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A note on the Smarandache cyclic geometric
determinant sequences

A. A. K. Majumdar

APU, 1–1 Jumonjibaru, Beppu-shi 875–8577, Oita-ken, Japan
E-mail: majumdar@apu.ac.jp/aakmajumdar@gmail.com

Abstract This paper gives an alternative approach to find the determinant of the right

circular matrix with geometric sequence, using the known results of the circulant matrix.

Keywords circulant matrix, right circulant matrix with geometric sequence.

§1. Introduction

In a recent paper, Bueno[1] has introduced the concept of the right circulant geometric
matrix with geometric sequence, defined as follows:

Definition 1.1. A right circulant matrix (of order n) with geometric sequence, denoted
by RCIRC(n), is a matrix of the form

RCIRC(n) =



1 r r2 · · · rn−2 rn−1

rn−1 1 r · · · rn−3 rn−2

rn−2 rn−1 1 · · · rn−4 rn−3

...
...

...
. . .

...
...

r2 r3 r4
... 1 r

r r2 r3
... rn−1 1




.

Using the elementary properties of matrices and determinants, Bueno[1] has found an
explicit form of the associated determinant.

In this paper, we follow an alternative approach to derive the determinant of the matrix
RCIRC(n). This is given in Section 3. Some preliminary results are given in Section 2.

§2. Some preliminary results

In this section, we give some well-known results that would be needed later in proving the
main results of this paper in Section 3. We start with the following definition.

Definition 2.1. The circulant matrix with the vector C = (c0, c1, . . . , cn−1), denoted
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by Cn, is the matrix of the form

C(n) =



c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3

...
...

...
. . .

...
...

c2 c3 c4

... c0 c1

c1 c2 c3

... cn−1 c0




.

Lemma 2.1. For any n ( ≥ 2),

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3

...
...

...
. . .

...
...

c2 c3 c4 · · · c0 c1

c1 c2 c3

... cn−1 c0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
n−1∏
j = 0

(c0 + c1 ωj + c2 ω2
j + ... + cn−1 ωn−1

j ),

where ω0 ≡ 0, ωj = e
2πi
n j(1 ≤ j ≤ n – 1) are the nth roots of unity.

§3. Main result

We now give the main result of this paper in the following theorem.
Lemma 3.1. For n ≥ 1, det(RCIRC(n)) = (1 – rn)n−1.
Proof. From Lemma 2.1 with cj = rj (0 ≤ j ≤ n – 1), we see that

det(RCIRC(n)) =
n−1∏

j = 0

( 1 + rωj + r2 ω2
j + ... + rn−1 ωn−1

j ).

But, for any j with 0 ≤ j ≤ n – 1,

1 + rωj + r2 ω2
j + ... + rn−1 ωn−1

j =
1 − (rωj)n

1 − rωj
=

1 − rn

1 − rωj
. (1)

Again, since
xn – 1 = (x – ω0)(x – ω1)(x – ω2) . . . (x – ωn − 1),

for x = 1
r , we get

1 − rn

rn
=

(1 − rω0)(1 − rω1)(1 − rω2)...(1 − rωn−1)
rn

,

so that
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(1 – ω0)(1 – ω1)(1 – ω2) . . . (1 – ωn − 1) = 1 – rn. (2)

The lemma now follows by virtue of (1) and (2).
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On the Smarandache LCM ratio

A. A. K. Majumdar1

Mathematics Department, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
E-mail: majumdar@apu.ac.jp/aakmajumdar@gmail.com

Abstract Two types of the Smarandache LCM ratio functions have been introduced by

Murthy [1]. Recently, the second type of the Smarandache LCM ratio function has been

considered by Khainar, Vyawahare and Salunke [2]. This paper establishes the relationships

between these two forms of the Smarandache LCM ratio functions, and derives some reduction

formulas and interesting properties in connection with these functions.

Keywords Smarandache LCM ratio functions (of two kinds), reduction formulas.

§1. Introduction

The Smarandache LCM ratio function, proposed by Murthy [1], is as follows :
Definition 1.1. The Smarandache LCM ratio function of degree r, denoted by T (n, r),

is
T (n, r) =

[n, n + 1, n + 2, · · · , n + r − 1]
[1, 2, 3, · · · , r]

, n, r ∈ N,

where [n1, n2, · · · , nk] denotes the least common multiple (LCM) of the integers n1, n2, · · · , nk.
The explicit expressions for T (n, 1) and T (n, 2) are already mentioned in Murthy [1], and

are reproduced in the following two lemmas.
Lemma 1.1. T (n, 1) = n for all n ≥ 1.

Lemma 1.2. For n ≥ 1, T (n, 2) = n(n+1)
2 .

The following two lemmas, due to Maohua [3], give explicit expressions for T (n, 3) and
T (n, 4) respectively.

Lemma 1.3. For n ≥ 1,

T (n, 3) =





n(n+1)(n+2)
6 , if n is odd

n(n+1)(n+2)
12 , if n is even

Lemma 1.4. For n ≥ 1,

T (n, 4) =





n(n+1)(n+2)(n+3)
72 , if 3 divides n

n(n+1)(n+2)(n+3)
24 , if 3 does not divide n

Finally, the expression for T (n, 5) is given by Wang Ting [4].
1On ADL from: Ritsumeikan Asia-Pacific University, Japan.
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Lemma 1.5. For n ≥ 1,

T (n, 5) =





n(n+1)(n+2)(n+3)(n+4)
1440 , if n = 12m, 12m + 8

n(n+1)(n+2)(n+3)(n+4)
120 , if n = 12m + 1, 12m + 7

n(n+1)(n+2)(n+3)(n+4)
720 , if n = 12m + 2, 12m + 6

n(n+1)(n+2)(n+3)(n+4)
360 , if n = 12m + 3, 12m + 5, 12m + 9, 12m + 11

n(n+1)(n+2)(n+3)(n+4)
480 , if n = 12m + 4

n(n+1)(n+2)(n+3)(n+4)
240 , if n = 12m + 10

Recently, Khairnar, Vyawahare and Salunke [2] treated the Smarandache LCM ratio func-
tion, defined as follows :

Definition 1.2. The Smarandache LCM ratio function, denoted by SL(n, r), is

SL(n, r) = [n, n-1, n-2, ..., n-r+1]
[1, 2, 3, ..., r] , r ≤ n; n, r∈ N .

The function SL(n, r), given in Definition 1.2 above, may be called the Smarandache LCM
ratio function of the second type.

In Section 2, we derive the relationships between the two functions T (n, r) and SL(n, r),
and hence, derive the reduction formulas for SL(n, 3), SL(n, 4) and SL(n, 5), using the known
expressions for T (n, 3), T (n, 4) and T (n, 5). Some more properties, together with some open
problems involving these functions, are given in Section 3.

§2. Reduction formulas

The following lemma gives the relationship between T (n, r) and SL(n, r).
Lemma 2.1. SL(n, r) = T (n− r + 1, r).
Proof. This is evident from Definition 1.1 and Definition 1.2.
Note that, in Lemma 2.1 above, the condition n−r+1 ≥ 1 requires that SL(n, r) is defined

only for r ≤ n.
The explicit expressions for the functions SL(n, 1), SL(n, 2), SL(n, 3) and SL(n, 4) are

given in Theorems 2.1 - 2.4 below.
Theorem 2.1. For any n ≥ 1, SL(n, 1) = n.

Theorem 2.2. For any n ≥ 2, SL(n, 2) = n(n-1)
2 .

Proof. By Lemma 1.2 and Lemma 2.1,

SL(n, 2) = T(n - 1, 2) = (n-1)n
2 .

Theorem 2.3. For any n ≥ 3,

SL(n, 3) =





n(n-1)(n-2)
6 , if n is odd

n(n-1)(n-2)
12 , if n is even
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Proof. Using Lemma 1.3, together with Lemma 2.1,

SL(n, 3) = T (n− 2, 3) =





(n-2)(n-1)n
6 , if n− 2 is odd

(n-2)(n-1)n
12 , if n− 2 is even

Now, since n is odd or even according as n−2 is odd or even respectively, the result follows.
Theorem 2.4. For any n ≥ 4,

SL(n, 4) =





n(n-1)(n-2)(n-3)
72 , if 3 divides n

n(n-1)(n-2)(n-3)
24 , if 3 does not divide n

Proof. By Lemma 1.4 and Lemma 2.1,

SL(n, 4) = T (n− 3, 4) =





(n-3)(n-2)(n-1)n
72 , if 3 divides n− 3

(n-3)(n-2)(n-1)n
24 , if 3 does not divide n− 3

But, 3 divides n – 3 if and only if 3 divides n. This, in turn, establishes the theorem.
Theorem 2.5. For any n ≥ 5,

SL(n, 5) =





n(n-1)(n-2)(n-3)(n-4)
1440 , if n = 12m, 12m + 4

n(n-1)(n-2)(n-3)(n-4)
120 , if n = 12m + 1, 12m + 3, 12m + 7, 12m + 9

n(n-1)(n-2)(n-3)(n-4)
720 , if n = 12m + 2

n(n-1)(n-2)(n-3)(n-4)
360 , if n = 12m + 5, 12m + 11

n(n-1)(n-2)(n-3)(n-4)
480 , if n = 12m + 6, 12m + 10

n(n-1)(n-2)(n-3)(n-4)
240 , if n = 12m + 8

Proof. By virtue of Lemma 1.5 and Lemma 2.1,

SL(n, 5) = T (n− 4, 5)

=





(n-4)(n-3)(n-2)(n-1)n
1440 , if n− 4 = 12m, 12m + 8

(n-4)(n-3)(n-2)(n-1)n
120 , if n− 4 = 12m + 1, 12m + 7

(n-4)(n-3)(n-2)(n-1)n
720 , if n− 4 = 12m + 2, 12m + 6

(n-4)(n-3)(n-2)(n-1)n
360 , if n− 4 = 12m + 3, 12m + 5, 12m + 9, 12m + 11

(n-4)(n-3)(n-2)(n-1)n
480 , if n− 4 = 12m + 4

(n-4)(n-3)(n-2)(n-1)n
240 , if n− 4 = 12m + 10

Now, since n – 4 is of the form 12m if and only if n is of the form 12m + 4, n – 4 is of the form
12m + 8 if and only if n is of the form 12m, n – 4 is of the form 12m + 9 if and only if n is of
the form 12m + 1, n – 4 is of the form 12m + 11 if and only if n is of the form 12m + 3, n – 4
is of the form 12m + 10 if and only if n is of the form 12m + 2, etc., the result follows.
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§3. Some open problems

In this section, we give some open problems involving the functions SL(n, r).
First, we state and prove the following two results.
Lemma 3.1. For any integer n ≥ 1, SL(n, n) = 1.
Proof. This is evident from Definition 1.2.
Lemma 3.2. If p is a prime, then p divides SL(p, r) for all r <p.
Proof. By definition,

SL(p, r) =
[p, p-1, p-2, ..., p-r+1]

[1, 2, 3, ..., r]
, r ≤ p.

Now, p divides [p, p – 1, p – 2, . . . , p – r + 1] for all r <p, while p does not divide [1, 2, 3, . . . ,
r]. Thus, p divides SL(p, r).

Using the values of SL(n, r), the following table, called the Smarandache-Amar LCM
triangle, is formed as follows :

The 1st column contains the elements of the sequence {SL(n, 1)}∞n=1, the 2nd column is
formed with the elements of the sequence {SL(n, 2)}∞n=2, and so on, and in general, the k-th
column contains the elements of the sequence {SL(n, k)}∞n=k,

Note that, the 1st column contains the natural numbers, and the 2nd column contains the
triangular numbers.

The Smarandache-Amar LCM triangle is

1-st

column

2-nd

column

3-rd

column

4-th

column

5-th

column

6-th

column

7-th

column

8-th

column

9-th

column

SL(n, 1) SL(n, 2) SL(n, 3) SL(n, 4) SL(n, 5) SL(n, 6) SL(n, 7) SL(n, 8) SL(n, 9)

1-st row 1

2-nd row 2 1

3-rd row 3 3 1

4-th row 4 6 2 1

5-th row 5 10 10 5 1

6-th row 6 15 10 5 1 1

7-th row 7 21 35 35 7 7 1

8-th row 8 28 28 70 14 14 2 1

9-th row 9 36 84 42 42 42 6 3 1

10-th row 10 45 60 210 42 42 6 3 1

11-th row 11 55 165 330 462 462 66 33 55

12-th row 12 66 440 165 66 462 66 33 11

13-th row 13 78 286 715 429 858 858 429 143

Note that, by Lemma 3.1, the leading diagonal contains all unity.
Lemma 3.3. If p is a prime, then sum of the elements of the p-th row ≡1 (mod p).
Proof. The sum of the p-th row is
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SL(p, 1) + SL(p, 2) + . . . + SL(p, p – 1) + SL(p, p)
= [SL(p, 1) + SL(p, 2) + . . . + SL(p, p – 1)] + 1

≡ 1 (mod p),

by virtue of Lemma 3.2.
Lemma 3.4. If p is a prime, then p does not divide SL(2p, r) for any p ≤ r ≤ 2p.

Moreover, if q is the prime next to p, then q divides SL(2p, r) for all p ≤ r ≤ q – 1.
Proof. If p is a prime, then p divides [2p, 2p – 1, . . . , 2p – r + 1] for all r ≤ 2p, and p

divides [1, 2, . . . , r] for all r ≥ p. Hence, p does not divide

SL(2p, r) =
[2p, 2p− 1, ..., 2p− r + 1]

[1, 2, ..., r]
, p ≤ r ≤ 2p. (1)

To prove the remaining part of the lemma, first note that, by Bertrand’s postulate (see, for
Example, Hardy and Wright [5]), there is at least one prime, say, q, such that p <q <2p. Now,
from (1), q divides the numerator if p ≤ r ≤ q – 1, but q does not divide the denominator. As
such, q divides SL(2p, r) for all p ≤ r ≤ q – 1.

Open Problem # 1 : Is it possible to find a congruence property for the sum of the
elements of the k-th row when k is a composite?

Open Problem # 2 : Is it possible to find the sum of the elements of the k-th row?
Note that, by Lemma 3.2 and Lemma 3.4, some of the elements of the (2p)-th row is

divisible by p, and some elements are not divisible by p but are divisible by q, where q is the
next larger prime to p.

Looking at the 9th row of the triangle, we observe that the number 42 appears in three
consecutive places. Note that, 42 is divisible by the prime next to 7 in the interval (p, 2p) with
p = 5.

Open Problem # 3 : In the Smarandache-Amar triangle, is it possible to find (in some
row) repeating values of arbitrary length?

Note that, the above problem is related to the problem of finding the solutions of the
equation

SL(n, r) = SL(n, r + 1). (2)

A necessary and sufficient condition that (2) holds is

([n, n− 1, ..., n− r + 1], n− r)(r + 1) = ([1, 2, ..., r], r + 1)(n− r). (3)

The proof is as follows : The equation (2) holds for some n and r if and only if

[n, n− 1, ..., n− r + 1]
[1, 2, ..., r]

=
[n, n− 1, ..., n− r]
[1, 2, ..., r, r + 1]

that is, if and only if

[n, n− 1, ..., n− r + 1].[1, 2, ..., r, r + 1] = [n, n− 1, ..., n− r].[1, 2, ..., r]

that is, if and only if

[n, n− 1, ..., n− r + 1].
[1, 2, ..., r](r + 1)
([1, 2, ..., r], r + 1)

=
[n, n− 1, ..., n− r + 1](n− r)
([n, n− 1, ..., n− r + 1], n− r)

.[1, 2, ..., r],
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which reduces to (3) after simplification.
Lemma 3.5. If n is an odd (positive) integer, then the equation (2) has always a solution.
Proof. We show that

SL(2r + 1, r) = SL(2r + 1, r + 1) for any integer r ≥ 1.

In this case, the necessary and sufficient condition (3) takes the form

([2r + 1, 2r, ..., r + 2], r + 1)(r + 1) = ([1, 2, ..., r], r + 1)(r + 1).

Now, since

([2r + 1, 2r, ..., r + 2], r + 1) = ([1, 2, ..., r], r + 1) for any integer r ≥ 1,

we see that (3) is satisfied, which, in turn, establishes the result.
If n is an even integer, the equation (2) may not have a solution. A counter-example is the

case when n = 4. However, we have the following result.
Lemma 3.6. If n is an integer of the form n = 2p + 1, where p is a prime, then

SL(2p, p) = SL(2p, p + 1)

if and only if
([1, 2, ..., p], p + 1) = p + 1.

Proof. If n = 2p + 1, then the l.h.s. of the condition (3) is

([2p, 2p− 1, ..., p + 1], p)(p + 1) = p(p + 1),

which, together with the r.h.s. of (3), gives the desired condition.
Conjecture 3.1. The equation SL(n, r) = SL(n, r + 1) has always a solution for any n

≥ 5.
In the worst case, SL(n, n – 1) = SL(n, n) = 1, and the necessary and sufficient condition

is that n divides [1, 2, . . . , n – 1].
Another interesting problem is to find the solution of the equation

SL(n + 1, r) = SL(n, r). (4)

The equation (4) holds for some n and r if and only if

[n, n− 1, ..., n− r + 1]
[1, 2, ..., r]

=
[n + 1, n, ..., n− r + 2]

[1, 2, ..., r]

that is, if and only if

[n, n− 1, ..., n− r + 2].(n− r + 1)
([n, n− 1, ..., n− r + 2], n− r + 1)

=
(n + 1).[n, n− 1, ..., n− r + 2]
([n, n− 1, ..., n− r + 2], n + 1)

,

which, after simplification, leads to

(n− r + 1).([n, n− 1, ..., n− r + 2], n + 1) = (n + 1).([n, n− 1, ..., n− r + 2], n− r + 1), (5)

which is the necessary and sufficient condition for (4).
From (5), we observe the following facts :
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1. n + 1 cannot be prime, for otherwise,

([n, n− 1, ..., n− r + 2], n + 1) = 1,

which leads to a contradiction.

2. In (5),

[n, n−1, ..., n− r +2], n+1) = n+1 ⇔ ([n, n−1, ..., n− r +2], n− r +1) = n− r +1.

3. In (5), if n – r + 1 = 2, then

([n, n− 1, ..., n− r + 2], n− r + 1) = 2 ⇒ [n, n− 1, ..., n− r + 2], n + 1) = n + 1.

4. If n – r + 1 6= 2 is prime, then

([n, n− 1, ..., n− r + 2], n− r + 1) = 1

⇒ n + 1 = (n− r + 1).([n, n− 1, ..., n− r + 2], n + 1)

⇒ n + 1 = ([n, n−1, ..., n−r+2], n+1)
([n, n−1, ..., n−r+2], n+1)−1r,

(6)

after simplification, showing that ([n, n− 1, ..., n− r + 2], n + 1)− 1 must divide r.

5. In (5), if ([n, n− 1, ..., n− r + 2], n + 1) = n + 1, then n− r + 1 cannot be an odd prime,
for otherwise, by (6),

n + 1 =
n + 1

(n + 1)− 1
r ⇒ n = r,

which leads to a contradiction.
Conjecture 3.2. The equation SL(n + 1, r) = SL(n, r) has always a solution for any r

≥ 3.
In the worst case, SL(r + 1, r) = SL(r, r) = 1, and the necessary and sufficient condition

is that ([1, 2, ..., r], r + 1) = r + 1.

Remark 3.1. In [2], Khairnar, Vyawahare and Salunke mention some identities involving
the ratio and sum of reciprocals of two consecutive LCM ratios. The validity of these results
depends on the fact that SL(n, r) can be expressed as

SL(n, r) =
n(n− 1) .... (n− r + 1)

r!
. (7)

If SL(n, r) can be represented as in (7), it can be deduced that

SL(n, r + 1)
SL(n, r)

=
n− r

r + 1
,

1
SL(n, r)

+
1

SL(n, r + 1)
=

n + 1
(r + 1).SL(n, r + 1)

.

However, the above results are valid only under certain conditions on n and r. For example, for
r = 2, the above two identities are valid only for odd (positive) integers n.

Thus, the next question is : What are the conditions on n and r for (7)?
If r = p, where p is a prime, then SL(p! – 1, p) can be expressed as in (7), because in such

a case
SL(p! − 1, p) =

[p! -1, p! -2, ..., p! -p]
[1, 2, ..., p]

=
(p! -1)(p! -2) ... (p! -p)

p!
.
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Abstract : In recent years, various extensions of the well known and useful Kummer’s second

theorem have been given. In this paper, we aim to give another extension of Kummer’s second

theorem.
Keywords : Generalized Hypergeometric Function, Kummer’s 1st and 2nd theorems.

§1. Introduction

In the theory of hypergeometric and generalized hypergeometric series, summation and
transformation formulas play an important role. For this, we start with the following Kum-
mer’s first theorem [3,5] for the series 1F1,

e−x
1F1


 a

b
; x


 = 1F1


 b− a

b
; −x


 . (1.1)

Recently, Paris [4] generalized (1.1) in the form

e−x
2F2


 a, 1 + d

b, d
; x


 = 2F2


 b− a− 1, f + 1

b, f
; −x


 , (1.2)

where

f =
d(1 + a− b)

a− d
. (1.3)

The well known Kummer’s second theorem [4] is

e−x/2
1F1


 a

2a
; x


 = 0F1


 −

a + 1
2

;
x2

16


 . (1.4)
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Bailey[1] established (1.4) by using Gauss’s second summation theorem. Rathie and Choi
[8] derived (1.4) by employing Gauss’s summation theorem[5].

Motivated by the extension of Kummer’s first theorem (1.2) obtained by Paris [4], recently
Rathie and Pogany [9] have given the following interesting extension of Kummer’s second the-
orem in the form

e−x/2
2F2


 a, 1 + d

2a + 1, d
; x


 = 0F1


 −

a + 1
2

;
x2

16


− x ( 1 − 2a

d )
2 (2a + 1) 0F1


 −

a + 3
2

;
x2

16


 . (1.5)

Recently, Kim et al.[2] have generalized the Kummer’s second theorem and obtained ex-
plicit expression of

e−x/2
1F1


 a

2a + j
; x


 for j = 0,±1,±2, ...,±5. (1.6)

Very recently, Rakha et al.[6] have given another extension of Kummer’s second theorem
(1.4) in the following form

e−x/2
2F2


 a, 2 + d

2a + 2, d
; x


 = 0F1


 −

a + 3
2

;
x2

16


 +

( 2a
d − 1

2 )x
(a + 1) 0F1


 −

a + 3
2

;
x2

16




+
c x2

2 (2a + 3) 0F1


 −

a + 5
2

;
x2

16


 , (1.7)

where d 6= 0,−1,−2... and c is given by

c =
(

1
a + 1

)(
1
2
− a

d

)
+

(
a

d(a + 1)

)
. (1.8)

Also, very recently Rakha and Rathie [7] have given another extension of Kummer’s second
theorem in the following form

e−x/2
2F2


 a, 3 + d

2a + 3, d
; x


 = 0F1


 −

a + 3
2

;
x2

16


 + c1x 0F1


 −

a + 5
2

;
x2

16




+ c2x
2

0F1


 −

a + 5
2

;
x2

16


 + c3 x3

0F1


 −

a + 7
2

;
x2

16




(1.9)
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where c1, c2 and c3 are given by

c1 =
3(a

d − 1
2 )

(2a + 3)

c2 =

(
1 − 3a

d + 3a (a + 1)
d (d + 1)

)

2(a + 2)(2a + 3)

c3 =

(
3a
2d − 1

2 − 3a (a + 1)
2d (d + 1) + a(a + 1) (a + 2)

d (d + 1)(d + 2)

)

2(a + 2) (2a + 3) (2a + 5)





. (1.10)

In this paper, we aim to establish one more extension of Kummer’s second theorem in the form

e−x/2
2F2


 a, 4 + d

2a + 4, d
; x


 (1.11)

The result is derived with the help of Kummer’s second theorem (1.4) and its various contiguous
results obtained by Kim et al [2]. For this, the following results given in [2] will be required in
our present investigation.

e−x/2
1F1


 a

2a + 1
; x


 = 0F1


 −

a + 1
2

;
x2

16


− x

2 (2a + 1) 0F1


 −

a + 3
2

;
x2

16


 , (1.12)

e−x/2
1F1


 a

2a + 2
; x


 = 0F1


 −

a + 3
2

;
x2

16


− x

2(a + 1) 0F1


 −

a + 3
2

;
x2

16




+
x2

4(a + 1) (2a + 3) 0F1


 −

a + 5
2

;
x2

16


 , (1.13)

e−x/2
1F1


 a

2a + 3
; x


 = 0F1


 −

a + 3
2

;
x2

16


− 3x

2(2a + 3) 0F1


 −

a + 5
2

;
x2

16




+
x2

2(a + 2) (2a + 3) 0F1


 −

a + 5
2

;
x2

16




− x3

4(a + 2) (2a + 3) (2a + 5) 0F1


 −

a + 7
2

;
x2

16


 , (1.14)

and

e−x/2
1F1


 a

2a + 4
; x


 = 0F1


 −

a + 5
2

;
x2

16


− x

(a + 2) 0F1


 −

a + 5
2

;
x2

16




+
x2

(a + 2) (2a + 5) 0F1


 −

a + 7
2

;
x2

16



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− x3

4(a + 2) (a + 3)(2a + 5) 0F1


 −

a + 7
2

;
x2

16




+
x4

8(a + 2) (a + 3) (2a + 5) (2a + 7) 0F1


 −

a + 9
2

;
x2

16


 .

(1.15)

§2. Main Result

The following extension of Kummer’s second transformation will be established in this pa-
per.

e−x/2
2F1


 a, 4 + d

2a + 4, d
; x


 = 0F1


 −

a + 5
2

;
x2

16


 + c1 x 0F1


 −

a + 5
2

;
x2

16




+ c2 x2
0F1


 −

a + 7
2

;
x2

16


 + c3 x3

0F1


 −

a + 9
2

;
x2

16




+ c4 x4
0F1


 −

a + 9
2

;
x2

16


 (2.1)

where

c1 =
( 2a

d − 1)
(a + 2)

,

c2 =

(
1− 3a

d + 3a (a+1)
d (d+1)

)

(a + 2) (2a + 5)
,

c3 =

(
a
d − 1

4 − 3a (a+1)
2d (d+1) + a (a+1) (a+2)

d (d+1) (d+2)

)

(a + 2) (a + 3) (2a + 5)
,

and

c4 =

(
1
4 − a

d + 3a (a+1)
2d (d+1) − a (a+1) (a+2)

d (d+1) (d+2) + a (a+1) (a+2) (a+3)
2d (d+1) (d+2) (d+3)

)

2 (a + 2) (a + 3) (2a + 5) (2a + 7)
.





(2.2)

Proof. Using the definition of the Pochhammer’s symbol

(a)n =
Γ(a + n)

Γ(a)
,

we can see that

(d + 4)n

(d)n
= 1 +

4n

d
+

6n(n− 1)
d(d + 1)

+
4n(n− 1)(n− 2)
d(d + 1)(d + 2)

+
n(n− 1)(n− 2)(n− 3)
d(d + 1)(d + 1)(d + 3)

. (2.3)
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Now, in order to establish to our main result (2.1), we proceed as follows. Denoting left
hand side of (2.1) by S and expressing 2F2 as series, we have

S = e−x/2
∞∑

n=0

(a)n (d + 4)n

(2a + 4)n (d)n

xn

n!

= e−x/2
∞∑

n=0

(a)n

(2a + 4)n

xn

n!

{
(d + 4)n

(d)n

}
.

Using (2.3), we have

S = e−x/2
∞∑

n=0

(a)n

(2a + 4)n

xn

n!

{
1 +

4n

d
+

6n (n− 1)
d(d + 1)

+
4n (n− 1) (n− 2)
d(d + 1)(d + 2)

+
n(n− 1) (n− 2) (n− 3)
d (d + 1) (d + 1) (d + 3)

}

= e−x/2
∞∑

n=0

(a)n

(2a + 4)n

xn

n!
+

4
d

e−x/2
∞∑

n=1

(a)n

(2a + 4)n

xn

(n− 1)!

+
6

d(d + 1)
e−x/2

∞∑
n=2

(a)n

(2a + 4)n

xn

(n− 2)!
+

4
d(d + 1)(d + 2)

e−x/2
∞∑

n=3

(a)n

(2a + 4)n

xn

(n− 3)!

+
1

d(d + 1)(d + 2)(d + 3)
e−x/2

∞∑
n=4

(a)n

(2a + 4)n

xn

(n− 4)!
.

Now replacing n − 1 by N , n − 2 by N , n − 3 by N and n − 4 by N in second, third, fourth
and fifth series respectively, we have

S = e−x/2
∞∑

n=0

(a)n

(2a + 4)n

xn

n!

+
4
d

e−x/2
∞∑

N=0

(a)N+1

(2a + 4)N+1

xN+1

N !

+
6

d (d + 1)
e−x/2

∞∑

N=0

(a)N+2

(2a + 4)N+2

xN+2

N !

+
4

d(d + 1)(d + 2)
e−x/2

∞∑

N=0

(a)N+3

(2a + 4)N+3

xN+3

N !

+
1

d(d + 1)(d + 2)(d + 3)
e−x/2

∞∑

N=0

(a)N+4

(2a + 4)N+4

xN+4

N !
.

Using the results

(a)N+1 = a(a + 1)N

(a)N+2 = a (a + 1) (a + 2)N

(a)N+3 = a (a + 1) (a + 2) (a + 3)N

(a)N+4 = a (a + 1) (a + 2) (a + 3) (a + 4)N
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and after some simplification, we have

S = e−x/2
∞∑

n=0

(a)n

(2a + 4)n

xn

n!
+

4ax

d (2a + 4)
e−x/2

∞∑

N=0

(a + 1)N

(2a + 5)N

xN

N !

+
6a (a + 1) x2

d (d + 1) (2a + 4) (2a + 5)
e−x/2

∞∑

N=0

(a + 2)N

(2a + 6)N

xN

N !

+
4a (a + 1) (a + 2) x3

d (d + 1) (d + 2) (2a + 4) (2a + 5) (2a + 6)
e−x/2

∞∑

N=0

(a + 3)N

(2a + 7)N

xN

N !

+
a (a + 1) (a + 2) (a + 3)x4

d (d + 1) (d + 2) (d + 3) (2a + 4) (2a + 5) (2a + 6) (2a + 7)
e−x/2

∞∑

N=0

(a + 4)N

(2a + 8)N

xN

N !
.

Finally summing up the series, we have

S = e−x/2
1F1


 a

2a + 4
; x


 +

4ax

d(2a + 4)
e−x/2

1F1


 a + 1

2a + 5
; x




+
6a(a + 1)x2

d(d + 1)(2a + 4)(2a + 5)
e−x/2

1F1


 a + 2

2a + 6
; x




+
4a(a + 1)(a + 2)x3

d(d + 1)(d + 2)(2a + 4)(2a + 5)(2a + 6)
e−x/2

1F1


 a + 3

2a + 7
;x




+
a(a + 1)(a + 2)(a + 3)x4

d(d + 1)(d + 2)(d + 3)(2a + 4)(2a + 5)(2a + 6)(2a + 7)
e−x/2

1F1


 a + 4

2a + 8
; x


 .

Now it is easy to see that the first, second, third, fourth and fifth expressions appearing on
the right hand side can be evaluated with the help of the known results (1.15), (1.14), (1.13),
(1.12) and (1.4) respectively, and after some simplification, we arrive at the desired result (2.1).
This completes the proof of (2.1).

§3. Special Cases

Setting d = 2a in (2.1), we see that

c1 = c3 = 0,

c2 =
1

2(2a + 1)(2a + 5)
, and

c4 =
1

16(2a + 1)(2a + 3)(2a + 5)(2a + 7)
.

So we have
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e−x/2
1F1


 a

2a
; x


 = 0F1


 −

a + 5
2

;
x2

16


 +

x2

2(2a + 1)(2a + 5) 0F1


 −

a + 7
2

;
x2

16




+
x4

16(2a + 1)(2a + 3)(2a + 5)(2a + 7) 0F1


 −

a + 9
2

;
x2

16


 . (3.1)

Now, it is not difficult to see that the right hand side of (3.1) equals to 0F1


 −

a + 1
2

; x2

16




and thus we arrive at the Kummer’s second theorem (1.4). Thus our main result (2.1) may be
regarded as an extension of (1.4).
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§1. Introduction

Compactness and Lindeloffness are important tools in the theory of analysis especially in
Topology and Functional Analysis. With this interesting idea of Compactness and Lindeloffness,
many mathematicians defined and studied these concepts for every type of open sets defined in
General Point set Topology. During the years 2009 and 2010 the authors of this present paper
together with Smt. C. Sandhya studied about ν−compact spaces and ν−Lindeloff spaces.

Inspired with these developments, the authors of the present paper further studied few
interreltion between ν−lindeloff space and ν−compact spaces. Verified few basic properties of
these two spaces. Throughout the paper a space X means a topological space (X,τ).

§2. Preliminaries

Definition 2.1. A subset A ⊂ X is said to be
(i) regular open if A = (A)o

(ii) semi-open [ν[4]-open] if there exists an open [r-open] set U such that U ⊂ A ⊂ U .
(iii) regular closed [semi-closed; ν−closed[4]] of its complement is regular open [semi-open;
ν−open].

Definition 2.2. Let A ⊂ X. A point x ∈ X is said to be ω-accumulation [ν−accumulation[4]]
point of A if every regular-open [ν−open] neighborhood of x intersects A and the union of A

and the set of all ω-accumulation [ν−accumulation[4]] points of A is called ω-closed [ν−closed]
set.

Definition 2.3. A ⊂ X is said to be
(i) Compact[nearly-compact; ν−compact[4]] if every open[regular-open; ν−open] cover of A

has a finite subcover.
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(ii) Countably compact[countably nearly-compact; countably ν−compact[4]] if every count-
able open [countable regular-open; countable ν−open] in A has a finite sub cover.

(iii) σ-compact[σ-nearly-compact; σ-ν−compact[4]] if A is the countable union of compact
[nearly-compact; ν−compact] spaces.

(iv) Weak almost regular [Almost regular] iff for any point a ∈ A and any regular-open set
U containing a, there exist a regular-open [an open] set V such that a ∈ V ⊂ V ⊂ U.

(v) Lindeloff [nearly-lindeloff; ν−lindeloff[4]] if every open [regular-open; ν−open] cover of
A has a countable subcover.

(vi) σ-lindeloff [σ-nearly-lindeloff; σ-ν−lindeloff[4]] if A is the countable union of lindeloff
[nearly-lindeloff; ν−lindeloff] spaces.

Lemma 2.1[4]. If f is almost continuous then for each A ⊂ Y , f−1(A)) ⊂ f−1((A)).
Note 1. (i) Every compact space is locally lindeloff.
(ii) Every lindeloff space is locally lindeloff.

§3. Relation between ν-compact spaces and ν-Lindeloff

spaces

Remark 1. We have the following
(i) Every ν-compact space is a ν−Lindeloff space
(ii) σ-nearly-compact space is σ-ν−compact
(iii) σ-nearly-compact space is σ-ν−lindeloff
(iv) σ-ν−compact space is σ-ν−lindeloff
Theorem 3.1. Let A be r-open and if A ⊆ X is a ν−compact subset of X then the

subspace (A, τ/A) is ν−lindeloff.
Proof. Assume A is ν−compact. Let {Gi : i ∈ I} be any ν−open cover in (A, τ/A). Each

Gi is ν−open in A and Gi ⊆ A ⊆ X, each Gi is ν−open in X. By ν−compactness of X, this
cover has a finite subcover. Hence (A, τ/A) is ν−compact. Therefore (A, τ/A) is ν−lindeloff.

Theorem 3.2.
(i) ν−closed subset of a (countably) ν−compact space is ν−lindeloff
(ii) ν−irresolute image of a (countably) ν−compact space is ν−lindeloff
(iii) countable product of (countably) ν−compact spaces is ν−lindeloff
(iv) countable union of (countably) ν−compact spaces is ν−lindeloff
Proof. (i) Let X be ν−compact and A ⊂ X be ν−closed. Let {Uα : α ∈ ∆} be any

ν−open cover for A. Let U0 = X−A and ∆
′
= ∆∪{0}. Then {Uα : α ∈ ∆

′} is a ν−open cover
for X. Since X is ν−compact, there exists a finite subset ∆

′′ ⊂ ∆
′ 3 X ⊂ ⋃

α∈∆′′ Uα. Since
A ⊂ X and A ∩ U0 = φ, also ∆

′′ − {0} ⊂ ∆. A ⊂ ⋃
α∈∆′′−{0} Uα. Hence {Uα : α ∈ ∆

′′ − {0}}
is a finite subcover of A from {Uα : α ∈ ∆}. Hence A is ν−compact and so ν-lindeloff.

If X is countably ν−compact, ∆ will be countable set.
(ii) Let f : (X, τ) → (Y, σ) be ν−irresolute and let X be ν−compact. Let {Vi : i ∈ I} be any

ν−open cover for f (X), then each Vi is ν−open in f (X). Since f is ν− irresolute, each f−1(Vi)
is ν−open in X. By ν−compactness of X, we have X ⊆ ∪∞n=1f

−1(Vn) implies X ⊆ ∪n
i=1f

−1(Vi).
Thus f(X) ⊆ ∪n

i=1Vi.
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(iii) Let {Xn} be a countable family of ν− compact spaces and let X = ΠnXn. Let
{Uj = Πα6=αij

Xα × Uα1j × ...× Uαnj : Uαij is ν−open in Xαij for each i = 1 to n, j ∈ I} be a
ν−open cover of ΠαXα. Then {Πi(uj) : j ∈ I} is a ν−open cover of Xi. By Assumption, there
exists a finite subfamily {Πi(uj) : j = 1 to n} such that Xi =

⋃
Πi(Uj).

Case 1: If ΠiXi =
⋃n

j=1 Πi(Uj) then ΠiXi is ν−compact and so ν−lindeloff.
Case 2: If not, there exists atmost finite `1, `2, ....., `n such that X`s =

⋃m
k=1s Π`s(Uks) for

each `s ∈ {`1, `2, ....., `n}. Therefore ΠαXα =
⋃n

k=1(Ujk) ∪⋃n
k1=1(Ujk) ∪ .......... ∪⋃n

ks=1(Ujk).
Hence ΠαXα is ν−compact and so ν-lindeloff.

Theorem 3.3. ν−continuous image of a (countably) ν−compact space is lindeloff.
Proof. Let X be ν−compact and f : X → f(X) is ν−continuous. Let {Ui : i ∈ I}

be any open cover for f (X) ⇒ each Ui is open set in f (X) ⇒ each f−1(Ui) is ν−open set
in X ⇒ {f−1(Ui) : i ∈ I} form a ν−open cover for X. By ν−compactness of X we have
X ⊂ ⋃n

i=1 f−1(Ui) ⇒ f(X) ⊂ ⋃n
i=1 Ui ⇒ {Ui : i = 1 to n} is a finite subcover for f (X). Hence

f (X) is compact and so ν-lindeloff.
Note 2. (i) Every ν−compact space is locally ν−lindeloff.
(ii) Every ν−lindeloff space is locally ν−lindeloff.
Theorem 3.4. If f : (X, τ) → (Y, σ) is ν−irresolute, ν−open and X is locally ν−compact,

then so Y is ν-lindeloff.
Proof. Let y ∈ Y . Then there exists x ∈ X such that f(x) = y. Since X is locally

ν−compact x has a ν−compact neighbourhood V . Then by ν−irresolute, ν−open of f, f(V ) is
a ν−compact neighbourhood of y. Hence Y is ν−compct and so ν-lindeloff.

Corollary 3.1. If f : (X, τ) → (Y, σ) is ν−irresolute, ν−open and X is ν−compact, then
Y is locally ν−lindeloff.

Proof. Evident from theorems 3.3 and 3.4.
Theorem 3.5. A ⊆ X be r-open. If A is locally ν−compact subset of X then the subspace

(A, τ/A) is locally ν−lindeloff.
Proof. Evident from the definition 3.4 and Theorem 3.1.
Theorem 3.6.
(i) ν−closed subset of a locally ν−Compact space is locally ν−lindeloff.
(ii) countable product of locally ν−Compact spaces is locally ν−lindeloff.
(iii) countable union of locally ν−Compact spaces is locally ν−lindeloff.
Proof. Evident from the definition 3.4, theorem 3.2 and note 2.
The proof of the following theorems is routine.
Theorem 3.7. If A is ν-compact subspace of X, then A is ν-lindeloff relative to X.
Theorem 3.8. If f : (X, τ) → (Y, σ) is almost continuous, X is ν-compact and Y = f(X)

then Y is ν-lindeloff.
Proof. Let {Vα} be ν-open cover of Y, then for each α there exists a regular open set

Aα such that Aα ⊂ Vα ⊂ Aα ⇒ f−1(Aα) ⊂ f−1(Vα) ⊂ f−1(Aα) = (f−1(Aα)) ⇒ {f−1(Vα)} is
ν−open cover of X ⇒ {f−1(Vα)∪ (f−1(Vα)−0} is ν-open cover for X ⇒ there exists n ∈ N such
that X = ∪n

i=1{f−1(Vαi) ∪ (f−1(Vαi))o} = ∪n
i=1{(f−1(Vαi))o} ⇒ X ⊂ ∪n

i=1(f
−1(Aαi))o ⇒ Y ⊂

∪n
i=1((Aαi))o ⇒ Y ⊂ ∪n

i=1Aαi ⇒ Y ⊂ ∪n
i=1Vαi.

Theorem 3.9. If f is an almost continuous open mapping of a topological space X into
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a ν-compact space Y with f−1(f(Aα)) ⊂ (Aα) for each regular open set Aα of X, then X is
ν-lindeloff.

Proof. Let {Vα} be ν-open cover of X, then {f(Vα)} is semi-open cover of Y so {f(Vα) ∪
(f(Vα)−0} is ν-open cover for Y ⇒ Y = ∪n

i=1{f(Vαi)∪f(Vαi)−o} = ∪n
i=1{f(Vαi)−o} ⊂ ∪n

i=1(f(Aαi)−o},
it follows that, there exists N such that X = ∪N

i=1(f
−1(f(Aαi))−)o. By lemma 2.1 and hypothesis

for f, X = ∪n
i=1(f(Aαi))−o ⊂ ∪n

i=1(f
−1(f(Aαi)−o) ⊂ ∪n

i=1(Aαi)−o = ∪n
i=1(Aαi) ⊂ ∪n

i=1Vαi. Hence
X is ν-compact and so ν-lindeloff.

Remark 2. We have the following
(i) Every locally ν-compact space is a locally ν−Lindeloff space.
(ii) locally σ-nearly-compact space is locally σ-ν−compact.
(iii) locally σ-nearly-compact space is locally σ-ν−lindeloff.
(iv) locally σ-ν−compact space is locally σ-ν−lindeloff.
Remark 3. We have the following
(i) Every ν-compact space is a locally ν−Lindeloff space.
(ii) σ-nearly-compact space is locally σ-ν−compact.
(iii) σ-nearly-compact space is locally σ-ν−lindeloff.
(iv) σ-ν−compact space is locally σ-ν−lindeloff.

§4. Relation between ν−compact spaces and Lindeloff spaces:

Lemma 4.1. If X is ν-compact and semiregular then X is lindeloff.
Proof. Let {Oi : i ∈ I} be an open cover of X. Since X is semiregular, there is a regular

open basis B ⇒ we have ν-open cover {Bj
i : Oi = ∪iB

j
i for each i, where Bj

i ∈ B}. By
ν-compactness of X, X ⊂ ∪k

k=1B
j
ik ⇒ ∪k

k=1Ok. Therefore X is compact and so lindeloff.
Lemma 4.2. If X is ν-compact and semiregular then X is locally lindeloff[resp: locally

compact].
Corollary 4.1. Every nearly compact and semiregular space is lindeloff.
Proof. Let {Oi : i ∈ I} be an open cover of X. Since X is semiregular, there is a regular

open basis B and we have ν-open cover {Bj
i : Oi = ∪iB

j
i for each i, where Bj

i ∈ B}. By nearly
compactness of X, X ⊂ ∪k

k=1B
j
ik ⇒ ∪k

k=1Ok. Therefore X is compact and so lindeloff.
Corollary 4.2. Every nearly compact and semiregular space is locally lindeloff[resp:

locally compact].
Theorem 4.1. If A ⊂ X is Almost ν-regular and compact, then A is ν-lindeloff.
Proof. Let {Ui} be any ν-open cover of A and let x ∈ A be any point. For x ∈ A there

exists a ν-open set Ux containing x ⇒ by almost ν-regularity there exists an open set Vx such
that x ∈ Vx ⊂ Vx ⊂ U . For {Vx} forms a open cover and X is compact, X = ∪n

i=1Vxi. Thus
A ⊆ (∪n

i=1Vxi) = ∪n
i=1(Vxi) ⊆ ∪n

i=1Uxi, which implies that A is ν-compact and so ν-lindeloff.
Corollary 4.3. If A ⊂ X is Almost ν-regular and compact, then A is locally ν-

lindeloff[resp: locally ν-compact].
Corollary 4.4. If A ⊂ X is Almost regular and compact, then A is ν-lindeloff.
Proof. Let {Ui} be any ν-open cover of A and let x ∈ A be any point ⇒. For x ∈ A there

exists a ν-open set Ux containing x. By almost-regularity there exists a regular open set Vx such
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that x ∈ Vx ⊂ Vx ⊂ U . For {Vx} forms a regular open cover and X is compact, {Vx} forms an
open cover and X is compact gives X = ∪n

i=1Vxi. Thus A− ⊆ (∪n
i=1Vxi) = ∪n

i=1(Vxi) ⊆ ∪n
i=1Uxi,

⇒ A is ν-compact and so ν-lindeloff.
Corollary 4.5. If A ⊂ X is Almost regular and compact, then A is locally ν-lindeloff[resp:

locally ν-compact].
Theorem 4.2. If A ⊂ X is weak almost regular and nearly compact, then A is lindeloff.
Proof. Let {Ui} be any open cover of A and let x ∈ A be any point, then for x ∈ A there

exists a regular-open set Ux containing x. By weak almost regularity there exists a regular-open
set Vx such that x ∈ Vx ⊂ (Vx) ⊂ U . For {Vx} forms an open cover and X is nearly compact
there exists N such that X = ∪N

i=1Vxi. Thus A ⊆ (∪N
i=1Vxi) = ∪N

i=1((Vxi)) ⊆ ∪N
i=1Uxi, which

implies that A is compact and so lindeloff.
Corollary 4.6. If A ⊂ X is weak almost regular and nearly compact, then A is lcally

lindeloff[resp: locally compact].
Corollary 4.7. If A ⊂ X is weak almost regular and ν-compact, then A is lindeloff.
Proof. Let {Ui} be any open cover of A and let x ∈ A be any point, then for x ∈ A there

exists a regular-open set Ux containing x and by weak almost regularity there exists a regular-
open set Vx such that x ∈ Vx ⊂ Vx ⊂ U . For {Vx} forms a open cover and X is ν−compact,
X = ∪n

i=1Vxi. Thus A ⊆ (∪n
i=1Vxi) = ∪n

i=1(Vxi) ⊆ ∪n
i=1Uxi, which implies that A is compact

and so lindeloff.
Corollary 4.8. If A ⊂ X is weak almost regular and ν-compact, then A is locally

lindeloff[resp: locally compact].
Theorem 4.3. Every almost ν-regular and almost compact subset A of X is ν-lindeloff.
Proof. Let {Ui} be any ν-open cover of A and let x ∈ A be any point.For ix ∈ I x ∈ Uix

there exists an open set Vx such that x ∈ Vx ⊂ Vx ⊂ Uix. Now {Vx} forms a open cover and X
is almost compact, A ⊆ ∪n

j=1Vxij . Thus {Uxij}n
j=1 is a finite subcovering of {Ui}. Hence A is

ν-compact and so ν-lindeloff.
Corollary 4.9. Every almost ν-regular and almost compact subset A of X is locally

ν-lindeloff[resp: locally ν-compact].
Theorem 4.4. Every weak almost regular and nearly compact subset A of X is ν-

lindeloff.
Proof. Let {Ui} be any ν-open cover of A and let x ∈ A be any point, then there exists

ix ∈ I such that x ∈ Uix then there exists a regular-open set Vx such that x ∈ Vx ⊂ Vx ⊂ Uix.
Now {Vx} forms a regular-open cover and X is nearly compact, A ⊆ ∪n

j=1Vxij . Thus {Uxij}n
j=1

is a finite subcovering of {Ui}. Hence A is ν-compact and so ν-lindeloff.
Corollary 4.10. Every weak almost regular and nearly compact subset A of X is locally

ν-lindeloff[resp: locally ν-compact].
Corollary 4.11. Every weak almost regular and ν-compact subset A of X is lindeloff[resp:

locally lindeloff; locally compact].
Theorem 4.5. If in X, there exists a dense weak almost regular, nearly compact subset

A of X, then X is lindeloff.
Corollary 4.12. (i) If in X, there exists a dense weak almost regular, nearly compact

subset A of X, then X is locally lindeloff[resp: locally compact].
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Theorem 4.6. Let A be any dense almost ν-regular subset of X such that every ν-
open covering of A is a ν-open covering of X. Then X is almost compact if and only if X is
ν-compact.

§5. Relation between ν−lindeloff spaces and weakly com-

pact spaces:

Theorem 5.1. If X is weakly compact and almost regular, then X is ν-lindeloff.
Proof. Let {Vi} be any ν-open cover of X. For each x ∈ X, there exists ix ∈ I such that

x ∈ Vix. Since X is almost regular, there exists a regular open set Gix such that x ∈ Gix ⊂
Gix ⊂ Vix. This implies x ∈ Gix ⊂ Gix ⊂ Vix where Gix are open. Since X is weakly compact,
X = ∪n

i=1Gix. Thus X = ∪n
i=1Vix. Hence X is ν-compact and so ν-lindeloff.

From note 2 we have the following theorem and we state without proof.
Theorem 5.2. If X is weakly compact and almost regular, then X is locally ν-lindeloff[resp:

locally ν-compact].

Conclusion

In this paper we studied about relation between ν−compact space and Lindelof and
ν−Lindelof and weakly Lindelof spaces and coverning properties of weak and strong forms
of ν−continuous maps.
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§1. Introduction

Mappings plays a vital role in the theory of General Topology, Functional Analysis and
other related subjects. Out of which closed maps plays an impotant role. In this way many
mathematicians introduced differnt version of closed mappings. In 1978, Long and Herrington
used almost closedness using Singhal. In 1983 El-Deeb et. al defined preclosed maps. In 1986,
Greenwood and Reilly used α−closed maps. In 1990 Asit Kumar sen and P. Bhattacharya
further studied properties of preclosed maps. In 2014 S. Balasubramanian introduced Somewhat
closed functions, in the same year S. Balasubramanian, C. Sandhya and P. A. S. Vyjayanthi
studied Somewhat ν-Closed functions, S. Balasubramanian, C. Sandhya and M. D. S. Saikumar
studied somewhat rg-closed mappings and S. Balasubramanian and Ch. Chaitanya studied
somewhat αg-closed mappings. Recently in the year 2015 S. Balasubramanian introduced and
studied Somewhat ∗-closed functions[where ∗ = r-; semi-; pre-; α-; β-; rα-; b-; γ-]and Somewhat
#-closed functions[where # = g-; sg-; gs-; pg-; gp-; βg-; gβ-; rαg-; rgα-].

Inspired with these developments, the author of the present paper further introduce Some-
what νg−closed mappings, almost Somewhat νg−closed mappings and Somewhat M-νg−closed
mappings. Moreover basic properties and relationship with other types of such mappings are
studied. Throughout the paper a space X means a topological space (X,τ).

§2. Preliminaries

Definition 2.1. A function f is said to be
(i) somewhat continuous[resp: somewhat b-continuous] if for U ∈ σ and f−1(U) 6= φ, there

exists an open[resp: b-open] set V in X such that V 6= φ and V ⊂ f−1(U).
(ii) somewhat open[resp: somewhat b-open] provided that if U ∈ τ and U 6= φ, then there

exists a proper open[resp: b-open] set V in Y such that V 6= φ and V ⊂ f(U).
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(iii) somewhat closed[resp: somewhat ν-closed; somewhat rg-closed; somewhat g-closed]
provided that if U ∈ C(τ) and U 6= φ, then there exists a non-empty proper closed[resp: ν-
closed; rg-closed; g-closed] set V in Y such that f(U) ⊂ V .

(iv) somewhat ∗-closed[where ∗ = r-; semi-; pre-; α-; β-; rα-; b-; γ-] provided that if
U ∈ C(τ) and U 6= φ, then there exists a non-empty proper ∗-closed set V in Y such that
f(U) ⊂ V .

(v) somewhat #-closed[where # = g-; sg-; gs-; pg-; gp-; βg-; gβ-; rαg-; rgα-] provided that
if U ∈ C(τ) and U 6= φ, then there exists a non-empty proper # closed set V in Y such that
f(U) ⊂ V .

(vi) somewhat αg-closed provided that if U ∈ C(τ) and U 6= φ, then there exists a non-
empty proper αg-closed set V in Y such that f(U) ⊂ V .

Definition 2.2. If X is a set and τ and σ are topologies on X, then τ is said to be
equivalent [resp: b-equivalent] to σ provided if U ∈ τ and U 6= φ, then there is an open[resp:
b-open] set V in X such that V 6= φ and V ⊂ U and if U ∈ σ and U 6= φ, then there is an
open[resp: b-open] set V in (X, τ) such that V 6= φ and U ⊃ V .

Definition 2.3. A ⊂ X is said to be dense in X if there is no proper closed set C in X
such that M ⊂ C ⊂ X.

§3. SOMEWHAT νg−CLOSED MAPS:

Definition 3.1. A function f is said to be somewhat νg−closed provided that if U closed
in X and U 6= φ, then ∃ proper V ∈ νGC(Y ) and V 6= φ such that f(U) ⊂ V .

Example 1. Let X = {a, b, c}, τ = {φ, {a}, X} and σ = {φ, {a}, {b, c}, X}. f defined by
f(a) = a, f(b) = c and f(c) = b is somewhat νg−closed and somewhat closed.

Example 2. Let X = {a, b, c}, τ = {φ, {a}, {b, c}, X} and σ = {φ, {a}, X}. f defined by
f(a) = a, f(b) = c and f(c) = a is somewhat νg−closed but not somewhat closed.

Theorem 3.1. Let f be a closed function and g somewhat νg−closed. Then g ◦ f is
somewhat νg−closed.

Theorem 3.2. For a bijective function f, the following are equivalent:
(i) f is somewhat νg−closed.
(ii) If C is a open subset of X, such that f(C) 6= Y , then there is a νg−open subset D of Y

such that D 6= Y and D ⊂ f(C).
Proof. (i)⇒(ii): Let C be any open subset of X such that f(C) 6= Y . Then X−C is closed in

X and X−C 6= φ. Since f is somewhat νg−closed, there exists a νg−closed set V 6= φ in Y such
that V ⊃ f(X−C). Put D = Y −V. Clearly D is νg−open in Y and we claim D 6= Y. If D = Y,
then V = φ, which is a contradiction. Since V ⊃ f(X−C), D = Y −V ⊂ (Y − f(X−C)) = f(C).
(ii)⇒(i): Let U be any nonempty closed subset of X. Then C = X − U is a open set in X and
f(X − U) = f(C) = Y − f(U) implies f(C) 6= Y. Therefore, by (ii), there is a νg−open set D of
Y such that D 6= Y and f(C) ⊂ D. Clearly V = Y −D is a νg−closed set and V 6= φ. Also,
V = Y −D ⊃ Y − f(C) = Y − f(X − U) = f(U).

Theorem 3.3. The following statements are equivalent:
(i) f is somewhat νg−closed.
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(ii) If A is a νg−dense subset of Y, then f−1(A) is a dense subset of X.

Proof. (i)⇒(ii): Suppose A is a νg−dense set in Y. If f−1(A) is not dense in X, then
there exists a closed set B in X such that f−1(A) ⊂ B ⊂ X. Since f is somewhat νg−closed
and X − B is open, there exists a nonempty νg−closed set C in Y such that C ⊂ f(X − B).
Therefore, C ⊂ f(X −B) ⊂ f(f−1(Y −A)) ⊂ Y −A. That is, A ⊂ Y −C ⊂ Y. Now, Y −C is a
νg−closed set and A ⊂ Y − C ⊂ Y. This implies that A is not a νg−dense set in Y , which is
a contradiction. Therefore, f−1(A) is a dense set in X.

(ii)⇒(i): Suppose A is a nonempty open subset of X. We want to show that νg(f(A))o 6= φ.

Suppose νg(f(A))o = φ. Then, νg(f(A)) = Y. Therefore, by (ii), f−1(Y − f(A)) is dense in X.
But f−1(Y − f(A)) ⊂ X − A. Now, X − A is closed. Therefore, f−1(Y − f(A)) ⊂ X − A gives
X = (f−1(Y − f(A))) ⊂ X−A. This implies that A = φ, which is contrary to A 6= φ. Therefore,
νg(f(A))o 6= φ. Hence f is somewhat νg−closed.

Theorem 3.4. Let f be somewhat νg−closed and A be any r-closed subset of X. Then
f|A : (A; τ|A) → (Y, σ) is somewhat νg−closed.

Proof. Let U is closed in τ|A such that U 6= φ. Since U is r-closed in A and A is closed in
X, U is r-closed in X and since f is somewhat νg−closed, ∃V ∈ νGC(Y ), 3 f(U) ⊂ V. Thus, for
any closed set U of A with U 6= φ, ∃V ∈ νGC(Y ) 3 f(U) ⊂ V which implies f|A is somewhat
νg−closed.

Theorem 3.5. Let f be a function and X = A ∪ B, where A,B ∈ RO(X). If the
restriction functions f|A and f|B are somewhat νg−closed, then f is somewhat νg−closed.

Proof. Let U be any closed subset of X such that U 6= φ. Since X = A ∪ B, either
A∩U 6= φ or B ∩U 6= φ or both A∩U 6= φ and B ∩U 6= φ. Since U is closed in X, U is closed
in both A and B.

Case (i): If A ∩ U 6= φ, where U ∩ A is closed in A. Since f|A is somewhat νg−closed,
∃V ∈ νGC(Y ) 3 f(U ∩A) ⊂ f(U) ⊂ V, which implies that f is somewhat νg−closed.

Case (ii): If B ∩ U 6= φ, where U ∩ B is closed in B. Since f|B is somewhat νg−closed,
∃V ∈ νGC(Y ) 3 f(U ∩B) ⊂ f(U) ⊂ V , which implies that f is somewhat νg−closed.

Case (iii): If both A ∩ U 6= φ and B ∩ U 6= φ. Then by case (i) and (ii) f is somewhat
νg−closed.

Remark 1. Two topologies τ and σ for X are said to be νg−equivalent if and only if the
identity function f : (X, τ) → (Y, σ) is somewhat νg−closed in both directions.

Theorem 3.6. Let f : (X, τ) → (Y, σ) be a somewhat open function. Let τ∗ and σ∗ be
topologies for X and Y, respectively such that τ∗ is equivalent to τ and σ∗ is νg−equivalent to
σ. Then f : (X; τ∗) → (Y ;σ∗) is somewhat νg−closed.

Note 1. From the definition 2.1 we have the following implication diagram among the
following somewhat closed mappings
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(i) swt.g.closed swt.gs.closed

↓ ↓ ↖
swt.rgα.closed → swt.rg.closed → swt.νg.closed ← swt.sg.closed ← swt.βg.closed

↑ ↑ ↑ ↑ ↑
↗ swt.rα.closed → swt.ν.closed ↘ ↑ ↑

swt.r.closed → swt.π.closed → swt.closed → swt.α.closed → swt.s.closed → swt.β.closed

↙ ↓ ↘ ↘
swt.πg.closed swt.p.closed → swt.ω.closed 6↔ swt.gα.closed

↘ ↘
swt.gpr.closed ← swt.gp.closed ← swt.pg.closed swt.rω.closed None is reversible.

(ii) If νGC(Y ) = RC(Y ), then the reverse relations hold for all slightly closed maps.

swt.g.closed swt.gs.closed

l l ↘↖
swt.rgα.closed ↔ swt.rg.closed ↔ swt.νg.closed ↔ swt.sg.closed ↔ swt.βg.closed

l l l l l
↙↗ swt.rα.closed ↔ swt.ν.closed ↖↘ l l

swt.r.closed ↔ swt.π.closed ↔ swt.closed ↔ swt.α.closed ↔ swt.s.closed ↔ swt.β.closed
From above note 1 we have the following.
Theorem 3.7. Let f be a closed function and g swt-[swt-r-; swt-rα-; swt-ν-; swt-α-;

swt-semi-; swt-β-; swt-π-]closed. Then g ◦ f is somewhat νg−closed.
Theorem 3.8. Let f be a closed function and g swt-g-[swt-rg-; swt-rgα-; swt-sg-; swt-gs-;

swt-βg-]closed. Then g ◦ f is somewhat νg−closed.

§4. ALMOST SOMEWHAT νg−CLOSED MAPS:

Definition 4.1. A function f is said to be almost somewhat-νg−closed provided that if
U ∈ RC(τ) and U 6= φ, then ∃ proper V ∈ νGC(Y ) and V 6= φ such that f(U) ⊂ V .

Example 3. Let X = {a, b, c}, τ = {φ, {a}, {b, c}, X} and σ = {φ, {a}, X}. f defined by
f(a) = a, f(b) = c and f(c) = a is almost somewhat νg−closed and but not somewhat closed and
almost somewhat closed.

Theorem 4.2. For a bijective function f, the following are equivalent:
(i) f is almost somewhat-νg−closed.
(ii) If C is a r-open subset of X, such that f(C) 6= Y , then there is a νg−open subset D of

Y such that D 6= Y and D ⊂ f(C).
Proof. (i)⇒(ii): Let C be any r-open subset of X such that f(C) 6= Y . Then X − C is

r-closed in X and X − C 6= φ. Since f is somewhat νg−closed, there exists a νg−closed set
V 6= φ in Y such that V ⊃ f(X −C). Put D = Y − V. Clearly D is νg−open in Y and we claim
D 6= Y. If D = Y, then V = φ, which is a contradiction. Since V ⊃ f(X − C), D = Y − V ⊂
(Y − f(X − C)) = f(C).
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(ii)⇒(i): Let U be any nonempty r-closed subset of X. Then C = X − U is an r-open set in X
and f(X −U) = f(C) = Y − f(U) implies f(C) 6= Y. Therefore, by (ii), there is a νg−open set D
of Y such that D 6= Y and f(C) ⊂ D. Clearly V = Y −D is a νg−closed set and V 6= φ. Also,
V = Y −D ⊃ Y − f(C) = Y − f(X − U) = f(U).

Theorem 4.3. The following statements are equivalent:

(i) f is almost somewhat-νg−closed.

(ii)If A is a νg−dense subset of Y, then f−1(A) is a νg−dense subset of X.

Proof. (i)⇒(ii): Suppose A is a νg−dense set in Y. If f−1(A) is not νg−dense in X, then
there exists a νg−closed set B in X such that f−1(A) ⊂ B ⊂ X. Since f is somewhat νg−closed
and X−B is νg−closed, there exists a nonempty νg−closed set C in Y such that C ⊂ f(X−B).
Therefore, C ⊂ f(X −B) ⊂ f(f−1(Y −A)) ⊂ Y −A. That is, A ⊂ Y −C ⊂ Y. Now, Y −C is a
νg−closed set and A ⊂ Y −C ⊂ Y. This implies that A is not a νg−dense set in Y, which is a
contradiction. Therefore, f−1(A) is a νg−dense set in X.

(ii)⇒(i): Suppose A is a nonempty νg−closed subset of X. We want to show that νg(f(A))o 6=
φ. Suppose νg(f(A))o = φ. Then, νg(f(A)) = Y. Therefore, by (ii), f−1(Y − f(A)) is νg−dense in
X. But f−1(Y − f(A)) ⊂ X −A. Now, X −A is νg−closed. Therefore, f−1(Y − f(A)) ⊂ X −A

gives X = (f−1(Y − f(A))) ⊂ X − A. This implies that A = φ, which is contrary to A 6= φ.
Therefore, νg(f(A))o 6= φ. Hence f is almost somewhat-νg−closed.

Theorem 4.4. Let f be almost somewhat-νg−closed and A be any r-closed subset of X.
Then f|A : (A; τ|A) → (Y, σ) is almost somewhat-νg−closed.

Proof. Let U ∈ RC(τ|A) such that U 6= φ. Since U is r-closed in A and A is closed in
X, U is r-closed in X and since f is almost somewhat-νg−closed, ∃V ∈ νGC(Y ), 3 f(U) ⊂ V.

Thus, for any U ∈ RC(A) with U 6= φ, ∃V ∈ νGC(Y ) 3 f(U) ⊂ V which implies f|A is almost
somewhat-νg−closed.

Theorem 4.5. Let f be a function and X = A∪B, where A,B ∈ RO(X). If the restriction
functions f|A and f|B are almost somewhat-νg−closed, then f is almost somewhat-νg−closed.

Proof. Let U ∈ RC(X) 3 U 6= φ. Since X = A ∪ B, either A ∩ U 6= φ or B ∩ U 6= φ or
both A ∩ U 6= φ and B ∩ U 6= φ. U ∈ RC(X), U ∈ RC(A) and U ∈ RC(B).

Case (i): If A ∩ U 6= φ, where U ∩ A ∈ RC(A). Since f|A is almost somewhat-νg−closed,
∃V ∈ νGC(Y ) 3 f(U ∩A) ⊂ f(U) ⊂ V, which implies that f is almost somewhat-νg−closed.

Case (ii): If B ∩ U 6= φ, where U ∩B ∈ RC(B). Since f|B is almost somewhat-νg−closed,
∃V ∈ νGC(Y ) 3 f(U ∩B) ⊂ f(U) ⊂ V , which implies that f is almost somewhat-νg−closed.

Case (iii): If both A ∩ U 6= φ and B ∩ U 6= φ. Then by case (i) and (ii) f is almost
somewhat-νg−closed.

Remark 2. Two topologies τ and σ for X are said to be νg−equivalent if and only if the
identity function f : (X, τ) → (Y, σ) is almost somewhat-νg−closed in both directions.

Theorem 4.6. Let f : (X, τ) → (Y, σ) be a somewhat open function. Let τ∗ and σ∗ be
topologies for X and Y, respectively such that τ∗ is equivalent to τ and σ∗ is νg−equivalent to
σ. Then f : (X; τ∗) → (Y ;σ∗) is almost somewhat-νg−closed.

Note 2. From the definition 2.1 we have the following implication diagram among the
following almost somewhat closed mappings
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(i) al.swt.g.closed al.swt.gs.closed

↓ ↓ ↖
al.swt.rgα.closed → al.swt.rg.closed → al.swt.νg.closed ← al.swt.sg.closed ← al.swt.βg.closed

↑ ↑ ↑ ↑ ↑
↗ al.swt.rα.closed → al.swt.ν.closed ↘ ↑ ↑

al.swt.r.closed → al.swt.π.closed → al.swt.closed → al.swt.α.closed → al.swt.s.closed → al.swt.β.closed

↙ ↓ ↘ ↘
al.swt.πg.closed al.swt.p.closed → al.swt.ω.closed 6↔ al.swt.gα.closed

↘ ↘
al.swt.gpr.closed ← al.swt.gp.closed ← al.swt.pg.closed al.swt.rω.closed None is reversible.

(ii) swt.g.closed swt.gs.closed

↓ ↓ ↖
swt.rgα.closed → swt.rg.closed → al.swt.νg.closed ← swt.sg.closed ← swt.βg.closed

↑ ↑ ↑ ↑ ↑
↗ swt.rα.closed → swt.ν.closed ↘ ↑ ↑

swt.r.closed → swt.π.closed → swt.closed → swt.α.closed → swt.s.closed → swt.β.closed

↙ ↓ ↘ ↘
swt.πg.closed swt.p.closed → swt.ω.closed 6↔ swt.gα.closed

↘ ↘
swt.gpr.closed ← swt.gp.closed ← swt.pg.closed swt.rω.closed None is reversible.

(iii) If νGC(Y ) = RC(Y ), then the reverse relations hold for all almost slightly closed maps.

al.swt.g.closed al.swt.gs.closed

l l ↘↖
al.swt.rgα.closed ↔ al.swt.rg.closed ↔ al.swt.νg.closed ↔ al.swt.sg.closed ↔ al.swt.βg.closed

l l l l l
↙↗ al.swt.rα.closed ↔ al.swt.ν.closed ↖↘ l l

al.swt.r.closed ↔ al.swt.π.closed ↔ al.swt.closed ↔ al.swt.α.closed ↔ al.swt.s.closed ↔ al.swt.β.closed

From above note 2 we have the following.

Theorem 4.7. Let f be a closed function and g al-swt-[al-swt-r-; al-swt-rα-; al-swt-ν-;
al-swt-α-; al-swt-semi-; al-swt-β-; al-swt-π-]closed. Then g ◦ f is almost somewhat νg−closed.

Corollary 4.1. Let f be a closed function and g swt-[swt-r-; swt-rα-; swt-ν-; swt-α-;
swt-semi-; swt-β-; swt-π-]closed. Then g ◦ f is almost somewhat νg−closed.

Theorem 4.8. Let f be a closed function and g al-swt-g-[al-swt-rg-; al-swt-rgα-; al-swt-sg-;
al-swt-gs-; al-swt-βg-]closed. Then g ◦ f is almost somewhat νg−closed.

Corollary 4.2. Let f be a closed function and g swt-g-[swt-rg-; swt-rgα-; swt-sg-; swt-gs-;
swt-βg-]closed. Then g ◦ f is almost somewhat νg−closed.
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§5. SOMEWHAT M-νg−CLOSED MAPS:

Definition 5.1. A function f is said to be somewhat M-νg−closed provided that if
U ∈ νGC(τ) and U 6= φ, then ∃ proper V ∈ νGC(Y ) and V 6= φ such that f(U) ⊂ V .

Example 4. Let X = {a, b, c}, τ = {φ, {a}, {b, c}, X} and σ = {φ, {a}, X}. f defined by
f(a) = a, f(b) = c and f(c) = a is somewhat M-νg−closed.

Theorem 5.1. Let f be a closed function and g somewhat M-νg−closed. Then g ◦ f is
somewhat M-νg−closed.

Theorem 5.2. For a bijective function f, the following are equivalent:
(i) f is somewhat M-νg−closed.
(ii) If C is a νg−open subset of X, such that f(C) 6= Y , then there is a νg−open subset D

of Y such that D 6= Y and D ⊂ f(C).
Proof. (i)⇒(ii): Let C be any νg−open subset of X such that f(C) 6= Y . Then X − C is

νg−closed in X and X − C 6= φ. Since f is somewhat νg−closed, there exists a νg−closed set
V 6= φ in Y such that V ⊃ f(X −C). Put D = Y − V. Clearly D is νg−open in Y and we claim
D 6= Y. If D = Y, then V = φ, which is a contradiction. Since V ⊃ f(X − C), D = Y − V ⊂
(Y − f(X − C)) = f(C).
(ii)⇒(i): Let U be any nonempty νg−closed subset of X. Then C = X − U is a νg−open set
in X and f(X − U) = f(C) = Y − f(U) implies f(C) 6= Y. Therefore, by (ii), there is a νg−open
set D of Y such that D 6= Y and f(C) ⊂ D. Clearly V = Y −D is a νg−closed set and V 6= φ.
Also, V = Y −D ⊃ Y − f(C) = Y − f(X − U) = f(U).

Theorem 5.3. The following statements are equivalent:
(i) f is somewhat M-νg−closed.
(ii)If A is a νg−dense subset of Y, then f−1(A) is a νg−dense subset of X.
Proof. (i)⇒(ii): Suppose A is a νg−dense set in Y. If f−1(A) is not νg−dense in X, then

there exists a νg−closed set B in X such that f−1(A) ⊂ B ⊂ X. Since f is somewhat νg−closed
and X−B is νg−closed, there exists a nonempty νg−closed set C in Y such that C ⊂ f(X−B).
Therefore, C ⊂ f(X −B) ⊂ f(f−1(Y −A)) ⊂ Y −A. That is, A ⊂ Y −C ⊂ Y. Now, Y −C is a
νg−closed set and A ⊂ Y − C ⊂ Y. This implies that A is not a νg−dense set in Y , which is
a contradiction. Therefore, f−1(A) is a νg−dense set in X.

(ii)⇒(i): Suppose A is a nonempty νg−closed subset of X. We want to show that νg(f(A))o 6=
φ. Suppose νg(f(A))o = φ. Then, νg(f(A)) = Y. Therefore, by (ii), f−1(Y − f(A)) is νg−dense in
X. But f−1(Y − f(A)) ⊂ X −A. Now, X −A is νg−closed. Therefore, f−1(Y − f(A)) ⊂ X −A

gives X = (f−1(Y − f(A))) ⊂ X − A. This implies that A = φ, which is contrary to A 6= φ.
Therefore, νg(f(A))o 6= φ. Hence f is somewhat M-νg−closed.

Theorem 5.4. Let f be somewhat M-νg−closed and A be any r-closed subset of X. Then
f|A : (A; τ|A) → (Y, σ) is somewhat M-νg−closed.

Proof. Let U ∈ νGC(τ|A) such that U 6= φ. Since U is r-closed in A and A is closed in
X, U is r-closed in X and since f is somewhat M-νg−closed, ∃V ∈ νGC(Y ), 3 f(U) ⊂ V. Thus,
for any U ∈ νGC(A) with U 6= φ, ∃V ∈ νGC(Y ) 3 f(U) ⊂ V which implies f|A is somewhat
M-νg−closed.

Theorem 5.5. Let f be a function and X = A ∪ B, where A,B ∈ RO(X). If the
restriction functions f|A and f|B are somewhat M-νg−closed, then f is somewhat M-νg−closed.
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Proof. Let U ∈ νGC(X) 3 U 6= φ. Since X = A ∪ B, either A ∩ U 6= φ or B ∩ U 6= φ or
both A ∩ U 6= φ and B ∩ U 6= φ. Since U ∈ νGC(X), U ∈ νGC(A) and U ∈ νGC(B).

Case (i): If A ∩ U 6= φ, where U ∩ A ∈ RC(A). Since f|A is somewhat M-νg−closed,
∃V ∈ νGC(Y ) 3 f(U ∩A) ⊂ f(U) ⊂ V, which implies that f is somewhat M-νg−closed.

Case (ii): If B ∩ U 6= φ, where U ∩ B ∈ RC(B). Since f|B is somewhat M-νg−closed,
∃V ∈ νGC(Y ) 3 f(U ∩B) ⊂ f(U) ⊂ V , which implies that f is somewhat M-νg−closed.

Case (iii): If both A ∩ U 6= φ and B ∩ U 6= φ. Then by case (i) and (ii) f is somewhat
M-νg−closed.

Remark 3. Two topologies τ and σ for X are said to be νg−equivalent if and only if the
identity function f : (X, τ) → (Y, σ) is somewhat M-νg−closed in both directions.

Theorem 5.6. Let f : (X, τ) → (Y, σ) be a somewhat closed function. Let τ∗ and σ∗ be
topologies for X and Y, respectively such that τ∗ is equivalent to τ and σ∗ is νg−equivalent to
σ. Then f : (X; τ∗) → (Y ;σ∗) is somewhat M-νg−closed.

Conclusion

In this paper we studied basic properties of somewhat νg−closed; almost somewhat νg−closed
and somewhat M-νg−closed maps. Interrelation among different types of such functions are
studied.
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Abstract Let n > 1 be an integer, P̃ (n) is the exponential divisor function. In this paper,

we shall investigate the mean value of P̃ (n) over cube-full integers, that is,

∑

n≤x
n is cube−full

P̃ (n) =
∑

n≤x

P̃ (n)f3(n).

where f3(n) is the characteristic function of cube-full integers, i.e.

f3(n) =





1, n is cube-full;

0, otherwise.

Keywords Divisor problem, Dirichlet convolution method, Mean value.

1. Introduction and preliminaries

An integer n = pa1
1 pa2

2 · · · par
r is called k − full number if all the exponents a1 ≥ k,

a2 ≥ k, · · ·, ar ≥ k. When k = 3, n is called cube− full integer. Let f3(n) be the characteristic
function of cube− full integers, i.e.

f3(n) =





1, n is cube-full;

0, otherwise.

In 1982, M.V.Subbarao[1] gave the definition of the exponential divisor, i.e. n > 1 is an

integer and n =
r∏

i=1

pai
i , d =

r∏
i=1

pci
i , if ci | ai, i = 1, 2, · · · , r, then d is an exponential divisor

of n. We denote d |e n. Two integers n,m > 1 have common exponential divisors if they have

the same prime factors and in this case. i.e. for n =
r∏

i=1

pai
i , m =

r∏
i=1

pbi
i , ai, bi ≥ 1 (1 ≤ i ≤ r),

the greatest common exponential divisor of n and m is (n,m)e =
r∏

i=1

p
(ai,bi)
i . Here (1, 1)e = 1

by convention and (1,m)e does not exist for m > 1.
The integers n,m > 1 are called exponentially coprime, if they have the same prime factors

and (ai, bi) = 1 for every 1 ≤ i ≤ r, with the notation of above. In this case (n,m)e = k(n) =
1This work is supported by Natural Science Foundation of China (Grant No:11001154), and Natural Science

Foundation of Shandong Province(No: ZR2015AM010).
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k(m). 1 and m > 1 are not exponentially coprime. Let P̃ (n) =
∑

1≤j≤n

(j, n)e. Obviously P̃ (n) is

multiplicative and for every prime p, P̃ (pα) =
∑

1≤c≤α

p(c,α) =
∑
d|α

pdϕ(α/d), here P̃ (p2) = p+ p2,

P̃ (p3) = 2p+p3, P̃ (p4) = 2p+p2+p4, P̃ (p5) = 4p+p5, P̃ (p6) = 2p+2p2+p3+p6, P̃ (p7) = 6p+p7,
P̃ (p8) = 4p + 2p2 + p4 + p8.

Many authors have investigated the properties of the exponential divisor function P̃ (n).
Recently L. Toth[2] proved the following result:

∑

n≤x

P̃ (n) = cx2 + O(x log5/3 x),

where the constant c is given by c = 1
2

∏
P

(1 +
∞∑

α=2
P̃ (pα − pP̃ (pα−1))/p2α). For k=2, S. Li[3]

proved that

∑

n≤x
n is square−full

P̃ (n) =
1
3

ζ( 3
2 )H( 1

2 )
ζ(3)

x3/2 +
1
4

ζ( 2
3 )H( 1

3 )
ζ(2)

x4/3

+O(x7/6 exp(−D(log x)3/5(log log x)−1/5)),

where H(s) :=
∞∑

n=1

h(n)
ns =

∏
p

(
1− 1

p9s + · · · ), which is absolutely convergent for <s > 1
9 + ε.

The aim of this short paper is to establish the following asymptotic formula for the mean
value of the function P̃ (n) over cube-full numbers.

Theorem. For some D > 0 ,
∑

n≤x
n is cube−full

P̃ (n) = c1x
4/3 + c2x

5/4 + c3x
6/5 + O(x9/8 exp(−D(log x)3/5(log log x)−1/5)),

where c1, c2, c3 are computable constants.

2. Some Preliminary lemmas

In order to prove our theorem, we need the following lemmas.
Lemma 2.1. Let 1 ≤ a < b < c, 4(a, b, c;x) is defined by

D(a, b, c;x) =
∑

1≤k≤x

d(a, b, c : k) = ζ(
b

a
)ζ(

c

a
)x

1
a + ζ(

a

b
)ζ(

c

b
)x

1
b + ζ(

a

c
)ζ(

b

c
)x

1
c + ∆(a, b, c;x),

we have
4(3, 4, 5;x) ¿ x

22
177 log3 x.

Proof. see A.Ivić[4].
Lemma 2.2. Let P̃ ∗(n) = P̃ (n)

n , <s > 1, we have

∞∑
n=1

n is cube−full

P̃ ∗(n)
ns

=
ζ(3s)ζ(4s)ζ(5s)

ζ(8s)
G(s),
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where the Dirichlet series G(s) :=
∞∑

n=1

g(n)
ns is absolutely convergent for <s > 1

9 + ε.

Proof.
∞∑

n=1
n is cube−full

P̃ ∗(n)
ns

=
∞∑

n=1

P̃ ∗(n)f3(n)
ns

=
∏

P

(
1 +

P̃ ∗(p3)f3(p3)
p3s

+
P̃ ∗(p4)f3(p4)

p4s
+

P̃ ∗(p5)f3(p5)
p5s

+ · · ·+ P̃ ∗(pr)f3(pr)
prs

)

=
∏
p

(
1 +

1
p3s

+
1

p4s
+

1
p5s

+
2

p2+3s
+

1
p2+4s

+
2

p3+4s
+

4
p4+5s

· · ·
)

= ζ(3s)
∏
p

(
1 +

1
p4s

+
1

p5s
+

2
p2+3s

+
1

p2+4s
− 1

p2+6s
− 1

p2+7s
· · ·

)

= ζ(3s)ζ(4s)
∏
p

(
1 +

1
p5s

− 1
p8s

− 1
p9s

+
2

p2+3s
− 1

p2+7s
· · ·

)

=
ζ(3s)ζ(4s)ζ(5s)

ζ(8s)

∏
p

(
1− 1

p9s
+ · · · )

=
ζ(3s)ζ(4s)ζ(5s)

ζ(8s)
G(s),

where G(s) :=
∏
p

(
1− 1

p9s + · · · ) is absolutely convergent for <s > 1
9 + ε.

Lemma 2.3. Let f(n) be an arithmetical function for which

∑

n≤x

f(n) =
l∑

j=1

xaj Pj(log x) + O(xa),
∑

n≤x

|f(n)| = O(xa1 logr x).

where a1 ≥ a2 ≥ · · · ≥ al > 1/c > a ≥ 0, r ≥ 0, P1(t), · · · , Pl(t) are polynomials in t of degrees
not exceeding r, and c ≥ 1 and b ≥ 1 are fixed integers. Suppose for <s > 1 that

∞∑
n=1

µb(n)
ns

=
1

ζb(s)
.

If h(n) =
∑

dc|n
µb(d)f(n/dc), then

∑

n≤x

h(n) =
l∑

j=1

xaj Rj(log x) + Ec(x).

where R1(t), · · · , Rl(t) are polynomials in t of degrees not exceeding r, and for some D > 0

Ec(x) ¿ x1/c exp((−D(log x)3/5(log log x)−1/5)).

Proof. If b = 1, Lemma 2.3 is Theorem 14.2 of Ivić[4].
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3. Proof of the Theorem

Now we prove our theorem.
Let

ζ(3s)ζ(4s)ζ(5s)G(s) =
∞∑

n=1

∑
n=ml

d(3, 4, 5;m)g(l)

ns
:=

∞∑
n=1

h(n)
ns

(<s > 1)

where h(n) =
∑

n=ml

d(3, 4, 5;m)g(l).

By the formula(14.44) of Ivić[4]and Lemma 2.1, we can get

∑

n≤x

d(3, 4, 5;n) = ζ(
4
3
)ζ(

5
3
)x1/3 + ζ(

3
4
)ζ(

5
4
)x1/4 + ζ(

3
5
)ζ(

4
5
)x1/5 + ∆(3, 4, 5;x)

= ζ(
4
3
)ζ(

5
3
)x1/3 + ζ(

3
4
)ζ(

5
4
)x1/4 + ζ(

3
5
)ζ(

4
5
)x1/5 + O(x

22
177 ). (1)

Then from (1) and Abel integration formula we have the relation
∑

n≤x

h(n) =
∑

ml≤x

d(3, 4, 5;m)g(l) =
∑

l≤x

g(l)
∑

m≤x/l

d(3, 4, 5;m)

=
∑

l≤x

g(l)
[
ζ(

4
3
)ζ(

5
3
)(

x

l
)1/3 + ζ(

3
4
)ζ(

5
4
)(

x

l
)1/4 + ζ(

3
5
)ζ(

4
5
)(

x

l
)1/5 + O((

x

l
)

22
177 )

]

= ζ(
4
3
)ζ(

5
3
)x1/3

∑

l≤x

g(l)
l1/3

+ ζ(
3
4
)ζ(

5
4
)x1/4

∑

l≤x

g(l)
l1/4

+ ζ(
3
5
)ζ(

4
5
)x1/5

∑

l≤x

g(l)
l1/5

+ O(x
22
177

∑

l≤x

|g(l)|
l22/177

)

= ζ(
4
3
)ζ(

5
3
)x1/3

∞∑

l=1

g(l)
l1/3

+ ζ(
3
4
)ζ(

5
4
)x1/4

∞∑

l=1

g(l)
l1/4

+ ζ(
3
5
)ζ(

4
5
)x1/5

∞∑

l=1

g(l)
l1/5

+ O(x1/3
∑

l>x

|g(l)|
l1/3

)

+ O(x1/4
∑

l>x

|g(l)|
l1/4

) + O(x1/5
∑

l>x

|g(l)|
l1/5

)

+ O(x
22
177

∑

l≤x

|g(l)|
l22/177

).

Because G(s) is absolutely convergent for σ > 1
9 + ε, so we have M(l) :=

∑
t≤l

|g(t)| ¿ l1/9+ε.

According to Abel’s summation formula, we have the following estimate

x
1
3

∑

l>x

|g(l)|
l1/3

= x
1
3

∫ ∞

x

l−
1
3 d

(
M(l)

)

= x
1
3
(
l−

1
3 M(l)

)∣∣∣
∞

x
+ x

1
3

∫ ∞

x

M(l)d
(
l−

1
3
)

¿ x
1
9 .

Similarly, we have

x
1
4

∑

l>x

|g(l)|
l1/4

¿ x
1
9 , x

1
5

∑

l>x

|g(l)|
l1/5

¿ x
1
9 , x

22
177

∑

l≤x

|g(l)|
l22/177

¿ x
22
177 .
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So
∑

n≤x

h(n) = ζ(
4
3
)ζ(

5
3
)G(

1
3
)x

1
3 + ζ(

3
4
)ζ(

5
4
)G(

1
4
)x

1
4 + ζ(

3
5
)ζ(

4
5
)G(

1
5
)x

1
5 + O(x

1
9 ).

By Lemma 2.3 and Perron’s formula, we get

∑

n≤x
n is cube−full

P̃ ∗(n) =
ζ( 4

3 )ζ( 5
3 )G( 1

3 )
ζ( 8

3 )
x

1
3 +

ζ( 3
4 )ζ( 5

4 )G( 1
4 )

ζ(2)
x

1
4 +

ζ( 3
5 )ζ( 4

5 )G( 1
5 )

ζ( 8
5 )

x
1
5

+O(x1/8 exp(−D(log x)3/5(log log x)−1/5)).

From the definitions of P̃ ∗(n) and Abel’s summation formula, we can easily get

∑

n≤x
n is cube−full

P̃ (n) =
∑

n≤x
n is cube−full

P̃ ∗(n)n =
∫ x

1

td
( ∑

n≤t
n is cube−full

P̃ ∗(n)
)

=
1
4

ζ( 4
3 )ζ( 5

3 )G( 1
3 )

ζ( 8
3 )

x
4
3 +

1
5

ζ( 3
4 )ζ( 5

4 )G( 1
4 )

ζ(2)
x

5
4 +

1
6

ζ( 3
5 )ζ( 4

5 )G( 1
5 )

ζ( 8
5 )

x
6
5

+O(x9/8 exp(−D(log x)3/5(log log x)−1/5)).

where D > 0.
Now our theorem is proved.
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Abstract A function f is called a graceful labelling of a graph G with q edges if f is an

injection from the vertices of G to the set {0, 1, 2, . . . , q} such that, when each edge xy is

assigned the label |f(x)− f(y)|, the resulting edge labels are distinct. A graph G is said to be

one modulo N graceful (where N is a positive integer) if there is a function φ from the vertex set

of G to {0, 1, N, (N+1), 2N, (2N+1), . . . , N(q−1), N(q−1)+1} in such a way that (i) φ is 1−1

(ii) φ induces a bijection φ∗ from the edge set of G to {1, N +1, 2N +1, . . . , N(q−1)+1}where

φ∗(uv)=|φ(u) − φ(v)|. In this paper we prove that the graph Ln

⊗
Sm is graceful and one

modulo N graceful where Ln

⊗
Sm is the graph obtained from the ladder Ln by identifying

one vertex of the ladder Ln with any vertex of the star Sm other than the centre of Sm.

Keywords Graceful, modulo N graceful, ladder, star.

2000 Mathematics Subject Classification: 05C78.

§1. Introduction

S. W. Golomb[2] introduced graceful labelling. Odd gracefulness is introduced by R. B.
Gnanajothi[1]. C. Sekar[7] intoduced one modulo three graceful labelling. V. Ramachandran
and C. Sekar[5] introduced the concept of one modulo N graceful where N is a positive integer.
In the case N = 2, the labelling is odd graceful and in the case N = 1 the labelling is graceful.
In this paper we prove that the graph Ln

⊗
Sm for all positive integers n and m is one modulo

N graceful for any positive integer N .

§2. Main results

Definition 2.1. A graph G is said to be one modulo N graceful (where N is a posi-
tive integer) if there is a function φ from the vertex set of G to {0, 1, N, (N + 1), 2N, (2N +
1), . . . , N(q− 1), N(q− 1) + 1}in such a way that (i) φ is 1-1 (ii) φ induces a bijection φ∗ from
the edge set of G to {1, N + 1, 2N + 1, . . . , N(q − 1) + 1}where φ∗(uv)=|φ(u)− φ(v)|.
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Definition 2.2. Ln

⊗
Sm is the graph obtained from the ladder Ln by identifying one

vertex of the ladder Ln with any vertex of the star Sm other than the centre of Sm.

Theorem 2.1. Ln

⊗
Sm is one modulo N graceful for all positive integers n and m

where N is any positive integer.
Proof. Case (i) When a vertex of the star Sm other than the centre of Sm is identified

with a vertex of degree two of the ladder Ln.
We label the vertices of Ln

⊗
Sm as in the following figure.

r rr rr r

r r
r r

r r

r rr r

r rr r

r rr r

r rr

r r rr

r

u1
u1v1 = w1

v1 = w1

u2
u2

u3
u3

u4
u4

un−1 vn−1

unvn

v3
v3

v2
v2

w0
w0

w2
w2

w3
w3

wm
wm

n is even n is odd

v4 v4

vn−1 un−1

un vn

Let V be the set of all vertices of Ln

⊗
Sm and E be the set of all edges of Ln

⊗
Sm.

Clearly Ln

⊗
Sm has 2n + m vertices and 3n + m − 2 edges. V = {u1, u2, . . . un, w1 =

v1, v2, . . . , vn, w0, w2, w3, . . . , wm},

E =





uivi, for i = 1, 2, . . . , n,

uivi+1 for i = 1, 2, . . . , n− 1,

viui+1 for i = 1, 2, . . . , n− 1,

w0wi for i = 1, 2, . . . , m,

v1w0.

Define the following functions:
φ : V → {0, 1, 2, 3, 4, . . . , N(3n + m− 3) + 1} as follows:
φ(w0) = 0,
φ(wi) = 3N(n− 1) + Ni + 1 for i = 1, 2, 3, . . . , m,
φ(ui) = Ni for i = 1, 2, 3, . . . , n ,
φ(vi) = 3Nn − 2Ni + 1 for i = 1, 2, 3, . . . , n.
From the definition of φ it is clear that {φ(w0)} ∪ {φ(wi), i = 1, 2, . . . , m} ∪ {φ(ui), i =

1, 2, . . . , n} ∪ {φ(vi), i = 1, 2, . . . , n} = {0} ∪ {N(3n − 2) + 1, N(3n − 1) + 1, . . . , N(3n + m −
3) + 1} ∪ {N, 2N, . . . , Nn} ∪ {N(3n− 2) + 1, N(3n− 4) + 1, . . . , Nn + 1}.
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Thus it is clear that the vertices have distinct labels. Therefore φ is 1-1.

We compute the edge labelling in the following sequence.

φ∗(vnvn−1) =| φ(vn)− φ(vn−1) | =





N + 1, if n is odd,

2N + 1, if n is even.

φ∗(un−1un) =| φ(un−1)− φ(un) | =





2N + 1, if n is odd,

N + 1, if n is even.

For i = 1, 2, 3, . . . , m, φ∗(wiw0) =| φ(wi)− φ(w0) | = N(3n− 3 + i) + 1.

For i = 1, 2, 3, . . . , n, φ∗(viui) =| φ(vi)− φ(ui) | = 3N(n− i) + 1.

For i = 1, 2, 3, . . . , n− 2, φ∗(vi+1vi) =| φ(vi+1)− φ(vi) | = N(3n− 3i− 2) + 1.

For i = 1, 2, 3, . . . , n− 2, φ∗(uiui+1) =| φ(ui)− φ(ui+1) | = N(3n− 3i− 1) + 1.

This shows that the edges have the distinct labels {1, N + 1, 2N + 1, . . . , N(q − 1) + 1}.
It is clear from the above labelling that the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), . . . , N(q− 1), N(q− 1) + 1} is in such a way that (i) φ is 1-1 (ii)
φ induces a bijection φ∗ from the edge set of G to {1, N + 1, 2N + 1, . . . , N(q − 1) + 1} where
φ∗(uv)=|φ(u)− φ(v)|. Hence Ln

⊗
Sm is one modulo N graceful.

Example 2.1. One modulo 5 gracefulness of L5

⊗
S4.

t t

tt

t t

tt

t t

t

t
t

t
¥
¥
¥¥

5

56

15

36

25 26

20

46

10

66

0

71
76

81

Example 2.2. Gracefulness of L6

⊗
S7.
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21

2223

Case (ii) When a vertex of the star Sm other than the centre of Sm is identified with a
vertex of degree three of the ladder Ln.

Subcase (ii) (a) Assume N > 1. We label the vertices as follows when p > n
2 if n is even

and when p ≥ n+1
2 if n is odd.

Note 2.1. 1. If p is even and n is odd then top and bottom edges are respective vpup

and vnun

2. If p is odd and n is odd then the top and bottom edges are respective upvp and unvn.

s ss s

s ss s

s ss s

s ss s

s ss s

s ss s

s ss v

s s
s s

s s

s s

vn−1
un−1

un−1
vn−1

un
vnvn

un

u1
u1v1 = w1

v1 = w1

w0
w0

w2
w2

w3
w3

wm
wm

vp+1
vp+1up+1

up+1

v2
v2

u2
u2
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up

up

vp

up−1
vp−1

vp−1
up−1

p is even and n is even
p is odd and n is even

Case (i) p is even.



42 V. Ramachandran and C. Sekar No. 1

Define the function:
φ : V →{0,1,2,3,4,. . . ,N(3n+m-3)+1} as follows:
φ(w0) = 0,
φ(wi) = 3N(n− 1) + Ni + 1 for i = 2, 3, . . . , m,

φ(ui) =





2N, if i=1 ,

N(2i− 3), if i=2,3,4,. . . ,p ,

2N(i− p) + 2N, if i=p+1, p+2, . . . , n.

φ(vi) =





3Nn− 2N + 1, if i=1 ,

3Np− 2N + 1−Ni, if i=2, 4, 6, . . . , p,

3Np− 4N + 1−Ni, if i=3, 5, 7, . . . , p-1,

(3Nn− 2N + 1)−N(i− p), if i=p+1, p+2, . . . , n.

From the definition of φ it is clear that {φ(w0)} ∪ {φ(wi), i = 1, 2, . . . , m} ∪ {φ(ui), i =
1, 2, . . . , n}∪{φ(vi), i = 1, 2, . . . , n} = {0}∪{ N(3n−1)+1, N(3n)+1, . . . , N(3n+m−3)+1}∪
{2N, N, 3N, . . . , N(2p−3), 4N, 6N, . . . , 2N(1+n−p)}∪{N(3n−2)+1, N(3n−3)+1, N(3n−
4) + 1, . . . , N(2n − 2 + p) + 1, N(3n − 4) + 1, N(3n − 6) + 1, . . . , 2N(p − 1) + 1, N(3p − 7) +
1, N(3p− 9) + 1 . . . , N(2p− 3) + 1}.

Thus it is clear that the vertices have distinct labels. Therefore φ is 1− 1.
We compute the edge labelling in the following sequence:
φ∗(v1u1) =| φ(v1)− φ(u1) | = 3Nn− 4N + 1.

φ∗(v2u1) =| φ(v2)− φ(u1) | = 3N(p− 2) + 1.

φ∗(v1u2) =| φ(v1)− φ(u2) | = 3N(n− 1) + 1.

φ∗(v1w0) =| φ(v1)− φ(w0) | = 3Nn− 2N + 1.

φ∗(vp+1u1) =| φ(vp+1)− φ(u1) | = N(3n− 5) + 1.

φ∗(v1up+1) =| φ(v1)− φ(up+1) | = 3N(n− 2) + 1.

For i = 2, 3, . . . , m,

φ∗(wiw0) =| φ(wi)− φ(w0) | = 3N(n− 1) + Ni + 1.

For i = p + 1, p + 2, . . . , n,
φ∗(viui) =| φ(vi)− φ(ui) | = N(3n− 4− 3i + 3p) + 1.

For i = 2, 4, . . . , p,
φ∗(viui) =| φ(vi)− φ(ui) | = N(3p + 1− 3i) + 1.

For i = 3, 5, . . . , p− 1,
φ∗(viui) =| φ(vi)− φ(ui) | = N(3p− 3i− 1) + 1.

For i = 2, 4, . . . , p− 2,
φ∗(vi+1ui) =| φ(vi+1)− φ(ui) | = N(3p− 3i− 2) + 1.

For i = 3, 5, . . . , p− 1,
φ∗(vi+1ui) =| φ(vi+1)− φ(ui) | = N(3p− 3i) + 1.

For i = 2, 4, . . . , p− 2,
φ∗(viui+1) =| φ(vi)− φ(ui+1) | = N(3p− 3i− 1) + 1.

For i = 3, 5, . . . , p− 1,

φ∗(viui+1) =| φ(vi)− φ(ui+1) | = 3N(p− i− 1) + 1.

For i = p + 1, p + 2, . . . , n− 1,
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φ∗(viui+1) =| φ(vi)− φ(ui+1) | = 3N(n− 2− i + p) + 1.

φ∗(vi+1ui) =| φ(vi+1)− φ(ui) | = N(3n− 5− 3i + 3p) + 1.

This shows that the edges have the distinct labels {1, N + 1, 2N + 1, . . . , N(q − 1) + 1}.
It is clear from the above labelling that the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), . . . , N(q− 1), N(q− 1) + 1} is in such a way that (i) φ is 1-1 (ii)
φ induces a bijection φ∗ from the edge set of G to {1, N + 1, 2N + 1, . . . , N(q − 1) + 1} where
φ∗(uv)=|φ(u)− φ(v)|. Hence Ln

⊗
Sm is one modulo N graceful for p is even.

Example 2.3. One modulo 3 gracefulness of L6

⊗
S4.

u u
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Case (ii) p is odd.

Define the function:

φ : V → {0, 1, 2, 3, 4, . . . , N(3n + m− 3) + 1} as follows:

φ(w0) = 0.

φ(wi) = 3(n− 1) + i + 1, for i = 2, 3, . . . , m.

φ(ui) =





N, if i=1,

N(2i− 1), if i=2, 3, . . . , p,

2N + 2N(i− [p + 1]), if i=p+1, p+2, . . . , n.

φ(vi) =





3Nn− 2N + 1, if i=1,

(3Np− 4N + 1)−N(i− 2), if i=2, 4, . . . , p,

(3Np− 3N + 1)−N(i− 3), if i=3, 5, . . . , p-1,

(3Nn− 5N + 1)−N(i− [p + 1], if i=p+1, p+2, . . . , n.

The proof is similar to the proof in case (i).

Clearly φ defines a one modulo N graceful labelling of Ln

⊗
Sm p is odd.

Example 2.4. One modulo 5 gracefulness of L9

⊗
S5.
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Example 2.5. One modulo 3 gracefulness of L8

⊗
S6.
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Subcase (ii) (b) Assume N = 1. We label the vertices as follows when p > n
2 if n is

even and when p ≥ n+1
2 if n is odd.
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Note 2.2. 1. If p is even and n is odd then top and bottom edges are respective vpupand
vnun.

2. If p is odd and n is odd then the top and bottom edges are respective upvpand unvn.

s ss s

s ss s

s ss s

s ss s

s ss s

s ss s

s ss v

s s
s s

s s

s s

vn−1
un−1

un−1
vn−1

un
vnvn

un

u1
u1v1 = w1

v1 = w1

w0
w0

w2
w2

w3
w3

wm
wm

vp+1
vp+1up+1

up+1

v2
v2

u2
u2

vp
up

up

vp

up−1
vp−1

vp−1
up−1

p is even and n is even
p is odd and n is even

Case (i) p is even.
Define the function:
φ : V → {0, 1, 2, 3, 4, . . . , (3n + m− 2)} as follows:
φ(w0) = 0.
φ(wi) = 3(n− 1) + i + 1, for i = 2, 3, . . . , m.

φ(ui) =





2, if i=1,

1, if i=2,

(3p− 2)− (i− 3), if i=3, 5, . . . , p-1,

(3p + 1)− (i− 4), if i=4, 6, . . . , p,

2(i− p) + 2, if i=p+1, p+2, . . . , n.

φ(vi) =





3n− 1, if i=1,

2i− 1, if i=2, 3, 4, . . . , p,

3n + p− 1− i, if i=p+1, p+2, . . . , n.

From the definition of φ it is clear that {φ(w0)} ∪ {φ(wi), i = 2, 3, . . . , m} ∪ {φ(ui), i =
1, 2, . . . , n} ∪ {φ(vi), i = 1, 2, . . . , n} = {0} ∪ { 3n, 3n + 1, . . . , 3n + m − 2} ∪ {1, 2, 3p − 2, 3p −
4 . . . , 2p + 2, 3p + 1, 3p− 1, . . . , 2p + 5, 4, 6, . . . , 2(n− p + 1)} ∪ {3n− 1, 3, 5, 2p− 1, 3n− 2, 3n−
3, . . . , 2n− 1 + p}.

Thus it is clear that the vertices have distinct labels. Therefore φ is 1-1.
We compute the edge labelling in the following sequence:
φ∗(v1u1) =| φ(v1)− φ(u1) | = 3n− 3.
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φ∗(v2u2) =| φ(v2)− φ(u2) | = 2.

φ∗(v3u2) =| φ(v3)− φ(u2) | = 4.

φ∗(v2u1) =| φ(v2)− φ(u1) | = 1.

φ∗(v1u2) =| φ(v1)− φ(u2) | = 3n− 2.

φ∗(v1w0) =| φ(v1)− φ(w0) | = 3n− 1.

φ∗(vp+1u1) =| φ(vp+1)− φ(u1) | = 3n− 4.

φ∗(v1up+1) =| φ(v1)− φ(up+1) | = 3n− 5.

For i = 2, 3, . . . , m, φ∗(wiw0) =| φ(wi)− φ(w0) | = 3(n− 1) + i + 1.

For i = p + 1, p + 2, . . . , n, φ∗(viui) =| φ(vi)− φ(ui) | = 3(n− 1− i + p).
For i = 4, 6 . . . , p, φ∗(viui) =| φ(vi)− φ(ui) | = 3p− 3i + 6.

For i = 3, 5, . . . , p− 1,

φ∗(uivi) =| φ(ui)− φ(vi) | = 3p− 3i + 2.

For i = 4, 6, . . . , p, φ∗(uivi−1) =| φ(ui)− φ(vi−1) | = 3p− 3i + 8.

For i = 3, 5, . . . , p− 1, φ∗(uivi−1) =| φ(ui)− φ(vi−1) | = 3p− 3i + 4.

For i = 4, 6, . . . , p− 2, φ∗(uivi+1) =| φ(ui)− φ(vi+1) | = 3p− 3i + 5.

For i = 3, 5, . . . , p− 1, φ∗(uivi+1) =| φ(ui)− φ(vi+1) | = 3p− 3i.

For i = p + 1, p + 2, . . . , n − 1, φ∗(viui+1) =| φ(vi) − φ(ui+1) | = 3(n − i + p) − 5,

φ∗(vi+1ui) =| φ(vi+1)− φ(ui) | = 3(n− i + p)− 4.

This shows that the edges have the distinct labels {1, 2, . . . , q}. Clearly φ defines a graceful
labelling of Ln

⊗
Sm for p is even.

Example 2.6. Gracefulness of L6

⊗
S4.
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Case (ii) p is odd.
Define the function:
φ : V → {0, 1, 2, 3, 4, . . . , (3n + m− 2) + 1} as follows:
φ(w0) = 0.
φ(wi) = 3(n− 1) + i + 1, for i = 2, 3, . . . , m.
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φ(ui) =





2, if i=1,

1, if i=2,

(3p− 1)− (i− 3), if i=3, 5, . . . , p-1,

3p− (i− 4), if i=4, 6, . . . , p,

2(i− p) + 2, if i=p+1, p+2, . . . , n.

φ(vi) =





3n− 1, if i=1,

2i− 1, if i=2,3,4,. . . ,p,

3n + p− 1− i, if i=p+1, p+2, . . . , n.

The proof is similar to the proof in case (i). Clearly φ defines a graceful labelling of
Ln

⊗
Sm for p is odd.

Example 2.7. Gracefulness of L9

⊗
S5.
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Example 2.8. Gracefulness of L8

⊗
S6.
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§1. Introduction

Let

f(s) =
∞∑

n=1

aneλns, s = σ + it, (σ, t ∈ R). (1)

If an
′s belong to C and λn

′s ∈ R which satisfy the condition 0 < λ1 < λ2 < λ3 . . . <

λn . . . ;λn →∞ as n →∞ and

lim
n→∞

log |an|
λn

= −∞, (2)

lim sup
n→∞

log n

λn
= K < ∞, (3)

then from [7] the Dirichlet series (1) represents an entire function.
Let X denote the set of all entire functions. Let Γ be the set of series (1) for which

(ne)c1λne(n!)c2 |an| is bounded where c1, c2 ≥ 0 and c1, c2 are simultaneously not zero. Then by
[7] every element of Γ represents an entire function. The norm in Γ is defined as follows

‖f‖ = sup
n≥1

(ne)c1λne(n!)c2 |an|. (4)

In [4] Nobusawa generalized the Wedderburn-Artin Theorem for simple and semi-simple
Γ-rings. Barnes in [8] obtained analogues of the classical Noether-Lasker theorems concerning
primary representations of ideals for Γ-rings. Booth and Groenewald in [2] discussed one-to-one
correspondence between the prime left ideals of the gamma ring and the right operator ring.
Also they discussed the bi-ideals and quasi-ideals of a gamma ring.
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The purpose of the present paper is to consider the set of all Entire Dirichlet series which
forms a Γ-ring and establish various results on prime one-sided ideals and socles for this set X.

§2. Basic results

Following definitions are required to prove the main results. For all notions relevant to
ring theory, refer [1] and [3].

Definition 2.1. Let M and Γ be two additive abelian groups. If there exists a mapping
M X Γ X M → M such that for all x, y, z ∈ M and α, β ∈ Γ the conditions

(1.a) (x + y)αz = xαz + yαz,

(1.b) x(α + β)z = xαz + xβz,

(1.c) xα(y + z) = xαy + xαz,

(1.d) (xαy)βz = xα(yβz),
are satisfied then M is a Γ-ring.

An additive subgroup I of M is a left (right) ideal of M if MΓI ⊂ I (IΓM ⊂ I). If I is
both a left and a right ideal of M then I is a two- sided ideal or simply an ideal of M . For all
other concepts we refer [5] and [6].

Definition 2.2. Let M be a Γ-ring. An ideal P of M is prime if for all pairs of ideals
S and T of M , SΓT ⊆ P implies S ⊆ P or T ⊆ P . A Γ-ring M is prime if the zero ideal is
prime.

Definition 2.3. An ideal Q of M is semi-prime if for any ideal U , UΓU ⊆ Q implies
U ⊆ Q. A Γ-ring M is semi-prime if the zero ideal is semi-prime.

Definition 2.4. A one-sided ideal P of X is called prime if for a(s), b(s) ∈ X, a(s) · Γ ·
X · Γ · b(s) ⊆ P implies a(s) ∈ P or b(s) ∈ P .

Definition 2.5. A set {Iα : α ∈ A} of minimal left ideals of X is said to be independent
if Iα

⋂∑
β 6=α Iβ = 0 for allα ∈ A.

Now let a(s), b(s) ∈ X and α(s) ∈ Γ such that

a(s) =
∞∑

n=1

aneλns, b(s) =
∞∑

n=1

bneλns, α(s) =
∞∑

n=1

αneλns. (5)

The binary operations that is addition and scalar multiplication in X X Γ X X is defined as-

a(s) + α(s) + b(s) =
∞∑

n=1

(an + αn + bn)eλns,

a(s) · α(s) · b(s) =
∞∑

n=1

(an · αn · bn) eλns.

Clearly the set X forms a Γ-ring. Also X is a prime and a semi-prime Γ-ring as {0} ideal
is prime and semi-prime respectively.

Let G be a free abelian group generated by the set of all ordered pairs {α(s), a(s)} where
a(s) ∈ X and α(s) ∈ Γ.
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Let T be a subgroup of elements
∑

i

mi{αi(s), ai(s)} ∈ G where mi are integers such that

∑

i

mi.[x(s).αi(s).ai(s)] = 0 for all x(s) ∈ X.

Denote by R′ the factor group G/T and by [α(s), a(s)] the coset {α(s), a(s)}+ T . Clearly
every element in R′ can be expressed as a finite sum

∑

i

[αi(s), ai(s)].

Also for all a1(s), a2(s) ∈ X and β(s) ∈ Γ,

[α(s), a1(s)] + [β(s), a1(s)] = [α(s) + β(s), a1(s)],

[α(s), a1(s)] + [α(s), a2(s)] = [α(s), a1(s) + a2(s)].

Define multiplication in R′ by
∑

i

[αi(s), ai(s)].
∑

j

[βj(s), bj(s)] =
∑

i,j

[αi(s), ai(s).βj(s).bj(s)].

Then R′ forms a ring. Furthermore X is a right R′-module with the definition

x(s).
∑

i

[αi(s), ai(s)] =
∑

i

[x(s).αi(s).ai(s)] for all x(s) ∈ X.

We call the ring R′ the right operator ring of Γ-ring X. Similarly one can define the left
operator ring L′ of X. Every minimal left ideal of a Γ-ring X is of the form X.α(s).e(s) where

e(s) =
∞∑

n=1

eneλns ∈ I and en.αn.en = en.

§3. Main results

In this section main results are proved.
Lemma 3.1. Let (φ, i) be a homomorphism of a Γ-ring X onto a Γ-ring Y with kernel

K then if I is an ideal in X then Iφ is an ideal in Y .
Theorem 3.1. If P is an ideal of the Γ-ring X then the Γ-residue class ring X/P is a

prime Γ-ring if and only if P is a prime ideal in X.
Proof. Let X/P be a prime Γ-ring. Let A and B be ideals of X such that AΓB ⊆ P . Let

(φ, i) be a natural homomorphism from X onto X/P . By Lemma 3.1, Aφ and Bφ are ideals of
X/P such that (Aφ)Γ(Bφ) = (0) implies Aφ = (0) or Bφ = (0). This implies A ⊆ P or B ⊆ P .
Thus P is a prime ideal in X. Conversely let P be a prime ideal in X. Each ideal of X/P is
of the form A/P where A is an ideal in X. Thus we assume that A/P, B/P be ideals of X/P

such that (A/P )Γ(B/P ) = (0). Now AΓB ⊆ P implies A ⊆ P or B ⊆ P . This implies A = P

or B = P . Thus A/P = (0) or B/P = (0). Hence the theorem.
Barnes in [8] characterized P (X) as the intersection of all prime ideals of X. Again {0} is

a semi-prime ideal of X if and only if P (X) = (0) or {0} is a semi-prime ideal of X if and only
if X contains no non-zero strongly nilpotent right (left) ideal. Thus one can say that a Γ-ring
X has zero prime radical if and only if it contains no strongly nilpotent ideal.
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Socles of Γ-rings
The sum Sl (Sr) of all minimal left (right) ideals of X is called left (right) socle of X. It is

clear that if X has no minimal left (right) ideals then the left (right) socle of X is 0.
Lemma 3.2. Let X be a Γ-ring. If I is a minimal left ideal of X then for each α(s) ∈ Γ

and each a(s) ∈ X, I.α(s).a(s) is either zero or a minimal left ideal of X.
Proof. Let I.α(s).a(s) 6= 0 and J be a non-zero left ideal of X contained in I.α(s).a(s)

then there exists x(s) ∈ I with 0 6= x(s).α(s).a(s) ∈ J . Let H = {z(s) ∈ I|z(s).α(s).a(s) ∈ J}.
Therefore H is a non-zero left ideal of X contained in I. Minimality of I implies H = I which
implies I.α(s).a(s) ⊆ J which further implies I.α(s).a(s) = J . Thus I.α(s).a(s) is a minimal
left ideal of X and this completes the proof.

Theorem 3.2. If X is a Γ-ring then the left socle and the right socle of X are ideals of
X.

Proof. By symmetry one needs to only prove that the left socle Sl of X is an ideal of X.
It is clear that Sl is a left ideal of X. We need to prove that Sl is a right ideal of X. Assume
that α(s) ∈ Γ, a(s) ∈ X, f(s) ∈ Sl and f(s) ∈ I1 + I2 + ... + In where Ii are minimal left ideals
of X. Then

f(s).α(s).a(s) ∈ I1.α(s).a(s) + I2.α(s).a(s) + ... + In.α(s).a(s).

By Lemma 3.2, Ii.α(s).a(s) is either zero or a minimal left ideal of X. Hence f(s).α(s).a(s) ∈ Sl.
This implies Sl is a right ideal of X.

This completes the proof of the theorem.
Theorem 3.3. If X is a simple Γ-ring having minimal left ideals then X is a direct sum

of minimal left ideals.
Proof. A left socle is defined as the sum of minimal left ideals. Since X is a simple Γ-ring

therefore left socle of X is X itself. Consider a family A of all independent sets of minimal left
ideals of X. The family A is partially ordered by inclusion. By Zorn’s lemma one can obtain a
maximal independent set in A say {Iα : α ∈ B}. By the maximality of this set I

⋂ ∑

α∈B

Iα = I

for each minimal left ideal I of X and I ⊆
∑

α∈B

Iα. Thus X =
∑

α∈B

Iα (direct sum). Hence the

theorem.
Theorem 3.4. Let X be a Γ-ring. If X has no non-zero strongly nilpotent ideals then

the left socle Sl and the right socle Sr of X coincide.
Proof. A Γ-ring X without non-zero strongly nilpotent ideals has minimal left ideals if and

only if it has minimal right ideals. Moreover, every minimal left ideal is of the form X.α(s).e(s)
where en.αn.en = en. Also, X.α(s).e(s) is a minimal left ideal if and only if e(s).α(s).X is
a minimal right ideal of X. Let Sl =

∑

i

X.αi(s).ei(s) where X.αi(s).ei(s) are minimal left

ideals of X and eni .αni .eni = eni . Since ei(s).αi(s).X are minimal right ideals of X, therefore,∑

i

ei(s).αi(s).X ⊆ Sr. But Sr is an ideal of X which implies X.αi(s).ei(s) ⊆ Sr. This further

implies Sl ⊆ Sr. Similarly Sr ⊆ Sl. Thus Sl = Sr.
This completes the proof of the theorem.
Theorem 3.5. Let P be a left ideal of a Γ-ring X. Then the following are equivalent
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(1) P is prime.
(2) I, J are left ideals of X, IΓJ ⊆ P implies I ⊆ P or J ⊆ P .
Proof. (1) implies (2)
Let I, J be left ideals of X such that I, J * P . Let x(s) ∈ I, y(s) ∈ J such that x(s), y(s)

doesnot belong to P . Then there exists c(s) ∈ X, α(s), β(s) ∈ Γ such that x(s).α(s).c(s).β(s).y(s)
doesnot belong to P . Since x(s).α(s).c(s).β(s).y(s) ∈ IΓJ . This implies IΓJ * P .

(2) implies (1)
Let a(s).Γ.X.Γ.b(s) ⊆ P . Then (X.Γ.a(s)).Γ.(X.Γ.b(s)) ⊆ P . Since X.Γ.a(s) and X.Γ.b(s)

are left ideals of X this implies X.Γ.a(s) ⊆ P or X.Γ.b(s) ⊆ P . Suppose X.Γ.a(s) ⊆ P . Let I

be the left ideal of X generated by a(s). Then IΓI ⊆ X.Γ.a(s) ⊆ P which implies I ⊆ P which
further implies a(s) ∈ P . Similarly if X.Γ.b(s) ⊆ P implies b(s) ∈ P . Hence the theorem.

We now establish the relationships between prime one-sided ideals of X and R′.
Theorem 3.6. Let P be a prime left (right) ideal of R′ then P ∗ is a prime left (right)

ideal of X.
Proof. Since P is a left(right) ideal of R′, P ∗ is a left (right) ideal of X. Let x(s), y(s)

doesnot belong to P ∗. Then there exists α(s), β(s) ∈ Γ such that [α(s), x(s)], [β(s), y(s)] doesnot
belong to P . Since P is prime there exists r(s) ∈ R′ such that

[α(s), x(s)].r(s).[β(s), y(s)] doesnot belong toP,

that is there exists γ(s) ∈ Γ and z(s) ∈ X such that

[α(s), x(s)].[γ(s), z(s)].[β(s), y(s)] doesnot belong toP,

which implies
[α(s), x(s).γ(s).z(s).β(s).y(s)] doesnot belong toP,

which further implies

x(s).γ(s).z(s).β(s).y(s) doesnot belong toP ∗.

Thus P ∗ is prime in X which completes the proof of the theorem.
Theorem 3.7. Let Q be a prime left(right) ideal of X. Then Q∗

′
is a prime left(right)

ideal of R′.
Proof. Since Q is a left (right) ideal of X, Q∗

′
is a left(right) ideal of R′.

Suppose x(s), y(s) doesnot belong to Q∗
′

then there exists a(s), b(s) ∈ X such that
a(s).x(s), b(s).y(s) doesnot belong to Q. Since Q is a prime one-sided ideal of X, there ex-
ists c(s) ∈ X, α(s), β(s) ∈ Γ such that

{a(s).x(s)}.α(s).c(s).β(s).{b(s).y(s)}doesnot belong toQ,

which implies

a(s).{x(s).[α(s), c(s)].[β(s).b(s)].y(s)}doesnot belong toQ,

which further implies

x(s).[α(s), c(s)].[β(s).b(s)].y(s) doesnot belong toQ∗
′
.
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Thus
x(s).R′.y(s) doesnot belong toQ∗

′
.

Hence Q∗
′
is prime in R′. Hence the theorem.

Theorem 3.8. The mapping P → P ∗ defines a one-to-one correspondence between the
sets of prime left ideals of R′ and X.

Proof. Let P be a prime left ideal of R′. By Theorem 3.6, P ∗ is a prime left ideal of X. It
is easily verified that (P ∗)∗

′
= {r(s) ∈ R′|R′.r(s) ⊆ P}. Since P is the left ideal of R′ implies

P ⊆ (P ∗)∗
′
. Now let x(s) ∈ (P ∗)∗

′
. This implies R′.x(s) ⊆ P and hence x(s).R′.x(s) ⊆ P .

Since P is prime in R′ one gets x(s) ∈ P which implies (P ∗)∗
′ ⊆ P . Thus P = (P ∗)∗

′
.

Suppose now that Q is a prime left ideal of X. By Theorem 3.7, Q∗
′
is a prime left ideal of

R′. Now (Q∗
′
)∗ = {a(s) ∈ X|X.Γ.a(s) ⊆ Q}. Since Q is a left ideal of X implies Q ⊆ (Q∗

′
)∗.

Now let x(s) ∈ (Q∗
′
)∗ which implies X.Γ.x(s) ⊆ Q. Hence x(s).Γ.X.Γ.x(s) ⊆ Q further implies

x(s) ∈ Q. Thus (Q∗
′
)∗ = Q. This completes the proof.

Corollary 3.1. Let P (X) be the prime radical of X. Then P (X) is the intersection of
the prime left ideals of X.

Proof. Let P (R′) denote the prime radical of R′. Then P (R′) is the intersection of the
prime left ideals of R′. Moreover P (R′)∗ = P (X) in [9]. Hence

P (X) =
(⋂

{I| I is a prime left ideal ofR′}
)∗

=
⋂
{I| I is a prime left ideal of R′}∗

= {J |J is a prime left ideal of X} (By Theorem 3.8).
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