behavior - Approaching and Receding. At initial time moment k the target is

characterized by the fuzzified amplitude state estimates according to the models AApp(k|k) and ARec(k|k).

The new observation ZA(k + 1) = A(k + 1) + νA(k + 1) is assumed to be the true value, corrupted by

additive measurement noise. It is fuzzified according to the chosen fuzzification interface.
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Figure 13.1: Block diagram of target’s behavior tracking system

The tendency prediction approach is based on Zadeh compositional rule. The updating procedure uses

Dezert-Smarandache classical combination rule based on the free DSm model to estimate target behavior

states. Dezert-Smarandache Theory assures a particular framework where the frame of discernment is

exhaustive but not necessarily exclusive and it deals successfully with rational, uncertain or paradoxical

data. In general this diagram resembles the commonly used approaches in standard tracking systems [1, 2],

but the peculiarity consists in the implemented particular approaches in the realizations of the main steps.

13.3 Approach for Behavior Tendency Estimation

There are a few particular basic components in the block diagram of target’s behavior tracking system.

13.3.1 The fuzzification interface

A decisive variable in our task is the transmitted from the emitter amplitude value A(k), received at

consecutive time moments k = 1, 2, . . .. We use the fuzzification interface (fig. 13.2), that maps it into

two fuzzy sets defining two linguistic values in the frame of discernment Θ = {S , Small, B , Big}.
Their membership functions are not arbitrarily chosen, but rely on the inverse proportion dependency

between the measured amplitude value and corresponding distance to target.



292 CHAPTER 13. ESTIMATION OF TARGET BEHAVIOR TENDENCIES USING DSMT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fuzzification Interface

Amplitude=f(Distance to Target)

Am
pl

itu
de

 M
em

be
rs

hi
p 

Fu
nc

tio
n Small

Small&Big

Big

Figure 13.2: Fuzzification Interface

The length of fuzzy sets’ bases provide design parameter that we calibrate for satisfactory performance.

These functions are tuned in conformity with the particular dependency A ≈ f(1/δD) known as a

priori information The degree of overlap between adjacent fuzzy sets reflects amplitude gradients in the

boundary points of specified distance intervals.

13.3.2 The behavior model

In conformity with our task, fuzzy rules’ definition is consistent with the tracking of amplitude changes

tendency in consecutive time moments k = 1, 2, . . .. With regard to this a particular feature is that

considered fuzzy rules have one and the same antecedents and consequents. We define their meaning by

using the prespecified in paragraph linguistic terms and associated membership functions (according to

paragraph 13.3.1). We consider two essential models of possible target behavior:

Approaching Target - it’s behavior is characterized as a stable process of gradually amplitude

value increasing, i.e. the transition S → S → B → B is held in a timely manner;

Receding Target - it’s behavior is characterized as a stable process of gradually amplitude value

decreasing, i.e. the transition B → B → S → S is held in a timely manner.

To comprise appropriately these models the following rule bases have to be carried out:

Behavior Model 1: Approaching Target:

Rule 1: IF A(k) = S THEN A(k + 1) = S

Rule 2: IF A(k) = S THEN A(k + 1) = B

Rule 3: IF A(k) = B THEN A(k + 1) = B
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Behavior Model 2: Receding Target:

Rule 1: IF A(k) = B THEN A(k + 1) = B

Rule 2: IF A(k) = B THEN A(k + 1) = S

Rule 3: IF A(k) = S THEN A(k + 1) = S

The inference schemes for these particular fuzzy models are conditioned on the cornerstone principle

of each modeling process. It is proven [4], that minimum and product inferences are the most widely

used in engineering applications, because they preserve cause and effect. The models are derived as fuzzy

graphs:

g = max
i

(µAi×Bi
(u, v)) = max

i
(µAi

(u) · µBi
(v)) (13.1)

in which µAi×Bi
(u, v) = µAi

(u) · µBi
(v) corresponds to the Larsen product operator for the fuzzy con-

junction, g = maxi(µAi×Bi
) is the maximum for fuzzy union operator and

µB′(y) = max
xi

(min(µA′(xi), µA×B(xi, yi)))

is the Zadeh max-min operator for the composition rule.

The fuzzy graphs related to the two models are obtained in conformity with the above described

mathematical interpretations, by using the specified membership functions for linguistic terms Small,

Big, and taking for completeness into account all possible terms in the hyper-power set DΘ = {S,B, S ∩
B,S ∪B}:

k → k + 1 S S ∩B B S ∪B

S 1 0 1 0

S ∩B 0 0 0 0

B 0.2 0 1 0

S ∪B 0 0 0 0

Relation 1: Approaching Target

k → k + 1 S S ∩B B S ∪B

S 1 0 0.2 0

S ∩B 0 0 0 0

B 1 0 1 0

S ∪B 0 0 0 0

Relation 2: Receding Target
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13.3.3 The amplitude state prediction

At initial time moment k the target is characterized by the fuzzified amplitude state estimates according

to the models µAApp(k|k) and µARec(k|k). Using these fuzzy sets and applying the Zadeh max-min com-

positional rule [4] to relation 1 and relation 2, we obtain models’ conditioned amplitude state predictions

for time k+ 1, i.e. µAApp(k+ 1|k) is given by max(min(µAApp(k|k), µApp(k → k+ 1))) and µARec(k+ 1|k)

by max(min(µARec(k|k), µRec(k → k + 1))).

13.3.4 State updating using DSmT

The classical DSm combinational rule is used here for state updating. This procedure is realized on

the base of fusion between predicted states according to the considered models (Approaching, Receding)

and the new measurement. Since DΘ is closed under ∪ and ∩ operators, to obey the requirements to

guarantee that m(.) : DΘ 7→ [0, 1] is a proper general information granule, it is necessarily to transform

fuzzy membership functions representing the predicted state and new measurement into mass functions. It

is realized through their normalization with respect to the unity interval. Models’ conditioned amplitude

state prediction vector µ
App/Rec
pred (.) is obtained in the form:

[µ
A/R
pred(S), µ

A/R
pred(S ∩B), µ

A/R
pred(B), µ

A/R
pred(S ∪B)] (13.2)

In general the terms, contained in µ
App/Rec
pred represent the possibilities that the predicted amplitude

behavior belongs to the elements of hyper-power set DΘ and there is no requirement to sum up to unity.

In order to use the classical DSm combinational rule, it is necessary to make normalization over µ
App/Rec
pred

to obtain respective generalized basic belief assigments (gbba) ∀C ∈ DΘ = {S, S ∩B,B, S ∪B}:

m
App/Rec
pred (C) =

µ
App/Rec
pred (C)

∑

A∈DΘ µ
App/Rec
pred (A)

(13.3)

The equivalent normalization has to be made for the received new measurement before being fused

with the DSm rule of combination.

Example

Let’s consider at scan 3 the predicted vector for the model Approaching µ
App/Rec
pred (4|3) with components

µ(S) = 0.6, µ(S ∩ B) = 0.15, µ(B) = 0.05 and µ(S ∪ B) = 0.0, then the normalization constant is

K = 0.6 + 0.15 + 0.05 + 0.0 = 0.8 and after normalization, one gets the resulting gbba

m
App/Rec
pred (S) =

0.6

K
= 0.75 m

App/Rec
pred (S ∩B) =

0.15

K
= 0.1875

m
App/Rec
pred (B) =

0.05

K
= 0.0625 m

App/Rec
pred (S ∪B) =

0.0

K
= 0.0
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That way one can obtain m
App/Rec
pred (.) as a general (normalized) information granule for the prediction

of the target’s behavior.

The target behavior estimate m
App/Rec
upd (.) at measurement time is then obtained from m

App/Rec
pred (.)

and the amplitude belief assignment mmes(B) (built from the normalization of the new fuzzyfied crisp

amplitude measurement received) by the DSm rule of combination, i.e.

m
App/Rec
upd (C) = [m

App/Rec
pred ⊕mmes](C) =

∑

A,B∈DΘ,A∩B=C

m
App/Rec
pred (A)mmes(B) (13.4)

Since in contrast to the DST, DSmT uses a frame of discernment, which is exhaustive, but in general

case not exclusive (as it is in our case for Θ = {S,B}), we are able to take into account and to utilize

the paradoxical information S ∩ B although being not precisely defined. This information relates to the

case, when the moving target resides in an overlapping intermediate region, when it is hard to predict

properly the tendency in its behavior. Thus the conflict management, modeled that way contributes to

a better understanding of the target motion and to assure awareness about the behavior tendencies in

such cases.

13.4 The decision criterion

It is possible to build for each model M = (A)pproaching, (R)eceding a subjective probability measure

PM
upd(.) from the bba mM

upd(.) with the generalized pignistic transformation (GPT) [3, 6] defined ∀A ∈ DΘ

by

PM
upd{A} =

∑

C∈DΘ|A∩C 6=∅

CMf (C ∩A)

CMf (C)
mM

upd(C) (13.5)

where CMf (X) denotes the DSm cardinal of proposition X for the free DSm model Mf of the problem

under consideration here. The decision criterion for the estimation of correct model M is then based on

the evolution of the Pignistic entropies, associated with updated amplitude states:

HM
pig(P

M
upd) , −

∑

A∈V

PM
upd{A} ln(PM

upd{A}) (13.6)

where V denotes the parts of the Venn diagram of the free DSm model Mf . The estimation M̂(k) of

correct model at time k is given by the most informative model corresponding to the smallest value of

the pignistic entropy between HA
pig(PA

upd) and HR
pig(P

R
upd).

13.5 Simulation study

A non-real time simulation scenario is developed for a single target trajectory (fig.13.3) in plane coor-

dinates X ,Y and for constant velocity movement. The tracker is located at position (0km, 0km). The
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target’s starting point and velocities are: (x0 = 5km, y0 = 10km), with following velocities during the

two part of the trajectory (ẋ = 100m/s, ẏ = 100m/s) and (ẋ = −100m/s, ẏ = −100m/s).
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Figure 13.3: Target trajectory.
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Figure 13.4: Measurements statistics.

The time sampling rate is T = 10s. The dynamics of target movement is modeled by equations:

x(k) = x(k − 1) + ẋT and y(k) = y(k − 1) + ẏT

The amplitude value ZA(k) = A(k) + νA(k) measured by sonar is a random Gaussian distributed process

with mean A(k) = 1/D(k) and covariance σA(k) (fig. 13.4). D(k) =
√

x2(k) + y2(k) is the distance to

the target, (x(k), y(k)) is the corresponding vector of coordinates, and νA(k) is the measurement noise.

Each amplitude value (true one and the corresponding noisy one) received at each scan is processed

according to the block diagram (figure 13.1).
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Figure 13.5: Behavior tendencies (Noise-free measurements).
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Figure 13.6: Behavior Tendencies (Noisy measurements).

Figures 13.5 and 13.6 show the results obtained during the whole motion of the observed target.

Figure 13.5 represents the case when the measurements are without noise, i.e. Z(k) = A(k). Figure 13.6

represents the case when measured amplitude values are corrupted by noise. In general the presented

graphics show the estimated tendencies in target behavior, which are described via the scan consecutive

transitions of the estimated amplitude states.

Figure 13.7 represents the evolution of pignistic entropies associated with updated amplitude states

for the Approaching and Receding models in case of noisy measurements; the figure for the noise-free

measurement is similar. It illustrates the decision criterion used to choose the correct model. If one takes

a look at the figure 13.5 and figure 13.7, it can be seen that between scans 1st and 15th the target motion
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is supported by Approaching model, because that mode corresponds to the minimum entropies values,

which means that it is the more informative one.
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Figure 13.7: Evolution of the pignistic entropy for updated states.

The Approaching model is dominant, because the measured amplitude values during these scans stable

reside in the state Big, as it is obvious from the fuzzification interface (fig.13.2). In the same time, Reced-

ing model supports the overlapping region S ∩B, which is transition towards the state Small. Between

scans 16th and 90th the Receding model becomes dominant since the variations of amplitude changes

are minimal and their amplitude values stable support the state Small. During these scans Approaching

model has a small reaction to the measurement statistics, keeping paradoxical state S ∩ B.What it is

interesting and important to note is that between scans 16th and 30th the difference of entropies between

Approaching and Receding models increases, a fact, that makes us to be increasingly sure that the Re-

ceding mode is becoming dominant. Then, between scans 75th and 90th the difference of these entropies

is decreasing, which means that we are less and less sure, that Receding model remain still dominant.

After switching scan 91th the Approaching model becomes dominant one, until scan 100th. In general the

reaction of the considered models to the changes of target motion is not immediate, because the whole

behavior estimation procedure deals with vague propositions Small, Big, and sequences of amplitude

values at consecutive scans often reside stable in one and the same states.

Comparing the results in figure 13.6 with the results in figure 13.5, it is evident, that although some

disorder in the estimated behavior tendencies, one can make approximately correct decision due to the

possibility of DSmT to deal with conflicts and that way to contribute for a better understanding of target

behavior and evaluation of the threat.
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13.6 Comparison between DSm and Fuzzy Logic Approaches

The objective of this section is to compare the results received by using DSm theory and respective

results but drawn from the Fuzzy Logic Approach (FLA) [4, 8, 9], applied on the same simulation sce-

nario. The main differences between the two approaches consist in the domain of considered working

propositions and in the updating procedure as well. In present work, we use DSm combination rule to

fuse the predicted state and the new measurement to obtain the estimated behavior states, while in the

fuzzy approach state estimates are obtained through a fuzzy set intersection between these entities. It

is evident from the results, shown in figures 13.8 and 13.9, that here we deal with only two proposi-

tions Θ = {Small,Big}. There is no way to examine the behavior tendencies in the overlapping region,

keeping into considerations every one of possible target’s movements: from S∩B to B or from S∩B to S.
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Figure 13.8: Behavior Tendencies drawn from FLA (NoisyFree Measurements).
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Figure 13.8 shows the noise-free measurement case. It could be seen that between scan 10 and 90 target

motion is supported by the correct for that case Receding model, while Approaching one has no reaction

at all. If we compare corresponding figure 13.5 (DSm case) and present figure 13.8, we can see, that in

the case of DSm approach Receding model reacts more adequately to the true target tendency , because

there is a possibility to deal with the real situation – the tendency of the target to make a movement

from B to the overlapping region B ∩ S. In the FLA case there is no such opportunity and because of

that between scan 1st and 10th Receding model has no reaction to the real target movement towards the

B ∩ S. Figure 13.9 represents the case when the measured amplitude values are corrupted by noise. It

is difficult to make proper decision about the behavior tendency, especially after scan 90th., because it

is obvious, that here the model Approaching coincide with the model Receding. In order to reduce the

influence of measurement noise over tendency estimation, an additional noise reduction procedure has

to be applied to make the measurements more informative. Its application improves the overall process

of behavior estimation. Taking in mind all the results drawn from DSmT and FLA application, we can

make the following considerations:

• DSmT and FLA deal with a frame of discernment, based in general on imprecise/vague notions

and concepts Θ = {S,B}. But DSmT allows us to deal also with uncertain and/or paradoxical

data, operating on the hyper-power set DΘ = {S, S ∩ B,B, S ∪ B}. In our particular application

it gives us an opportunity for flexible tracking the changes of possible target behavior during the

overlapping region S ∩B.

• DSmT based behavior estimates can be characterized as a noise resistant, while FLA uses an

additional noise reduction procedure to produce ‘smoothed’ behavior estimates.

13.7 Conclusions

An approach for estimating the tendency of target behavior was proposed. It is based on Dezert-

Smarandache theory applied to conventional sonar measurements. It was evaluated using computer

simulation. The provided example illustrates the benefits of DSm approach in comparison of fuzzy logic

one. Dealing simultaneously with uncertain and paradoxical data, an opportunity for flexible and ro-

bust reasoning is realized, overcoming the described limitations relative to the fuzzy logic approach.

It is presented and approved the ability of DSmT to ensure reasonable and successful decision-making

procedure about the tendencies of target behavior in case of discrepancies of angle-only measurements

interpretation. The proposed approach yields confident picture for complex and ill-defined engineering

problems.
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